000132133 001__ 132133
000132133 005__ 20241125101140.0
000132133 0247_ $$2doi$$a10.1016/j.talanta.2023.125119
000132133 0248_ $$2sideral$$a137298
000132133 037__ $$aART-2023-137298
000132133 041__ $$aeng
000132133 100__ $$aNavarro, Jesús
000132133 245__ $$aTowards new fluorometric methodologies based on the in-situ generation of gold nanoclusters
000132133 260__ $$c2023
000132133 5060_ $$aAccess copy available to the general public$$fUnrestricted
000132133 5203_ $$aIn this manuscript a method for the fluorometric determination of tyramine is described. It is based on the direct reaction between Au(III) and tyramine in a phosphate buffer which produces fluorescent gold nanoclusters (AuNC) (λexc = 320 nm, λem = 410 nm) with a diameter of 1.50 ± 0.06 nm. The Au(III) and buffer solutions are mixed and after 140 s, tyramine solution is added; which produces a fast and stable fluorescence signal. The formation of AuNC is demonstrated by STEM and, more importantly, this reaction could be followed by Atomic Fluorescence Microscopy (AFM). The method allows the determination of tyramine in the range from 6.0x10−7 M (limit of quantification) up to 1.2x10−4 M; with a relative standard deviation (RSD) ranges from 1.8% to 4.4% depending on the tyramine concentration. The mechanism of AuNC formation involves the Au(III) reduction via the phenol group and the complexation with the amine group. Putrescine and cadaverine do not produce interference, meanwhile histamine causes a proportional decrease in the signal which can be overcome by the standard addition method. The method was applied to the determination of tyramine in a tuna and cheese samples and the results obtained are in statistical agreement with these obtained using a validated or standard method.
000132133 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E25-20R$$9info:eu-repo/grantAgreement/ES/DGA/E31-20R$$9info:eu-repo/grantAgreement/ES/DGA/LMP154-21$$9info:eu-repo/grantAgreement/ES/MICINN/PID2019-105408GB-I00
000132133 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000132133 590__ $$a5.6$$b2023
000132133 592__ $$a0.956$$b2023
000132133 591__ $$aCHEMISTRY, ANALYTICAL$$b12 / 106 = 0.113$$c2023$$dQ1$$eT1
000132133 593__ $$aAnalytical Chemistry$$c2023$$dQ1
000132133 593__ $$aSpectroscopy$$c2023$$dQ1
000132133 593__ $$aBiochemistry$$c2023$$dQ2
000132133 594__ $$a12.3$$b2023
000132133 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000132133 700__ $$0(orcid)0000-0003-3727-3275$$aCepriá, Gemma
000132133 700__ $$0(orcid)0000-0003-1654-3803$$aCamacho-Aguayo, Javier$$uUniversidad de Zaragoza
000132133 700__ $$0(orcid)0000-0001-9193-3874$$aMartín, Santiago$$uUniversidad de Zaragoza
000132133 700__ $$aGonzález Orive, Alejandro
000132133 700__ $$0(orcid)0000-0002-7902-6005$$ade Marcos, Susana$$uUniversidad de Zaragoza
000132133 700__ $$0(orcid)0000-0002-8973-5104$$aGalbán, Javier$$uUniversidad de Zaragoza
000132133 7102_ $$12009$$2750$$aUniversidad de Zaragoza$$bDpto. Química Analítica$$cÁrea Química Analítica
000132133 7102_ $$12012$$2755$$aUniversidad de Zaragoza$$bDpto. Química Física$$cÁrea Química Física
000132133 773__ $$g266 (2023), 125119 [6 pp.]$$pTalanta$$tTalanta$$x0039-9140
000132133 8564_ $$s3315537$$uhttps://zaguan.unizar.es/record/132133/files/texto_completo.pdf$$yVersión publicada
000132133 8564_ $$s2350023$$uhttps://zaguan.unizar.es/record/132133/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000132133 909CO $$ooai:zaguan.unizar.es:132133$$particulos$$pdriver
000132133 951__ $$a2024-11-22-12:02:18
000132133 980__ $$aARTICLE