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Abstract: The exposure of Mediterranean forests to large wildfires requires mechanisms to prevent
and mitigate their negative effects on the territory and ecosystems. Fuel models synthesize the
complexity and heterogeneity of forest fuels and allow for the understanding and modeling of fire
behavior. However, it is sometimes challenging to define the fuel type in a structurally heterogeneous
forest stand due to the mixture of characteristics from the different types and limitations of qualitative
field observations and passive and active airborne remote sensing. This can impact the performance
of classification models that rely on the in situ identification of fuel types as the ground truth, which
can lead to a mistaken prediction of fuel types over larger areas in fire prediction models. In this
study, a handheld mobile laser scanner (HMLS) system was used to assess its capability to define
Prometheus fuel types in 43 forest plots in Aragón (NE Spain). The HMLS system captured the
vertical and horizontal distribution of fuel at an extremely high resolution to derive high-density
three-dimensional point clouds (average: 63,148 points/m2), which were discretized into voxels
of 0.05 m3. The total number of voxels in each 5 cm height stratum was calculated to quantify the
fuel volume in each stratum, providing the vertical distribution of fuels (m3/m2) for each plot at
a centimetric scale. Additionally, the fuel volume was computed for each Prometheus height stratum
(0.60, 2, and 4 m) in each plot. The Prometheus fuel types were satisfactorily identified in each
plot and were compared with the fuel types estimated in the field. This led to the modification of
the ground truth in 10 out of the 43 plots, resulting in errors being found in the field estimation
between types FT2–FT3, FT5–FT6, and FT6–FT7. These results demonstrate the ability of the HMLS
systems to capture fuel heterogeneity at centimetric scales for the definition of fuel types in the field in
Mediterranean forests, making them powerful tools for fuel mapping, fire modeling, and ultimately
for improving wildfire prevention and forest management.

Keywords: wildfires; fuel heterogeneity; HMLS; Prometheus fuel model; fire modeling; voxels

1. Introduction

Wildfires are natural disasters that commonly affect forests [1,2]. Mediterranean envi-
ronments are particularly vulnerable to wildfires, primarily due to the climatic conditions
and the structural complexity of Mediterranean forest ecosystems [3]. Furthermore, these
areas may be more exposed to fire in the future due to climate change [4–7], recent socio-
economic processes such as the abandonment of fields [8–10], and the increase in buildings
in the wildland–urban interface and in rural areas adjacent to forest stands [11–13]. Im-
provements in wildland fire management can help reduce the number of wildfires [14] and
bolster their resilience to current and future impacts. A pivotal step in wildfire prevention
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is understanding forest fuels, as they offer insights into potential fire behavior in case of
a hypothetical fire.

Forest fuels comprise all living or dead matter available in the forest for combustion.
They are one of the three components of the so-called ‘fire triangle’, together with a heat
source and oxygen. However, fuel is the only one that can be managed, so its characteri-
zation is fundamental to predict fire behavior and establish management plans to assess
the risk of fire [15]. Different fuel models have been developed to synthesize fuel types
according to their height and density [16]. These parametrized models will ultimately
serve as inputs for fire behavior and spread models over larger areas. There are different
fuel-type classifications, such as the Rothermel fire spread model [17], the Northern Forest
Fire Laboratory (NFFL) model [18], and the Prometheus model [19]. The latter is based on
the NFFL model and adapted to Mediterranean ecosystems. It comprises seven fuel types:
one grassland type (FT1), three shrub types (FT2, FT3, and FT4), and three tree types (FT5,
FT6, and FT7). The precise characterization of each fuel type is essential to understand how
fire will behave with vegetation. For this, it is necessary to obtain very detailed information
about the structure of the fuels. However, the identification of fuel types in the field can
be a difficult task, especially in Mediterranean forests, due to the coexistence of different
understory species and the heterogeneous spatial distribution of vegetation. Knowing
the fuel type in a forest plot is relevant when this information acts as the ground truth of
classification models to accurately predict fire behavior over larger forest areas [20]. In this
regard, previous studies have noticed common classification discrepancies between the
field data (i.e., the fuel type acting as the dependent variable) and the results of predictive
models, for instance, between the shrub and tree fuel types [21–23], but more commonly
between the types of the same dominant stratum, such as between shrub types [16,24] and
between tree types [25–27]. In a previous work carried out by Hoffrén et al. (2023) [26], in
the same study area, predictive classification models based on machine learning techniques
were performed to classify Prometheus fuel types using the data obtained from a pho-
togrammetric unmanned aerial vehicle. The results from the classification models showed
that the main discrepancies were between similar fuel types (e.g., FT2–FT3, FT3–FT4, and
FT6–FT7), which may share the same structural features. One of the conclusions drawn
in that study was that some confusion could have occurred due to the structural hetero-
geneity and complexity of the forest plots, which may have made it difficult to identify the
ground truth (i.e., the dominant fuel type) of the plots. In this regard, misclassifications can
occur because forest plots are typically not homogeneous in terms of the fuel type but can
exhibit mixed characteristics of several types [26], leading to confusion when estimating
the ground truth in situ. Ground-based LiDAR (light detection and ranging) systems can
provide a solution to this problem, as they are able to capture detailed structural forest
information [28–32] and thus help to better define the fuel types in forest plots with high
structural complexity.

