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Abstract

Within the framework of Game Theory, there are games where rewards de-
pend on the relative rank between contenders rather than their absolute
performance. We refer to these situations as contests. By relying on the
formalism of Tullock success functions, we propose a model where two con-
tenders fight in a contest on two fronts with different technology levels asso-
ciated: a front with large resource demand and another with lower resource
requirements. The parameter of the success function in each front deter-
mines the resource demand level. Furthermore, the redistribution or not of
resources after a tie defines two different games. We solve the model analyt-
ically through the best-response map dynamics, finding a critical threshold
for the ratio of the resources between contenders that determines the Nash
Equilibrium basin and, consequently, the peace and fighting regimes. We
also perform numerical simulations that corroborate and extend these find-
ings. We hope this study will be of interest to areas as diverse as economic
conflicts and geopolitics.
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1. Introduction

Contest Theory is a mathematical tool to model situations where two
or more agents riskily compete, at a cost, for a prize [1–5]. The strategic
behavior in contests has attracted the attention of academia for many years
[6–8], and has applications ranging from economics to conflict resolution
and geopolitics. Actually, contests are studied in areas as diverse as labor
economics, industrial organization, public economics, political science, rent-
seeking, patent races, military combats, sports, or legal conflicts [7, 9, 10].

Formally, a contest is characterized by a set of agents, their respective
possible efforts, a tentative payoff for each contestant (the prize), and a set
of functions for the individual probabilities of obtaining the prize that takes
the agents’ efforts as parameters. The prize may, or not, be divisible, and
contestants may or not have the same valuation of the prize [5].

A case of special interest is the contests in rent-seeking, which study
those situations where there is no contribution of productivity nor added
value [2, 11]. Therefore, all the contenders’ effort is devoted to winning the
contest and so obtaining the whole payoff or the greatest possible share of
it. This theoretical framework is applied to study issues such as elimination
tournaments [12], conflicts [13, 14], political campaigns [15] or lobbying [11,
16]. In this regard, wars also constitute contests where contenders compete
for resources without adding productivity [17–19]. Therefore they are also
amenable to being theoretically studied as strategic tournaments [20–25].
Similarly, in economic contests, resources allocation, and redistribution play
also a key role in the strategic decision-making [10, 26].

Despite a large amount of research on contest theory, most theoretical
work is limited to one-front contests. Nevertheless, real-world competitions
many times take place on two or more fronts. For example, a company
fighting against a bigger one may be tempted to devote its resources (or
some of them) to low-cost marketing instead of the costlier conventional one.
This low-cost advertising, so-called guerrilla marketing [27, 28], constitutes
an active field of study [29–32]. Some examples of this guerrilla market-
ing are ambient advertising [32, 33], stealth marketing [34], word-of-mouth
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marketing [35], social media marketing [36], evangelism marketing [37], viral
marketing [38], or marketing buzz [39].

In this work, we focus on either armed or economic conflicts susceptible to
being simultaneously fought on two front lines: one corresponding to a costly
front (conventional war, costly marketing) and the other one to a low-cost
front (guerrilla warfare/marketing). To that end, we rely on the formalism
of Tullock’s combat success functions by proposing two simultaneous fronts
sustained by the same pair of contenders. Each of these fronts is characterized
by a value of the parameter γ of the Tullock function. The parameter γ
represents the technology associated with that front, i.e., the influence of
the resources invested on the winning probability. The whole interaction
constitutes a zero-sum game: the sum of the resources invested in both fronts
makes up the whole prize of the game or combat. That prize will go to
the contender winning on both fronts if that is the case. Otherwise, i.e., if
each contender wins in a front, we propose two scenarios, each constituting
a different game. First, we consider those situations in which contenders
recover their investments in case of a tie. This setup, hereafter the keeping
resources game (KR), mimics those real-world conflicts where, after a tie,
the previous status quo is recovered, as mergers and acquisition attempts in
economics or, aborted invasion temptations in armed conflicts. The second
setup, hereafter the redistributing resources game (RR), captures the cases
where, after a tie, each contender gains all the resources invested in the front
she won, like an open-ended long-term economic competition or war. In
both setups, a contender will fight if her expected gains overcome her current
resources. Then, peace takes place when no contender has the incentive to
fight. Otherwise, the combat may repeat until i) one of the contenders wins
on both fronts, taking all the resources, or ii) no contender has the incentive
to fight.

It must be noted that we restrict the analysis to vis-à-vis situations,
that is, to the pairwise competition between two agents, parties, or factions.
Even though less general than multi-agent interactions, this is a rather typical
situation in real life [40–49]. In any case, the proposed games are amenable to
being extended to larger and more complex systems, either through complex
network formalism or higher-order systems [50].

Within Game Theory, there exist several fundamental concepts for per-
forming stability and optimization analysis, such as Nash equilibrium [51],
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Pareto optimality [52], and the social optimum [53, 54]. However, given the
nature of the proposed game, essentially a contest or war, the agents in-
volved fight for their own benefit, disregarding any other matter. As such,
the best-fitting concept to analyze the problem is that of a Nash equilibrium.
Also, in a more general framework, the mathematical foundations of moral
preferences may play a key role in decision-making dilemmas [55], where the
exploration of unselfish behavior and moral preferences adds valuable con-
text to the broader understanding of human choices in various interactive
scenarios. Nevertheless, we have to keep in mind that we are dealing with
confrontation scenarios, where the homo economicus paradigm applies.

