000132149 001__ 132149
000132149 005__ 20250923084415.0
000132149 0247_ $$2doi$$a10.1016/j.combustflame.2023.113130
000132149 0248_ $$2sideral$$a137360
000132149 037__ $$aART-2024-137360
000132149 041__ $$aeng
000132149 100__ $$0(orcid)0000-0002-7767-3057$$aMarrodán, Lorena
000132149 245__ $$aConversion of methylamine in a flow reactor and its interaction with NO
000132149 260__ $$c2024
000132149 5060_ $$aAccess copy available to the general public$$fUnrestricted
000132149 5203_ $$aThe conversion of methylamine (CH3NH2, 1000 ppm) has been studied in an atmospheric-pressure flow reactor from both experimental and modeling points of view. Several values of the oxygen excess ratio (λ), from pyrolysis to fuel-lean conditions, have been tested, and a large number of different species have been quantified experimentally by three different diagnostic techniques: gas chromatography, Fourier Transform Infra-red spectroscopy (FTIR) and an infra-red NO analyzer. For the first time, the influence of NO addition (500 and 1000 ppm) on the stoichiometric oxidation of methylamine has also been experimentally evaluated, and the main products of such interaction have been identified. Results indicate that, unlike the little influence of oxygen availability on methylamine conversion, the presence of different concentrations of NO promotes methylamine oxidation at lower temperatures. A literature mechanism has been validated against the present experimental data since previous experimental works under these conditions are scarce. The largest discrepancies have been found for the formation of NH3 and NO as oxidation products, which are under and overestimated by the model, respectively, and under pyrolysis conditions, where modification of the kinetic parameters for the reaction CH2NH2 ⇌ CH2NH + H from the original mechanism notably improves the agreement between experimental and simulated results.
000132149 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FEDER/T22-23R$$9info:eu-repo/grantAgreement/ES/MICINN/PID2021-12432OB-I00
000132149 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000132149 590__ $$a6.2$$b2024
000132149 592__ $$a2.015$$b2024
000132149 591__ $$aENGINEERING, MECHANICAL$$b15 / 182 = 0.082$$c2024$$dQ1$$eT1
000132149 591__ $$aENGINEERING, CHEMICAL$$b32 / 175 = 0.183$$c2024$$dQ1$$eT1
000132149 591__ $$aENGINEERING, MULTIDISCIPLINARY$$b11 / 175 = 0.063$$c2024$$dQ1$$eT1
000132149 591__ $$aTHERMODYNAMICS$$b9 / 79 = 0.114$$c2024$$dQ1$$eT1
000132149 591__ $$aENERGY & FUELS$$b55 / 182 = 0.302$$c2024$$dQ2$$eT1
000132149 593__ $$aEnergy Engineering and Power Technology$$c2024$$dQ1
000132149 593__ $$aChemical Engineering (miscellaneous)$$c2024$$dQ1
000132149 593__ $$aPhysics and Astronomy (miscellaneous)$$c2024$$dQ1
000132149 593__ $$aFuel Technology$$c2024$$dQ1
000132149 593__ $$aChemistry (miscellaneous)$$c2024$$dQ1
000132149 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000132149 700__ $$aPérez, Teresa
000132149 700__ $$0(orcid)0000-0003-4679-5761$$aAlzueta, María U.$$uUniversidad de Zaragoza
000132149 7102_ $$15005$$2790$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Tecnologi. Medio Ambiente
000132149 773__ $$g259 (2024), 113130 [7 pp.]$$pCombust. flame$$tCombustion and Flame$$x0010-2180
000132149 8564_ $$s1115918$$uhttps://zaguan.unizar.es/record/132149/files/texto_completo.pdf$$yVersión publicada
000132149 8564_ $$s2557525$$uhttps://zaguan.unizar.es/record/132149/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000132149 909CO $$ooai:zaguan.unizar.es:132149$$particulos$$pdriver
000132149 951__ $$a2025-09-22-14:32:20
000132149 980__ $$aARTICLE