There are two main ground-based LiDAR systems used in forestry: stationary terres-
trial laser scanners (TLSs) and mobile terrestrial laser scanners (MLSs). TLSs have been
used for the identification of forest fuels for more than a decade, as well as large-scale
fuel-type maps [33], the classification of forest fuels to assess wildfire hazards [34], and
the prediction of surface fuels and vegetation biomass and consumption before and after a
prescribed burning [35]. They have also been used to assess the accuracy of TLS data in
estimating forest phenology and shrub height and density and their comparison with field
reference data [36]; however, the static nature of TLSs can lead to occlusion problems that
can be especially significant in structurally complex forests, such as Mediterranean forests.
This may result in under-predicted structural values [37], undetected trees [38], or less
accurately derived digital elevation models [39]. MLSs are considered efficient alternatives
to TLSs to mitigate occlusion problems [40,41]. They can be mounted on different platforms,
such as smartphones [42], backpacks [43], cars [44], or handheld devices. Handheld mobile
laser scanners (HMLSs), in particular, are among the most widely used MLSs in forestry [41].
They enable rapid and accurate acquisition of forest structural data [37] and can detect trees
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accurately [45–47] and in less time compared to TLS systems [40]. They have also been
successfully capable of estimating forest fuels. For instance, Forbes et al. (2022) [48] found
that HMLS systems can be used to estimate ladder fuels in oak woodlands to predict wild-
fire burn severity with good accuracy. Post (2022) [49] also observed good performances
of a HMLS system to detect post-fire disturbances from surface fuel data. Furthermore,
Coskuner et al. (2023) [50] obtained good results from a HMLS system to estimate fuel char-
acteristics in Mediterranean forest stands. Therefore, and given the very high resolution of
information they are capable of collecting, HMLS systems appear to be very suitable tools
for capturing the structural complexity of fuels with a high level of detail for the precise
definition of fuel types in the field.

In this context, the main objective of this study is to evaluate the suitability of
a HMLS system for constructing an enhanced ground truth of fuel types, which can be
used subsequently to better predict forest fuels over large areas. The initial hypothesis is
that HMLS systems can capture fuel heterogeneity and quantify the fuel volume at a very
high resolution, allowing for the characterization of the structural complexity of vegetation
with high accuracy and definition of the fuel types in forest stands with uncertain dominant
types. To this end, the HMLS system will be used to quantify the fuel volume by height
strata at a very high resolution in structurally heterogeneous forest stands, facilitating the
identification of the Prometheus fuel type for each stand to serve as the ground truth in
other remote sensing fuel identification techniques.

2. Materials and Methods
2.1. Study Area

The study was conducted across 43 forest plots of a 15 m circular radius, except for
one plot of a 10 m circular radius (Table S1 of Supplementary Materials). These plots
were selected from those previously utilized by Hoffrén et al. (2023) [26]. They were
distributed across 5 sectors of the Autonomous Community of Aragón (NE Spain) as fol-
lows: Almudévar, Ayerbe, Uncastillo, Villarluengo, and Zuera (Figure 1). The prevailing
climate in these sectors is Mediterranean with a continental influence, characterized by
sporadic and irregularly distributed rainfall throughout the year, substantial daily and
annual thermal gradients, and convective storms, which are frequent in late spring and
summer. The sectors of Almudévar, Ayerbe, and Zuera are located in the Central Ebro Val-
ley, where climatic conditions tend to be more extreme, resembling steppe-like conditions
with cold winters, very hot and dry summers, low precipitation, and a high probability
of drought periods. On the other hand, the Uncastillo sector, situated to the north of the
Central Ebro Valley near the southern foothills of the Pre-Pyrenean range, experiences less
extreme temperature gradients and higher rainfall. Finally, the Villarluengo sector, located
in the Iberian range, features colder winters and milder summers compared to the other
sectors due to its higher altitude [51]. All plots are characterized by typical Mediterranean
vegetation well-adapted to the local climatic conditions, including shrublands and forest
predominantly consisting of Aleppo pine (Pinus halepensis Mill.) and bog pine (Pinus nigra
Mill.) mixed with an understory of oaks (Quercus coccifera L., Quercus faginea Lam., and
Quercus ilex subsp. rotundifolia Lam.), boxwood (Buxus sempervirens L.), junipers (Juniperus
oxycedrus L.), rosemary (Rosmarinus officinalis L.), and thymes (Thymus vulgaris L.). The
climatic conditions, along with the characteristics of vegetation, and together with recent
processes such as cropland abandonment and natural and systematic reforestation with
pine species, lead to a high risk of forest fires. In fact, 3 out of the 5 sectors experienced
large wildfires (>500 ha of burned area) in the last 30 years: Uncastillo and Villarluengo
in 1994 and Zuera in 1995 and 2008. Although each forest plot had initially assigned
a Prometheus fuel type as the ground truth (see Hoffrén et al., 2023 [26]), fuel types were
reassigned during each visit, as plots could undergo changes in the dominant Prometheus
type due to natural vegetation dynamics. The grassland fuel type (FT1) was not considered
in this study due to its highly homogeneous and distinctive fuel structure. The center of
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each plot was determined using a Leica Viva®GS15 CS10 GNSS real-time kinematic global
positioning system with centimeter-level accuracy.
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Figure 1. Study area, location of the 5 sectors and the 43 forest plots, and detailed photo of 6 plots,
one for each Prometheus fuel type considered in the study. Coordinate reference system of the main
map: EPSG: 25830–ETRS89/UTM zone 30N.