Considering all the above exposed, we solve the system theoretically under
the best-response dynamics, showing the existence, for both games, of two
regimes regarding the ratio r of contenders’ resources: one with a Nash
equilibrium and another without it. We also perform numerical simulations
that confirm and extend the analytical results. In both games, the values of
Tullock’s technology parameters determine an r threshold value, rth, which
points to the boundary between those regimes. This threshold demarcates
the separation between war and peace: in the presence of a Nash equilibrium,
the combat takes place and otherwise does not. Remarkably, in the KR game,
peace takes place for high resource differences. Conversely, in the RR game,
peace is reached for low differences.

The rest of the paper is organized as follows. The details of the model,
together with combat functions and the best-response maps, are defined in
Section 2. In sections 3 and 4, we study the KR and RR games, respectively.
The repeated combats are studied in Section 5. Finally, Section 6 tries to
summarize and contextualize the results together with prospective remarks.

2. The model

Conflicts are not always amenable to reaching an agreement or peaceful
solution, and “win or lose” scenarios (such as a war [23] or an economic
contest [13]) often emerge as the way out to their resolution. A useful, simple
probabilistic description of the expected outcome of combat is provided by
the formalism of contest success functions (CSF). A CSF [56] is a function
of the quantified efforts, or resources, invested by the contenders, that gives
the probability of winning the contest. Though CSFs are in general defined
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for a number of contenders larger than two, we will restrict consideration to
dyadic contests, and denote both contenders as 1 and 2.

Let x be the resources of Contender 1 and y those of Contender 2. The
CSF function called Tullock, for a positive parameter γ, meets the require-
ment that the winning probability p of contender 1 is invariant under the
re-scaling of both contenders’ resources, i.e., for all λ > 0, p(λx, λy) = p(x, y).
Explicitly, the Tullock function:

pγ(x, y) =
xγ

xγ + yγ
(1)

gives the winning probability of contender 1. A basic assumption behind
this result is that victory and defeat (from a contender perspective) are a
mutually exclusive complete set of events so that pγ(x, y) = 1− pγ(y, x).

Regarding the consequences of the contest outcome, one assumes that the
winner’s benefits are the sum x + y of both resources, and the loser obtains
nothing, zero benefits. From the, admittedly narrow, assumption of perfect
rationality (i.e. the behavior is determined by the optimization of benefits),
the decision to fight should be taken by a contender only if their expected
gain after the contest is higher than their current resources. In this regard,
the parameter γ of the Tullock CSF turns out to play a very important role,
because when γ > 1, it is easy to see that whenever x > y, the expected
gain for contender 1 after the combat, pγ(x, y)(x + y) > x, and then the
(richer) contender 1 has an incentive to fight, while if γ < 1, the expected
gain for the richer contender is lower than their resources before the combat,
pγ(x, y)(x+y) < x, and thus it is the poorer contender who should rationally
decide to fight.

Following the acutely descriptive terms introduced in [20], we will call
rich-rewarding a Tullock CSF with parameter γ > 1, and poor-rewarding
a Tullock CSF with γ < 1. In this reference, [20], where contests refer to
events of “real” war among nations, a conventional war would be described
by a rich-rewarding CSF, while guerrilla warfare would better be described
by a poor-rewarding CSF Tullock function, which led the authors to refer to
γ as “technology parameter”, and ponder its relevance to the expectations
and chances for peaceful coexistence among nations or coalitions. Corre-
spondingly, in economic contests, a rich-rewarding CSF corresponds to a
competition in a conventional costly scenario and a poor-rewarding CSF to

5



either a low-cost strategy or a guerrilla marketing scenario [27].

It is not hard to think of a conflict whose resolution is a war on sev-
eral simultaneous fronts, each characterized by different Tullock parameters,
where the “rulers” (decision-makers) of the two conflicting entities are faced
with deciding on the fraction of available resources that should be invested
in each front. We will consider here a war between two contenders which is
conducted on two fronts, each one characterized by a different Tullock CSF.
In the rich-rewarding front, the Tullock parameter is fixed to a value γr > 1,
while in the poor-rewarding front, the Tullock parameter is γp < 1. Note
that due to the scaling property of the Tullock function, the resources, x
and y, of the contenders can be rescaled to 1 and r < 1, respectively, if we
assume x > y, without loss of generality. After the rescaling, contender 1
has resources 1, of which a fraction α1 is invested in the rich-rewarding front,
being the complementary 1 − α1 the poor-rewarding front investment. The
resources of contender 2 are r < 1, and their investment in the rich-rewarding
front is α2r and, consequently, the investment in the poor-rewarding front is
(1− α2)r. Note that 0 ≤ α1, α2 ≤ 1.

In the sequel, without loss of generality and for the sake of the illustration,
we will fix the values of the Tullock parameters, γr > 1 (for the CSF of the
rich-rewarding front) and γp < 1 (poor-rewarding front), to some represen-
tative values. We also simplify a bit the notation for the winning probability
of contender 1 at each front:

p(α1, α2) =
αγr
1

αγr
1 + (α2r)γr

, q(α1, α2) =
(1− α1)

γp

(1− α1)γp + ((1− α2)r)γp
, (2)

and furthermore, we will simply write p and q whenever the arguments are
unambiguous. The following relations concerning the partial derivatives of p
and q are easily obtained:

α1
∂p

∂α1

= −α2
∂p

∂α2

= γrp(1− p) , (3)

(1− α1)
∂q

∂α1

= −(1− α2)
∂q

∂α2

= −γpq(1− q) . (4)

We will consider the outcomes on both fronts as independent events in
the usual sense. Therefore, the probability that contender 1 reaches victory
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on both fronts is the product pq. Also, whenever a contender wins on both
fronts, they obtain resources 1+r, and their opponent receives zero resources.
In the event of a tie, in which each contender reaches victory in only one front
and is defeated in the other, we will consider two different rules that define
two different games:

KR. In the KR (keeping resources) game, if none of the contenders wins on
both fronts, each one keeps their initial resources after the tie.

RR. In the RR (redistributing resources) game, each contender receives the
sum of the resources invested in the front where they have reached
victory.

We denote by ui(α1, α2) (i = 1, 2), the expected gain of contender i. The
explicit representation of the expected gain functions is reserved for later
when introducing each game. We call β1 the best-response map of contender
1, defined as follows:

u1(β1(s), s) = max
α1

u1(α1, s) , (5)

i.e. β1(s) is the value of α1 that maximizes the expected gain of contender
1 for the fraction of resources α2 = s of contender 2 in the rich-rewarding
front. Correspondingly, we denote by β2 the best-response map of contender
2:

u2(t, β2(t)) = max
α2

u2(t, α2) . (6)

The best-response maps βi (i = 1, 2) are determined by the three parame-
ters (r, γr, γp) that define each particular KR (or RR) game. One should not
expect them to be smooth one-dimensional functions of the unit interval, for
the max operation might introduce, in general, non-analyticities (e.g., jump
discontinuities).

An ordered pair (ᾱ1, ᾱ2) is a Nash equilibrium if the following two con-
ditions are satisfied:

ᾱ1 = β1(ᾱ2) and ᾱ2 = β2(ᾱ1) , (7)
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or, equivalently,

ᾱ1 = β1(β2(ᾱ1)) and ᾱ2 = β2(β1(ᾱ2)) . (8)

When the contenders’ choices of resources’ assignments are a Nash equi-
librium, none of them has any incentive to deviate.

3. Keeping resources when tying

In this section, we study the KR game. In this game, i) if none of the
contenders win on both fronts (i.e., a tie), both keep their initial resources,
while ii) if one of them wins on both fronts, the final resources are 1 + r for
the winner and zero for the loser. Thus, the expected gain after the contest,
u1, for contender 1 is:

u1(α1, α2) = pq(1 + r) + (p(1− q) + q(1− p)) = pq(r − 1) + p+ q , (9)

and the expected gain, u2, for contender 2 is, in turn:

u2(α1, α2) = 1 + r − u1(α1, α2) = 1 + r − pq(r − 1)− p− q , (10)

where the dependence of p and q on α1 and α2 has been omitted.

3.1. The best-response maps

First, let us obtain the main features of the best-response map β1(s) of
contender 1. To do so, we focus on their expected gain u1 (equation (9)) as
a function of its first argument α1, for fixed arbitrary values of its second
argument α2 = s.

u1(α1, s) =(r − 1)
αγr
1

(αγr
1 + (sr)γr)

(1− α1)
γp

((1− α1)γp + ((1− s)r)γp)

+
αγr
1

(αγr
1 + (sr)γr)

+
(1− α1)

γp

((1− α1)γp + ((1− s)r)γp)
. (11)

For s = 0, one has

u1(α1, 0) = 1 + r
(1− α1)

γp

(1− α1)γp + rγp
, (12)
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which is a monotone decreasing function, thus taking its maximum value
at the origin. However, α1 = 0 and s = 0 corresponds to the situation in
which none of the contenders invests in the rich-rewarding front. Then, the
expected gain for contender 1 is u1(0, 0) = (1+r)(1+rγp)−1, i.e. the product
of the total resources and the probability of victory in the poor-rewarding
front. This is lower than the limit of expression (12) when α1 → 0+:

u1(0
+, 0) = 1 + r

1

1 + rγp
>

1 + r

1 + rγp
= u1(0, 0) . (13)

In other words, the best response of contender 1 to s = 0 is to invest the
smallest finite quantity, say β1(0) = 0+.

Next, let us consider small positive values of s. For values of α1 such that
0 < s ≪ α1 < 1, the expected gain u1(α1, s) is essentially given by u1(α1, 0),
equation (12):

u1(α1, s) ≃ 1 + r
(1− α1)

γp

(1− α1)γp + rγp
for α1 ≫ s > 0 . (14)

However, for lower values of α1, u1(α1, s) differs significantly from (14).
In particular, for α1 = 0:

u1(0, s) =
1

1 + ((1− s)r)γp
, (15)

and u1(α1, s) is a decreasing function at the origin:

∂u1

∂α1

∣∣∣∣
α1=0

≡ u′
1(0, s) = − γp((1− s)r)γp

(1 + ((1− s)r)γp)2
. (16)

It can be shown that when α1 increases from zero, the function u1(α1, s) shows
a local minimum, followed by a local maximum before it approaches (14).
Both, the locations of the minimum and the maximum tend to zero as s → 0.
In this limit, the value of u1 at the maximum converges to u1(0

+, 0), see
equation (13), while its value at the minimum tends to u1(0, 0

+) = 1
1+rγp

<
u1(0

+, 0). Thus the location of the local maximum gives the value of the
best-response map β1(s), for (14) is monotone decreasing. An illustrative
example of this analysis is shown in Panel a) of Figure 1, for parameters
r = 0.5, γr = 5, γp = 0.5. Note the non-monotonous behavior in u1(α1, s)
for s > 0. The inset highlights the local minimum for s > 0.
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The conclusion of the analysis for s ≪ 1 is that the best-response map
β1(s) is a well-behaved monotone, increasing function in that region. For
larger values of s, the qualitative features of the function u1(α1, s) remain
the same: it shows a negative slope at the origin, a local minimum followed by
a local maximum, and a divergent (−∞) slope at α1 = 1 (so that it is ensured
that β1(s) < 1 for all values of s). However, its maximum value is no longer
guaranteed to occur at its local maximum. This can perfectly occur at the
origin, as the position of the local maximum increases with s (and then the
value of u1 decreases there) while the value of u1(0, s) increases, see equation
(15). In other words, the continuity of β1(s) is not guaranteed. To explore
this shape, we have represented the best-response map β1(s) for the specific
set of values r = 0.5, γr = 5, and γp = 0.5. Panel b) of Figure 1 displays
the numerical results for the best response of Contender 1 to Contender
2’s rich-rewarding-front investment ratio s. As shown, for these values of
the contenders’ resources ratio and Tullock function parameters, β1(s) is a
well-behaved monotone increasing function in the whole range 0 < s < 1.