2.2. Data Acquisition and Preprocessing

HMLS data were collected at the end of May 2023 using a GeoSLAM ZEB-Horizon
unit (GeoSLAM Ltd., Ruddington, UK) (Figure 2a), capable of scanning 300,000 points
per second with a maximum scan range of 100 m and a 360◦ × 270◦ field of view. Scans
were performed following methods similar to those described in Gollob et al. (2020) [45,52].
The scanning procedure commenced at the center of each plot, followed by an inner circular
scan approximately 1 m from the plot’s center and an outer circular scan at the plot’s
boundaries, pointing towards the center of the plot. Next, a detailed scan was performed
within the plot in densely vegetated and shadowed areas to mitigate occlusion issues,
concluding the scan at the starting point located at the plot’s center. An example of a typical
scan path on a plot can be observed in Figure 2b. The scanning time for each plot was about
10–15 min (longer in denser plots). The interaction of the laser system with the vegetation
generated highly dense three-dimensional point clouds, with an average point density of
63,148 points/m2 for all plots (detailed densities for each plot are presented in Table S1
of the Supplementary Materials). Since the HMLS system did not incorporate an inertial
measurement unit, data were collected in local coordinates (i.e., the center of the plot had
coordinates XY 0,0) and were subsequently georeferenced to a coordinate reference system.
To achieve this, 5 ground control points (GCPs) were established in each plot before the start
of the scans with the Leica Viva®GS15 CS10 GNSS. One GCP was positioned at the center
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of the plot, and the remaining four were placed at each of the cardinal points of the plot’s
boundaries (Figure 2b). During the scans, the HMLS remained static and at ground level on
each GCP for at least 10 seconds to record the local coordinates, which were then matched
with the coordinates obtained from the GNSS at the same GCP. For data preprocessing, the
proprietary software GeoSLAM Connect v.2.3.0 was employed. It involved the conversion
of scans into LAS files and georeferencing local coordinates to a coordinate reference system
(EPSG: 25830–ETRS89/UTM zone 30N). For the latter, the ‘Stop and Go alignment’ tool
was utilized, facilitating the association of the local coordinates registered with the HMLS
to the coordinates recorded with the GNSS at each GCP in the coordinate reference system.
The mean georeferencing error for all plots was 0.161 m (detailed results are provided in
Table S1 of the Supplementary Materials).
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Figure 2. (a) HMLS unit used in the study: GeoSLAM ZEB-Horizon (GeoSLAM Ltd., Ruddington, UK);
(b) example of the location of the 5 GCPs and the route followed to obtain the data in a plot.

2.3. Ground Points Classification

The georeferenced point clouds were classified into ground and non-ground points for
the generation of digital elevation models (DEMs) and height normalization. This process
is a key step for ensuring that subsequent analyses are accurate, given the very high point
cloud density of the HMLS data. To accomplish this, three different ground classification
algorithms commonly used in forestry were tested as follows: the ‘lasground’ algorithm of
LasTools (Rapidlasso GmbH, Gilching, Germany), the multiscale curvature classification
(MCC) algorithm [53], and the cloth simulation filter (CSF) algorithm [54]. The software
used for this purpose was ArcMap v.10.7.1 (ESRI, 2019) for LasTools, MCC-LiDAR v.2.1 [52]
for the MCC, and the lidR package [55,56] of the R environment [57] for the CSF. The
classification could be applied without reducing the original point cloud densities in the
cases of LasTools and the CSF, but with the MCC, the point clouds had to be decimated
to 1000 points/m2 due to computational limitations. The points classified as ground by
the three algorithms were used to generate DEMs with a spatial resolution of 0.20 m by
the TIN-to-raster interpolation method [58] using the ‘rasterize terrain’ function of the lidR
package. Subsequently, the elevation values were extracted from the DEMs through the
random sampling of 2000 points, and they were compared with each other to compute
the mean height error for each algorithm. The DEMs from the algorithm with the lowest
mean error were selected to normalize the heights of the point clouds. This was achieved
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using the ‘normalize heights’ function of the lidR package. Finally, normalized points with
negative height values or exceeding 40 m (i.e., outliers) were removed using the ‘filter poi’
function of lidR.