To obtain the main features of the best-response map β2(t) of contender
2, we analyze its expected gain u2 as a function of its second variable α2 for
fixed values of α1 = t.

u2(t, α2) =1 + r − (r − 1)
tγr

(tγr + (α2r)γr)

(1− t)γp

((1− t)γp + ((1− α2)r)γp)

− tγr

(tγr + (α2r)γr)
− (1− t)γp

((1− t)γp + ((1− α2)r)γp)
. (17)

For t = 0, u2(0, α2) is a monotone decreasing function of α2:

u2(0, α2) = 1 + r − 1

1 + ((1− α2)r)γp
. (18)

However, in a similar way as we discussed above for the function u1(α1, 0),
due to the discontinuity of u2(0, α2) at the origin, i.e.

u2(0, 0
+) ≡ lim

α2→0
u2(0, α2) = 1 + r − 1

1 + rγp
>

(1 + r)rγp

1 + rγp
= u2(0, 0) , (19)

the best response of contender 2 to t = 0 is to invest the smallest finite
quantity, say β2(0) = 0+.
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figure1-NEW.pdf

Figure 1: KR game with parameters r = 0.5, γr = 5, and γp = 0.5. Panel a) shows
the graphs of the contender 1 expected gain, u1, as a function of its investment fraction
α1 in the rich-rewarding front (RRF), for s = 0 (red) and s = 0.035 (turquoise), where
s is the contender 2 invested fraction of resources in the RRF. The local minimum of
u1(α1, s = 0.035) is shown in the inset. Panel b) shows the best-response map β1(s).
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The analysis of u2(t, α2) for small positive values of t is similar to that of
u1(α1, s) for small positive values of s, and leads to analogous conclusions, i.e.
the function u2(t, α2) shows a local minimum followed by a local maximum
before approaching expression (18). The location of this local maximum gives
the best-response map β2(t), and thus this map is a well-behaved monotone
increasing function for small positive values of t.

These qualitative features of u2(t, α2) remain unaltered for generic, not
too small, values of t. Also, its maximum cannot occur at α2 = 1 because
its slope there diverges to −∞. And again, there is no guarantee that the
best-response map is given by the location of the local maximum of u2(t, α2),
for u2(t, 0) keeps growing with increasing values of t so that an eventual jump
discontinuity where β2(t) drops to zero may occur. As we did for Contender
1, we have also numerically explored the expected gain and best response of
Contender 2. Panels a) and b) of Figure 2 display Contender 2 expected gain
u2(t, α2) as a function of α2, for three fixed values of the relative investment
of Contender 1 in the reach-rewarding front. As predicted, the numerical
results confirm the non-monotonous behavior for t > 0. Panel c) displays
the best-response map β2(t) for Contender 2, showing the aforementioned
discontinuity. Here, β2(t) drops to zero at t ≃ 0.585 for the chosen values
(r = 0.5, γr = 5, γp = 0.5).

3.2. The Nash equilibrium

The previous characterization of the best-response maps, β1(s) and β2(t),
leads to the conclusion that a Nash equilibrium (ᾱ1, ᾱ2) of a KR game must
be an interior point of the unit square, i.e. 0 < ᾱ1, ᾱ2 < 1. Indeed, on
the one hand, β1(s) ̸= 1 for all s, and β2(t) ̸= 1, for all t. On the other
hand, βi(0) (i = 1, 2) is a small positive quantity and then it is ensured that
βj(βi(0)) is a positive quantity. The important consequence is that any Nash
equilibrium of a KR game must solve for the system of equations:

∂u1(α1, α2)

∂α1

= 0 ,
∂u2(α1, α2)

∂α2

= 0 . (20)

Using the identities (3) and (4), the system (20) is written as:

α1

1− α1

= f(α1, α2) ,
α2

1− α2

= f(α1, α2) , (21)
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figure2-NEW.pdf

Figure 2: KR game with parameters r = 0.5, γr = 5, and γp = 0.5. Left panels (a and
b) show the graphs of the contender 2 expected gain, u2, as a function of its investment
fraction α2 in the rich-rewarding front (RRF), for t = 0 (Panel a), blue line), t = 0.035
(Panel a), purple), and t = 0.6 (Panel b)), where t is the contender 1 invested fraction of
resources in RRF. Panel c) shows the best-response map β2(t).
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where f(α1, α2) is the following function:

f(α1, α2) =
γrp(1− p)

γpq(1− q)

1 + (r − 1)q

1 + (r − 1)p
. (22)

First, one sees that ᾱ1 = ᾱ2 ≡ ᾱ. Then, due to the scaling property of the
Tullock functions, (21) becomes a simple linear equation

ᾱ

1− ᾱ
= f̄ ≡ γr(1 + rγp)(1 + r1−γp)

γp(1 + rγr)(1 + r1−γr)
, (23)

with a unique solution (for fixed r, γr and γp values) given by

ᾱ =
f̄

1 + f̄
. (24)

In Figure 3, we show the graph of the function ᾱ(r) for three different
pairs of values of the technology parameters (γr, γp). Still, we should be
aware that it is not guaranteed that for fixed values of r, γr, and γp, the
pair (ᾱ, ᾱ) is a Nash equilibrium. So far, we have only shown that ᾱ is a
local maximum of u1(α1, ᾱ) and a local maximum of u2(ᾱ, α2). Since any
Nash equilibrium of a KR game must be an interior point, this is a necessary
condition, but not a sufficient one.

The solution (ᾱ, ᾱ) of the system of equations (20) is a Nash equilibrium
of the KR game if the following conditions are satisfied:

C1.- ᾱ is a global maximum of u1(α1, ᾱ), i.e.:

u1(ᾱ, ᾱ) > u1(0, ᾱ) , and u1(ᾱ, ᾱ) > u1(1, ᾱ) . (25)

C2.- ᾱ is a global maximum of u2(ᾱ, α2), i.e.:

u2(ᾱ, ᾱ) > u2(ᾱ, 0) , and u2(ᾱ, ᾱ) > u2(ᾱ, 1) . (26)

It is straightforward to check that

u1(ᾱ, ᾱ) =
1

1 + rγr
+

1

1 + rγp
+ (r − 1)

1

1 + rγr
1

1 + rγp
> 1 ,

while
u1(0, ᾱ) = q(0, ᾱ) < 1 , and u1(1, ᾱ) = p(1, ᾱ) < 1 ,

14



figure3-NEW.pdf

Figure 3: KR game. Graph of the function ᾱ(r) for three different pairs of values (shown
in legend) of the technology parameters (γr, γp). The point (α1, α2) = (ᾱ, ᾱ) corresponds
to the local maxima of the expected gain u1(α1, ᾱ), u2(ᾱ, α2), for both contenders, where
α1 (resp., α2) is the fraction invested by Contender 1 (resp., 2) in the rich-rewarding front.
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and one concludes that the conditions C1 are satisfied for all values of the
game parameters r, γr and γp. On the contrary, one can easily find values of
the game parameters where the conditions C2 do not hold, as well as other
values for which they do. As an illustrative example, we show in Figure 4
the graphs of the best-response maps for the Tullock parameters γr = 5 and
γp = 0.5, relative to r = 0.5 (panels a) and b)) and r = 0.85 (panels c)
and d)). Here, panels a) and c) correspond to β1(β2(α1)) and panels b) and
d) to β2(β1(α2)). An inner intersection of the curve with the black main
diagonal indicates the existence of a Nash equilibrium. As shown in this
example, for r = 0.85, there is a Nash equilibrium, while for r = 0.5, there
is not. Our exploration of the (γr, γp) plane strongly suggests that there is a
threshold value rth(γr, γp), that depends on the Tullock parameters, such that
for r > rth both conditions C2 are satisfied. In this case, the corresponding
KR game has a Nash equilibrium, where both contenders invest a fraction
ᾱ(r, γr, γp) of their resources in the rich-rewarding front.

The existence of a Nash equilibrium given by the pair (ᾱ, ᾱ) for large
enough values of the parameter r can be proved by a continuation argument
from the “equal resources” limit r = 1, where one can directly check that the
conditions C2 hold. Indeed, in this limit f̄ = γr/γp, and then

ᾱ(r = 1) =
γr

γr + γp
< 1 , and u2(ᾱ, ᾱ) = 1 ,

while

u2(ᾱ, 0) =

(
1 +

(
γp

γr + γp

)γp)−1

< 1,

u2(ᾱ, 1) =

(
1 +

(
γr

γr + γp

)γp)−1

< 1 , (27)

and thus conditions C2 are satisfied in the equal resources limit.

In Figure 5, Panel a) shows, for γr = 5 and γp = 0.5, the graph of
u1(ᾱ, ᾱ) as a function of r, along with u1(0, ᾱ) and u1(1, ᾱ), to illustrate the
conditions C1. Panel b) displays u2(ᾱ, ᾱ), u2(ᾱ, 0), and u2(ᾱ, 1), showing
that conditions C2 are only satisfied simultaneously for r > 0.77635 (dashed
vertical line).
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Figure 4: KR game with γr = 5 and γp = 0.5. Plots of the composition of players’ best-
response maps for r = 0.5 (top panels, a) and b)) and r = 0.85 (bottom panels, c) and
d)). Left panels (a and c)) show β1(β2(α1)), while β2(β1(α2)) is shown in right panels
(b) and d)). The main diagonal (in dashed black) is plotted to visualize the existence
for r = 0.85 of a Nash equilibrium, and its absence for r = 0.5. Technology parameters
(γr, γp) = (5, 0.5).
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Figure 5: Illustration of C1 conditions (Panel a)) and C2 conditions (Panel b)) for the RR
game. Panel a) depicts the expected gain u1(r) evaluated at (α1, α2) = (ᾱ, ᾱ), (0, ᾱ), and
(1, ᾱ). Similarly, Panel b) depicts the expected gain u2(r) evaluated at (α1, α2) = (ᾱ, ᾱ),
(ᾱ, 0) and (ᾱ, 1). The vertical dashed line marks at r = 0.77635 the point where conditions
C1 and C2 start to be simultaneously satisfied. Technology parameters (γr, γp) = (5, 0.5).
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4. Redistributing resources when tying

In this section, we analyze the RR game, in which ties are followed by
a redistribution of resources among the contenders that depend on their
investments on each front. Specifically, each contender collects the sum of
the investments employed in the front where she reached victory. Thus the
expected gain functions are:

u1 = (α1 + α2r)p+ ((1− α1) + (1− α2)r) q , (28)

u2 = (α1 + α2r)(1− p) + ((1− α1) + (1− α2)r) (1− q) , (29)

where the winning probabilities, p and q, of contender 1 in each front are
given by equation (2).