2.4. Voxelization and Fuel Load Quantification

Estimation of the fuel load was performed by calculating the volume of the normalized
point clouds. For this purpose, a voxelization process was conducted, which has been
reported as a well-suited approach for estimating forest fuels (e.g., [59–62]) and allows for
simplifying the huge amount of data coming from ground-based LiDAR systems [63–67].
In doing so, the effect of uneven point distributions, many of which tend to be located closer
to the sensor, is normalized [64,65]. The first step prior to the voxelization process was to
consider the resolution of the voxels so that they could accurately describe the heteroge-
neous structure and distribution of fuel loads without a loss of information. Considering
the average point cloud densities, voxels were generated at a 5 cm grid resolution using
the VoxR package for R [65,68]. Before that, the points considered as noise were filtered
out using the Statistical Outliers Removal (SOR) filter available in the VoxR package. The
SOR filter considers a point to be noise if it is at a distance to its nearest neighbors greater
than the mean distance of the entire point cloud plus 1.5 times the standard deviation of
the other points [68]. As a result of voxelization, each plot was composed of a collection of
filled and empty voxels in the XYZ space (Figure 3). Filled voxels indicated the presence of
at least one point of the point cloud, while empty voxels denoted an absence of points.
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Figure 3. Results of voxelization (below) of the point cloud (above) for the entire forest plot ‘al02’
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are displayed.

The total volume for each plot in each 5 cm height stratum was computed as the sum
of the filled voxels in each stratum multiplied by their volume (Equation (1)), following
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the methods adopted by Martínez-Rodrigo et al. (2022) [66]. In order to take into account,
with a cautious approach, the measurement accuracy of the instrument, which is around
1–3 cm, for subsequent analyses, the first voxelized stratum (i.e., voxels between 0 and 5 cm
of height) was not considered to ensure an exclusion of returns that may belong to the
ground and not to the fuel. The volume of each height stratum was calculated in absolute
(m3/m2) and relative (% of the total) terms. Additionally, the total volume of the fuel
load was calculated for each height threshold of the Prometheus model: below 0.60 m
for the low shrub (LSh) stratum, between 0.60–2 m for the medium shrub (MSh) stratum,
between 2–4 m for the high shrub (HSh) stratum, and above 4 m for the tree stratum (Tr),
for quantifying the average fuel load for each fuel type.

VOLs = ∑ VOXs ×(0.05)3 (1)

where VOL represents the total volume in absolute (m3/m2) and relative (% of the total)
terms in the s height stratum, and VOX represents the filled voxels in the s height stratum.

3. Results
3.1. Visual Analyses of the Processed Point Clouds

A preliminary assessment of the differentiation capability between the Prometheus
fuel types was conducted through a visual analysis of the point clouds. Figure 4 illustrates
the structural heterogeneity of vegetation at both the plot and transect scales by fuel type.
It can be observed that the acquired and processed data successfully represent the vertical
distribution of vegetation, even in the upper strata (e.g., canopies), which are further away
from the ground, where data are acquired. The LSh, MSh, and HSh strata (i.e., shrub
strata) are predominant in FT2, FT3, and FT4, respectively. In addition, some scattered
larger shrubs or small trees can be found in the FT2 and FT3 plots, while FT4 exhibits
a greater spatial continuity of tall shrubs. In FT5, the point cloud clearly represents the
tree profile and the absence of an understory. Continuity of vegetation can be observed
between the lower and upper strata for the tree fuel types, as in FT6, but to a lesser extent
compared to FT7, where the fuel reaches the maximum structural volume and the highest
stand compactness.

3.2. Selection of the Ground Points Classification Algorithm

Figure 5 depicts the results of the comparative analyses of the mean height error for
each plot and between algorithms. The detailed results can be found in Table S2 of the
Supplementary Materials. There were minimal differences in the height values extracted
from the MCC and CSF (mean error = 4 cm, standard deviation = 4 cm), whereas, with
LasTools, the differences with the other two algorithms were slightly larger (LasTools–
MCC: mean error = 19 cm, standard deviation = 28 cm; LasTools–CSF: mean error = 20 cm,
standard deviation = 26 cm). Regarding the classification process, the MCC took consider-
able time to process the decimated point cloud, while LasTools and the CSF processed the
complete point cloud in less time. Therefore, based on these results, the CSF algorithm was
chosen as the most suitable for filtering and classifying the point clouds into ground and
non-ground points to normalize the heights of the point clouds.
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Figure 5. DEMs mean height error for each forest plot and each pair of ground point classification
algorithms considered in the study.

3.3. Definition of Prometheus Fuel Types

The vertical distribution of the fuel volume every 5 cm enabled the definition of
specific distributions of the Prometheus fuel types for each forest plot (see Figures S1–S3 of
the Supplementary Materials), facilitating the detection of plots with inaccurately estimated
fuel types in the field.

In general terms, the Prometheus shrub fuel types (FT2, FT3, and FT4) exhibit
a unimodal distribution, except for some cases in FT4, with peaks in the LSh stratum
and a gradual decrease in fuel towards the higher strata, nearly diminishing in the MSh
stratum (Figure 6). In FT2, the fuel is primarily concentrated in the LSh stratum, with only
a few plots showing a slight increase between 0.60 and 4 m, likely due to scattered low
trees within those plots, though it does not significantly alter the overall distribution. In
FT3, the decline in fuel load is less abrupt than in FT2 within the LSh stratum but stabilizes
in the MSh stratum before gradually decreasing to the Tr stratum. The distribution of FT4
differs slightly from that of FT2 and FT3, with the peak found in both the LSh and MSh
strata. Moreover, there is a higher volume of fuel in the MSh stratum. Some plots exhibit
a bimodal distribution, with peaks in both the LSh and MSh strata. These distributions in
FT4 suggest a continuity of the vertical fuel structure below 4 m, characteristic of this fuel
type. Based on these findings, a total of four shrub-type plots with inaccurately estimated
fuel types in the field were identified. One plot, initially classified as FT2 (‘vi40’), did not
align with the average distribution for this fuel type, as it exhibited a higher fuel volume
in the MSh stratum, aligning more closely with FT3. Consequently, the ground truth was
changed to this fuel type. Additionally, three plots classified as FT3 (‘vi17’, ‘zu30’, and
‘zu31’) were reclassified as FT2, as their volume distribution showed an abrupt decrease in
fuel from the MSh stratum, better fitting with the FT2 distributions. In the case of the FT4
plots, no modifications were made.



Fire 2024, 7, 59 10 of 20

Fire 2024, 7, x FOR PEER REVIEW 10 of 21 
 

 

strata. Moreover, there is a higher volume of fuel in the MSh stratum. Some plots exhibit 
a bimodal distribution, with peaks in both the LSh and MSh strata. These distributions in 
FT4 suggest a continuity of the vertical fuel structure below 4 m, characteristic of this fuel 
type. Based on these findings, a total of four shrub-type plots with inaccurately estimated 
fuel types in the field were identified. One plot, initially classified as FT2 (’vi40’), did not 
align with the average distribution for this fuel type, as it exhibited a higher fuel volume 
in the MSh stratum, aligning more closely with FT3. Consequently, the ground truth was 
changed to this fuel type. Additionally, three plots classified as FT3 (’vi17’, ’zu30’, and 
’zu31’) were reclassified as FT2, as their volume distribution showed an abrupt decrease 
in fuel from the MSh stratum, better fitting with the FT2 distributions. In the case of the 
FT4 plots, no modifications were made. 

 
Figure 6. Vertical distribution of the volume of fuel load every 0.05 m of the Prometheus shrub fuel 
types. Each line represents a forest plot arranged by the fuel type estimated in the field (left) and 
corrected with HMLS data (right). No modifications were made in FT4 plots. 

Regarding the Prometheus tree fuel types, FT5 displays a distinctly bimodal distri-
bution, with a primary peak in the LSh stratum and a secondary peak starting in the HSh 
stratum and continuing into the Tr stratum or originating directly in the Tr stratum, with 
a minimal fuel load volume in the MSh stratum. The distribution of FT6 exhibits a peak 
in the LSh stratum, followed by a decrease in the MSh stratum and a slight increase in the 
HSh stratum, culminating in a gradual decline from the Tr stratum. FT7 exhibits a very 

Figure 6. Vertical distribution of the volume of fuel load every 0.05 m of the Prometheus shrub fuel
types. Each line represents a forest plot arranged by the fuel type estimated in the field (left) and
corrected with HMLS data (right). No modifications were made in FT4 plots.