4.1. The best-response maps

As we did with the KR game analysis, let us consider firstly the expected
gain u1 of contender 1 as a function of α1, for a fixed value of α2 = s,

u1(α1, s) =(α1 + sr)
αγr
1

αγr
1 + (sr)γr

+ ((1− α1) + (1− s)r)
(1− α1)

γp

(1− α1)γp + ((1− s)r)γp
. (30)

For s = 0, we have

u1(α1, 0) = α1 + (1− α1 + r)
(1− α1)

γp

(1− α1)γp + rγp
. (31)

Note that, contrary to the situation in the KR game, analyzed in the
previous section 3.1, this is a continuous function at the origin:

u1(0
+, 0) = u1(0, 0) =

1 + r

1 + rγp
< 1 . (32)

As u1(1, 0) = 1, it is plain that β1(0) ̸= 0. Furthermore, the first deriva-
tive of u1(α1, 0), given by

u′
1(α1, 0) =

rγp

(1− α1)γp + rγp

(
1−

(
1 +

r

1− α1

)
γp(1− α1)

γp

(1− α1)γp + rγp

)
, (33)
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is positive at the origin,

u′
1(0, 0) =

rγp

1 + rγp

(
1− γp(1 + r)

1 + rγp

)
> 0 , (34)

and diverges to −∞ as α1 → 1, as

u′
1(1

−, 0) ∼ (1− α1)
γp−1. (35)

Thus β1(0) ̸= 1, and β1(0) must be an interior point 0 < α∗
1 < 1. Then, one

concludes that α∗
1 must solve for the equation

u′
1(α1, 0) = 0 . (36)

From (33), with the change of variable z ≡ r/(1− α1), we can simply write
(36) in terms of z as

γp(1 + z) = 1 + zγp . (37)

Note that as α1 = 0, the variable z is no other thing than the ratio of the
resources invested by the contenders in the poor-rewarding front. This is so
since (1− α2)y/[(1− α1)x], and α2 = 0 in the RR game. Moreover, it is not
difficult to realize that the equation (37) has a unique positive solution, say
z∗. Indeed, let us call f(z) its LHS, and g(z) its RHS; clearly f(0) < g(0),
while at very large values of z ≫ 1, z ≫ zγp , so that f(z) > g(z). Then,
there exists at least a solution of (37), and because f(z) is linear and g(z) is
a convex function, the solution is unique.

It is worth remarking that z∗ is solely determined by the value of the
Tullock parameter, γp, of the poor-rewarding front, and that z∗(γp) is a
monotone decreasing function of its argument. Thus, as γp < 1, the value of
z∗ is bounded below by z∗(1−) ≃ 3.590175 > 1, after carefully noticing that
the correct limit when γp → 1 of the equation (37) is 1 + z = z ln z.

The unique solution of the equation (36), α∗
1 = 1− r/z∗ is clearly, due to

(34) and (35), the maximum of u1(α1, 0), and then,

β1(0) = 1− r

z∗
. (38)

For s ≪ 1, if α1 is also small, u1(α1, s) differs qualitatively from u1(α1, 0).
Though for the expected gain u1 we have that u1(0

+, 0) = u1(0, 0) = u1(0, 0
+),
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the first derivative of u1(α1, s) at α1 = 0,

u′
1(0, s) = − 1

1 + ((1− s)r)γp

(
1 + γp(1 + (1− s)r)

((1− s)r)γp

1 + ((1− s)r)γp

)
< 0 ,

(39)
converges as s → 0 to the limit

u′
1(0, 0

+) = − 1

1 + rγp

(
1 + γp(1 + r)

rγp

1 + rγp

)
< 0 < u′

1(0, 0) , (40)

where the last inequality comes from (34). Then, u1(α1, s) is a decreasing
function at the origin as soon as s ̸= 0, showing a local minimum that
detaches from 0 with increasing values of s. Also, it has a local maximum
whose location α∗

1(s) is a smooth continuation of α∗
1 = 1−r/z∗, the maximum

of u1(α1, 0), because for α1 ≫ s both functions are uniformly very close each
other. That local maximum is the value of the best-response map β1(s), for
small values of s.

For larger values of s the qualitative features of u1(α1, s) remain the same.
The location of its local maximum α∗

1(s) increases with s, and, as u1(0, s) is
a decreasing function of s, its value remains lower than u1(α

∗
1(s), s). Then

β1(s) = α∗
1(s) increases smoothly, and approaches the value 1, as s → 1, with

no jump discontinuities.

Now we turn our attention to the expected gain u2 of contender 2 as a
function of α2 for fixed values of its first argument α1 = t. This reads:

u2(t, α2) =(t+ α2r)
(α2r)

γr

(α2r)γr + tγr

+ (1− t+ (1− α2)r)
((1− α2)r)

γp

((1− α2)r)γp + (1− t)γp
. (41)

For t = 0, we have

u2(0, α2) = α2r + (1 + (1− α2)r)
((1− α2)r)

γp

((1− α2)r)γp + 1
. (42)

This is a continuous function at the origin,

u2(0, 0
+) = u2(0, 0) =

(1 + r)rγp

1 + rγp
> r , (43)
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and
u2(0, 1) = r , (44)

then it is assured that β2(0) < 1. The derivative of u2(0, α2) is easily calcu-
lated as

u′
2(0, α2) =

r

1 + ((1− α2)r)γp

(
1− (1 + (1− α2)r)

γp((1− α2)r)
γp−1

1 + ((1− α2)r)γp

)
,

(45)
which diverges to −∞ at α2 = 1, and takes the value, at the origin,

u′
2(0, 0

+) =
r

1 + rγp

(
1− (1 + r)γpr

γp−1

1 + rγp

)
. (46)

After the change of variable z = (1−α2)r, the equation u′
2(0, α2) = 0 can

be re-written as
γp(1 + z) = z + zγp−1. (47)

An argument similar to the one used above with the equation (37) allows us
to state that the equation (47) has a unique positive solution z∗(γp), that
depends solely on the Tullock parameter γp, and it is a monotone increasing
function of this parameter. As a consequence, the value of z∗ is bounded
above by z∗(1−) ≃ 0.278465, after noticing that the correct limit when γp → 1
of the equation (47) is 1+z = − ln z. Thus, provided the condition r > z∗(γp)
holds, the solution of equation u′

2(0, α2) = 0 is

α∗
2(r, γp) = 1− z∗(γp)

r
. (48)

We are led to the conclusion that for values of r < z∗(γp) the function
u2(0, α2) is a monotone decreasing function of α2 and then β2(0) = 0, while
for r > z∗(γp) the best-response to t = 0 is β2(0) = α∗

2(r, γp), the location of
the local maximum of u2(0, α2), given by the equation (48), which increases
continuously from zero at r = z∗(γp) up to the value 1− z∗ at r = 1.