Regarding the Prometheus tree fuel types, FT5 displays a distinctly bimodal distribu-
tion, with a primary peak in the LSh stratum and a secondary peak starting in the HSh
stratum and continuing into the Tr stratum or originating directly in the Tr stratum, with
a minimal fuel load volume in the MSh stratum. The distribution of FT6 exhibits a peak in
the LSh stratum, followed by a decrease in the MSh stratum and a slight increase in the HSh
stratum, culminating in a gradual decline from the Tr stratum. FT7 exhibits a very similar
distribution to FT6, except for a more consistent volume along the MSh and HSh strata
before declining from the Tr stratum. This indicates greater volume in the intermediate
strata and consequently, more vertical continuity of the fuel load, characteristic of this
type. These findings revealed misidentifications of ground truth in six tree-type fuel plots.
Two plots, initially categorized as FT6 (‘ay12’ and ‘ay49’), were reassigned to FT5 due to
the distinct bimodality of their distributions and minimal volume present in the MSh and
HSh strata. Another plot initially labeled as FT6 in the field (‘ay31’) was corrected to FT7,
as it demonstrated a consistent fuel volume between the LSh and MSh strata. Moreover,
three plots originally labeled as FT7 (‘ay06’, ‘ay19’, and ‘ay28’) were modified to FT6, as
their distributions indicated a decrease in volume in the MSh stratum, suggesting less
vertical continuity of vegetation. Finally, a plot labeled as FT7 (‘vi41’, corresponding to
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the pink line in the FT7 plots of Figure 7) displayed a distinctive signature compared to
others of the same fuel type. While this plot could potentially fall between FT4 and FT7
due to its clear bimodality resembling some FT4 plots, the significant fuel load from the Tr
stratum, persisting until approximately 8 meters, suggests excessive height for the FT4 plot.
Consequently, the ground truth was not modified, assuming it to be a FT7 plot with a low
tree height.
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Figure 7. Vertical distribution of the volume of fuel load every 0.05 m of the Prometheus tree fuel
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corrected with HMLS data (right).

3.4. Quantification of Prometheus Fuel Load

The quantification of fuel load by Prometheus height strata confirmed the corrections
made to the ground truth in the 10 forest plots. The results presented below are grouped by
the fuel types modified from the HMLS data, as mentioned in the previous section. Figure 8
illustrates the fuel volume of each Prometheus shrub fuel type, revealing a generally
progressive increase in the total volume from FT2 to FT4; specifically, the volume is less
than 250 m3/m2 in FT2, slightly over 250 m3/m2 in FT3 (except for one plot: ‘vi40’), and
somewhat higher than 250 m3/m2 in FT4. Plot ‘vi40’ was misclassified as FT2 in the
field and is the only one among FT3 that does not exceed 250 m3/m2 of the total volume.
This suggests that this plot could be on the border between FT2 and FT3. However, the
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percentage of volume contained in the MSh and HSh strata in this plot is quite high (>20%),
resembling the percentages of FT3 plots more closely. Regarding the percentage of volume
in each Prometheus stratum, a clear dominance of the LSh stratum is observed in FT2 (>50%
of the total volume in all plots except for one), with greater parity in FT3 but with more
significant proportions in the two lower strata, and a predominance of the MSh stratum in
FT4. As expected, the percentage of the total volume in the Tr stratum is almost negligible
in the three shrub types. Only three FT2 plots have volume in the HSh and Tr strata, which
are related to the small volume increments seen in these strata in Figure 5 and explained
before. There is a higher volume percentage in the Tr stratum in the FT3 plots, but they
are still low values, while there is hardly any in FT4. Finally, it is worth noting that the
volume of the plots where the ground truth was corrected (‘vi17’, ‘vi40’, ‘zu30’, and ‘zu31’)
fits quite well within their respective new groups.
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Figure 8. Total volume (left) and percentage of the total volume (right) of fuel load for each plot by
Prometheus height strata and for the Prometheus shrub fuel types. Percentage values within bar plots
are represented in %. Volume < 3% is not labeled due to space constraints. The plots are arranged by
the fuel types modified from the HMLS data.

In the Prometheus tree fuel types, there is a lower volume of fuel load in FT5
(<750 m3/m2) due to the absence of understory and a slightly higher volume in the FT6
plots compared to FT7 (Figure 9) due to a greater volume of tree canopies in the former. In
general terms, the dominant stratum in these types is the Tr stratum, reaching the highest
percentages in the FT5 plots. The FT7 plots have greater uniformity in the volume contained
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in each Prometheus stratum, although some plots show similar volume percentages in the
MSh and HSh strata to others identified as FT6 (e.g., ‘ay16’ and ‘ay17’). This may be an
indicator of the high complexity of the vertical fuel structure in both types. However, in
the FT6 plots, there are no cases of a volume percentage higher than 20% in the same plot
in both the MSh and HSh strata, while this is a characteristic in most FT7 plots, suggesting
a greater vertical continuity of fuel between the strata in the latter. Regarding FT5, the
amount of volume in the LSh and MSh strata is very low, and appreciable amounts are
only found in plots ‘al08’, ‘al09’, ‘ay12’, and ‘ay49’. In the case of the former two, it is
due to a higher percentage of MSh strata, although this percentage is not high. The latter
two were labeled in the field as FT6 because they had a higher volume of fuel in the MSh
stratum compared to the other FT5 plots. However, their volume by Prometheus height
strata seems to fit better in FT5, confirming the corrections made previously. Plot ‘zu32’ has
the most distinctive volume distribution of all FT5 plots, as the dominant stratum is the
HSh stratum, assuming that this is a FT5 plot with a low tree height. On the other hand,
the volume of plot ‘ay31’, whose fuel type was labeled as FT6 in the field, fits quite well as
FT7. Plots ‘ay06’, ‘ay19’, and ‘ay28’, which transitioned from FT7 to FT6, also seem to fit
better with their new type. Lastly, it is confirmed that plot ‘vi41’ is a ‘low FT7’ plot since it
has very little volume in the Tr stratum but a lot in the HSh stratum. Its distribution closely
resembles those of FT4 plots, although with significantly more volume in the upper strata,
so it might not be appropriate to be labeled as FT4.
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4. Discussion

In the current context of increasing exposure to wildfires, it is necessary to develop
plans to mitigate their negative effects on the environment. An effective step is to correctly
identify fuel types in the field to accurately model fire behavior in larger areas. However,
forest stands are often structurally complex and present mixed features of several fuel types,
especially in the Mediterranean region, making the in situ estimation of fuels challenging
at times. This study has relied on a HMLS system to address this challenge, as its ability to
obtain detailed data on forest vertical and horizontal structure allows for a more precise
characterization of vegetation and the definition of Prometheus fuel types at the plot level.
Thanks to the large amount of data involved, the corrections made to incorrectly identified
fuel types in the field were successful, resulting in 10 out of the 43 plots changing their
assigned fuel type, which could explain some of the confusion between similar fuel types
observed in Hoffrén et al. (2023) [26]. Additionally, the proposed methodology, based on
the use of a HMLS system, provides an efficient alternative for the estimation and correction
of fuel types in the field in Mediterranean forest environments. Overall, the results show
that voxelization of the very-high-density three-dimensional point clouds from the HMLS
data allowed the identification of specific distributions of the vertical fuel volume for each
Prometheus fuel type, while quantification of the fuel volume by Prometheus height strata
validated the information provided by the distributions.

The CSF algorithm was the most suitable for the classification of the ground points.
Filtering is a key process to normalize the heights and ensure the greatest accuracies in
the subsequent voxelization and fuel volume estimation. This algorithm has already been
used in previous studies that have employed HMLS systems (e.g., [37,45]), as well as TLS
systems (e.g., [63,69]) and other MLS systems (e.g., [44]). The results of the centimetric-scale
voxelization (5 cm) appear to be adequate for better identifying the vertical distribution
of fuels and accurately estimating the Prometheus fuel types without loss of information
on the structural complexity of the forest stands. Although the voxel size will depend on
the research objectives and the quality of the data [65], several studies using ground-based
LiDAR systems have employed small-sized voxels for volume estimation with satisfactory
results. For instance, when using the TLS system, Lecigne et al. (2018) [65] noticed that
smaller voxels were more suitable for capturing fine changes in tree features compared to
larger voxel sizes, which is crucial when working in structurally complex environments
such as Mediterranean forests. Yan et al. (2019) [70] generated voxels of a 20 cm size for
the crown volume estimation from MLS-derived point clouds. Voxel sizes of 10 cm have
also been used to estimate forest fuel characteristics with a TLS system [62] and stand
structural features with the HMLS system [66]. In this study, the volume of fuel load
has been calculated directly from the voxels, but it can also be estimated indirectly. For
instance, a voxel-derived index called the PDI (the plant diversity index) was proposed
by Puletti et al. (2021) [71], which relates the number of filled voxels to the total number of
voxels within the same height stratum, resulting in the satisfactory estimation of the vertical
distribution of fuel volume. Despite the small voxel size used for the voxelization and the
very high density of the point clouds, the process was relatively fast and allowed for more
efficient management of the vast amount of data collected with the HMLS. In this regard,
voxels allow for the removal of some unwanted effects typical of ground-based LiDAR
systems, such as occlusion or differences in point cloud densities, which can introduce
bias in the characterization of fuel structure. This process of discretizing point clouds
also helps in monitoring forest changes over different time periods [72–74], which could
be valuable for detecting progressive changes in the fuel types over time due to natural
vegetation growth. In this sense, working directly with the point cloud would have been
computationally more demanding, as the extraction of structural metrics to estimate the
distribution and density of forest structure is typically done at the pixel or plot level. Thus,
this study proposes a simpler methodology for better defining fuel types and correcting
those that were incorrectly estimated in the field.
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Among the various platforms of ground-based LiDAR systems, this study has utilized
a HMLS in a novel application in forestry. Overall, the results of the modifications for
incorrectly estimated fuel types in the field are satisfactory and underscore the value of
HMLS systems for quantifying the fuel load volume and precisely defining Prometheus
fuel types. However, certain limitations related to intrinsic system errors and to the
estimation of fuel volume in quantitative units (m3/m2) must be considered. On one
hand, the system itself may exhibit jitter errors that are challenging to control, necessitating
the acceptance of some uncertainty in the recorded data. Additionally, the manner in
which scans are conducted by the user can influence data accuracy. Therefore, methods
from previous studies, such as predefined routes, sensor orientation, and designated
starting and ending scanning points, were followed in order to minimize uncertainty
(e.g., [40,45,48,52]). Furthermore, the voxelization process helped to homogenize the
point clouds, thus mitigating bias [65]. On the other hand, estimating the fuel volume in
quantitative units may not always be entirely satisfactory. For example, some FT6 and
FT7 plots exhibited very similar vertical fuel distributions (Figure 9), potentially leading
to confusion between the different types, even when working at centimetric scales, as
in this study. Moreover, the voxels were computed for the entire point cloud without
differentiation of the objects from which they were returned. They lacked information
related to the presence of different vegetation parts, such as foliage, branches, trunks,
or bark, which are relevant for wildfire considerations. In this context, some studies
have attempted to categorize voxels according to their class to enhance fuel quantification
(e.g., [59,60]). However, this can be a complex task in forest environments of very high
structural heterogeneity, where different fuel classes are intermingled. Another limitation is
the inability to differentiate between live and dead fuel from the raw point cloud data. Some
HMLS systems allow the collection of data in combination with RGB images, which could
aid in distinguishing between both types of fuel, although the processing could be time-
and resource-intensive. Nevertheless, it would enable an improved fuel characterization
and more accurate fire spread modeling. Despite these limitations, the HMLS system has
facilitated the identification of plots with incorrectly estimated fuel types in the field and
corrected them to their closest type. Confusions observed in the vertical distributions of fuel
load volume (Figures 6–9) align with previous studies, which also reported inaccuracies in
those fuel types using other remote sensing methodological approaches (e.g., [21,22,24,25]).
The categories that underwent changes here also presented confounding issues in Hoffrén
et al. (2023) [26], where the worst classified types were FT3 and FT6. In this study,
Figures 6 and 7 confirm the existence of discrepancies in these two fuel types, with three
plots initially assigned as FT3 in the field through visual analysis being modified to FT2,
while three other FT6 plots had their assignment adjusted from FT6 to FT5 (two plots) and
to FT7 (one plot).