For very small values of t and α2 ≫ t, u2(t, α2) is essentially given by
u2(0, α2). However, for small values of α2, both functions are quite different.
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Figure 6: RR game with parameters γr = 5, and γp = 0.5. Plots of the best-response map
β1(α2) of contender 1 (red), together with the best-response map β2(α1) of contender 2
(blue), for r = 0.05 (Panel a)), r = 0.1 (Panel b)) and r = 0.85 (Panel c). In the regime
of very small values of r (Panel a), r = 0.05), β2(α1) = 0 for all values of α1. In the
intermediate regime of not too small values of r < z∗(γp) ≃ 0.1715 (Panel b), r = 0.1) the
map β2(α1) increases from zero with a relatively large slope before falling discontinuously
to zero value. In the regime of r > z∗(γp) (Panel c), r = 0.85), β2(α1) increases from its
non zero value α∗

2(r, γp), (see equation 48) at the origin and finally falls to zero.
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To see this, consider the partial derivative of u2(t, α2) respect to α2:

u′
2(t, α2) =

r(α2r)
γr

(α2r)γr + tγr
+ (t+ α2r)

rγr(α2r)
γr−1tγr

((α2r)γr + tγr)2

− r((1− α2)r)
γp

((1− α2)r)γp + (1− t)γp

− (1− t+ (1− α2)r)
rγp((1− α2)r)

γp−1(1− t)γp

(((1− α2)r)γp + (1− t)γp)2
, (49)

which takes the value, at α2 = 0,

u′
2(t, 0) = − rγp

rγp + (1− t)γp

(
r + (1− t+ r)

γp(1− t)γp

rγp + (1− t)γp

)
. (50)

We then see that, unlike u′
2(0, 0

+) whose sign depends on the r value, its
limit when t → 0 is negative, for all values of r:

u′
2(0

+, 0) = − rγp

1 + rγp

(
r +

γp(1 + r)

1 + .rγp

)
< 0 , (51)

and, furthermore, from (46) we have u′
2(0

+, 0) < u′
2(0, 0

+) for all values of r.
Thus the function u2(t, α2) decreases initially faster than u2(0, α2). Also, it
is initially convex, before changing to concave in an interval of α2 values of
the scale of t/r. Depending on the values of r, one observes three different
behaviors for the location of its maximum, β2(t), for very small values of t:
In the regime of very small values of r, β2(t) = 0. For values of r > z∗(γp),
β2(t) increases slowly from its value α∗

2(r, γp). In an intermediate regime of
not too small values of r < z∗(γp), the map β2(t) increases from zero with
a relatively large slope. For larger values of t, the best-response map β2(t)
drops to a zero value in the last two regimes, while remaining at zero in the
first regime. In other words, in the RR game, the best response of contender
2 to any not-too-small (compared to r) investment of its (richer) opponent in
the rich-rewarding front is to invest all of its resources in the poor-rewarding
front.

To illustrate these findings, in Figure 6, we show the graphs for the best-
response maps for both contenders. Panels a), b), and c) correspond to
r = 0.05, r = 0.1, and r = 0.85, respectively. On the one hand, we see
the predicted smooth increase of β1 with α2. On the other hand, we also
observe the three regimes predicted for β2(α1): i) for very small values of
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Figure 7: RR game with γr = 5 and γp = 0.5. Panels a) and b) display the composition
of players’ best-response maps for r = 0.5, whereas panels c) and d) do represent the
case r = 0.85. Correspondingly, left panels a) and c) show β1(β2(α1)), while β2(β1(α2))
is shown in panels b) and d). The main diagonal (in dashed black) is plotted to visualize
the existence of Nash equilibrium for r = 0.5, and its absence for r = 0.85.

r (here, r = 0.05), β2(α1) = 0 for any α1; ii) for intermediate values of r
(r < z∗(γp) ≃ 0.1715, here r = 0.1), β2(α1) shows an increase from zero,
through a steep slope, and then, through a discontinuity, goes to zero; iii)
finally, for large values of r (r > z∗(γp), here r = 0.85), β2(α1) increases from
a strictly positive value α∗

2(r, γp) for α1 = 0, according to equation (48), and
finally, through a discontinuity, goes to zero.

4.2. The Nash equilibrium

The analysis of the best-response map β2(t) of contender 2 indicates its
marked overall preference for investing all its resources in the poor-rewarding
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front. On the other hand, we have also shown that the best response of con-
tender 1 to that eventuality is β1(0) = 1− r

z∗
, equation (38). Consequently,

if it is the case that
β2

(
1− r

z∗

)
= 0 , (52)

we are led to the conclusion that the pair (1− r
z∗
, 0) is a Nash equilibrium of

the RR game. Let us remark here that z∗(γp) is bounded below by z∗(1−) ≃
3.590175 > 1, so that 1 − r

z∗
is bounded below by 0.721462, not a small

quantity.