The main confusion between fuel types may be due to the incorrect estimation of
the volume of shrub or understory, i.e., understory fuels. In shrub fuel types, it deter-
mines the maximum height, while in tree fuel types, it defines the degree of vertical
continuity between the understory and the canopies. Although ground-based LiDAR
systems have demonstrated greater capabilities in identifying understory fuel than other
systems [75,76], leveraging alternative remote sensing platforms could enhance the esti-
mation of understory fuels. For instance, Hillman et al. (2021) [63] observed that LiDAR
sensors mounted on unmanned aerial vehicles (LiDAR UAVs) effectively estimated under-
story fuels in a dry sclerophyll forest, achieving accuracy comparable to the TLS systems.
Conversely, Hyyppä et al. (2020) [43] demonstrated that above-canopy LiDAR UAVs strug-
gle to identify forest understory attributes, while under-canopy LiDAR UAVs can achieve
a similar performance to ground-based LiDAR systems [43,77]. Therefore, LiDAR UAVs
offer a viable alternative for fuel-type identification, as they can cover larger areas and
provide valuable data. However, they may be subject to more restrictive regulations and
operational challenges in dense and complex forests. HMLS data also offer the potential to
obtain data over extensive areas, albeit requiring more time and effort. In addition, some
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forest plots may be inaccessible due to their extremely high vegetation density, particularly
in Mediterranean forests. Despite these challenges, HMLS systems offer advantages such
as a larger scanning area than the TLS system [40], flexibility in mobility within the forest,
and the ability to georeference data indirectly with GCPs or directly with an inertial mea-
surement unit. Consequently, based on our findings, HMLS systems should be regarded as
promising tools to enhance field fuel load estimations. This improvement will contribute
to better forest fuel modeling, thereby aiding in the development of effective forest fire
prevention and mitigation plans.

5. Conclusions

Knowing the spatial distribution of forest fuels is a crucial step to understanding
fire behavior in a hypothetical wildfire. In this sense, ground-based LiDAR systems can
provide very detailed information on the vertical distribution of forest fuels in exceptional
detail, which can be of great interest in improving the field estimation of fuel types. The
results of this study conclude that HMLS systems are capable of detecting fuel loads in
centimeter-scale height strata in heterogeneous forest plots. With this information, it is
possible to determine the fuel type to which the plot belongs, even when there is a mixture
of characteristics of different fuel types, a situation quite common in Mediterranean forest
environments. This study has focused on the Prometheus model, but the approach could be
applied to other relevant fire models. Thus, a better identification of fuel types can enhance
the ground truth of classification models, enabling more accurate modeling of fire behavior
in larger areas. Ultimately, this contributes to improved wildfire prevention and mitigation
in the territory.
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plot every 5 cm (2/3); Figure S3: Vertical distribution of the fuel volume of each forest plot every
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