The expected gain u2(t, α2), at t = 1− r
z∗
, is given by

u2

(
1− r

z∗
, α2

)
=
(
1− r

z∗
+ α2r

) (α2r)
γr

(1− r/z∗)γr + (α2r)γr

+
r

z∗
(1 + z∗(1− α2))

(z∗(1− α2))
γp

1 + (z∗(1− α2))γp
. (53)

For small values of r, the dominant term in (53) is the second term (linear
in r) in the RHS, because γr > 1. This term is maximum at α2 = 0, and this
proves that at least for small values of r, one has β2(1− r

z∗
) = 0.

Figure 7 clarifies these findings. The best-response maps is depicted for
r = 0.5 panels a) and b) and r = 0.85 (c) and d)), both with parameters
γr = 5 and γp = 0.5. Left panels (a) and c)) show the β1(β2(α1)) maps and
right ones (b) and d)) the β2(β1(α2)) ones. Nash equilibria would be denoted
by an inner intersection of the curve with the black main diagonal. Our
numerical exploration in the parameter space (γr, γp) indicates the existence
of an upper bound rth(γr, γp) such that if r < rRR

th , the equation (52) holds,
and then the pair (1 − r

z∗
, 0) is a Nash equilibrium of the RR game. As

a numerical example, for γr = 5 and γp = 0.5, we find the value rRR
th =

0.790541. Figure 8 depicts the landscape of threshold values rth for both
games, KR (Panel a)) and RR (Panel b)).

5. Repeated combat

Let us note that, as we have shown above in section 3, the expected gain of
contender 1 in the KR game u1(ᾱ, ᾱ) > 1 is greater than its initial resources,
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Figure 8: Heat maps showing the value of the threshold value rth for KR game (Panel a))
and RR game (Panel b)) in the space (γr, γp). In the KR game, only when r < rKR

th the
Nash equilibrium disappears and the contenders have no incentive to fight, whereas, in
the RR game, it is when r > rRR

th that peace sets in. Results have been obtained through
numerical exploration.
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and then, whenever the Nash equilibrium exists for the KR game there is an
incentive for them to fight. In a similar way, in section 4, we have seen that
provided a Nash equilibrium exists for a RR game, contender 1 earns 1− r

z∗

with certainty in the rich-rewarding front. Moreover, as its investment in
the poor-rewarding front, r

z∗
< r, is lower than its opponent investment, its

expected gain in this front is larger than its investment. Therefore, there is
also an incentive for contender 1 to fight in an RR game.

As a consequence, for both KR and RR games, it seems rather natural to
assume that in the eventuality that combat ends in a tie, the combat will be
repeated, until either a) one of the contenders reaches a victory in both fronts
or, b) as it may happen in the RR game where resources are redistributed
when tying, a Nash equilibrium no longer exists after the tie.

First, we analyze in subsection 5.1 the repeated KR game, where we will
reach a somewhat surprising simple result, namely that the repeated KR
game is equivalent to a non-repeated game in one front with a Tullock CSF
with a parameter that is the sum of those of the CSF fronts’ functions, γr
and γp. In subsection 5.2, we study the repeated RR game and show that,
contrary to the KR game, it is not equivalent to a single non-repeated game
in one front, for there is a non-zero probability of reaching a situation in
which a Nash equilibrium does not exist.

5.1. Repeated KR game

Assuming a Nash equilibrium (ᾱ, ᾱ) of the KR game exists, see equations
(23) and (24), let us simply denote by p̄ (resp. q̄) the probability of victory,
at the Nash equilibrium values of investments, of contender 1 in the rich-
rewarding (resp. poor-rewarding) front, i.e.

p̄ = (1 + rγr)−1 , and q̄ = (1 + rγp)−1 , (54)

so that the probability of a tie is p̄(1− q̄) + q̄(1− p̄) = p̄+ q̄ − 2p̄q̄.

In a KR game, the situation after an eventual tie is just the initial one,
and these probabilities are thus unchanged. Now, the probability p∞ that
the repeated combats end in a victory of contender 1 is

p∞ =
∞∑
k=1

(p̄+ q̄ − 2p̄q̄)kp̄q̄ =
p̄q̄

(1− p̄− q̄ + 2p̄q̄)
=

1

1 + r(γr+γp)
. (55)
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Figure 9: Map τ(r) representing the rescaled resources of contender 2 after a repeated
RR game, thus a tie, departing from a resource base of r in the initial game. The dashed
diagonal line τ(r) = r marks the boundary where resources after a tie would be the same
as before.
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This, somehow unexpectedly simple, result can be stated in the follow-
ing way: Provided a Nash equilibrium exists for a KR game with Tullock
parameters γr and γp, the repeated game is equivalent to a single combat
with a Tullock parameter γr + γp, i.e. a single combat with a CSF that is
more rich-rewarding than any of the original ones. Indeed, after a second
thought, given that the incentive to fight a single combat is on the rich con-
tender’s side, the result shouldn’t come as much surprise, for the repetition
of it can only increase the (cumulative) expected gain. Nonetheless, we find
it remarkable that the set of Tullock functions is, in this particular (and ad-
mittedly loose, in need of precision) sense, a closed set under the “repetition
operation”.

5.2. Repeated RR game

Assuming that a Nash equilibrium exists for an RR game, a tie occurs
whenever contender 2 reaches victory in the poor-rewarding front. Thus the
probability of a tie in a single combat is

pt =
(z∗)γp

1 + (z∗)γp
, (56)

where it should be noted that (as z∗ > 1) pt > 1/2. In other words, a tie
has a larger probability than a victory of contender 1. Also, note that this
probability is independent of the resources r of contender 2. Consequently,
though the resources of the contenders change after a tie, this probability
remains unchanged, provided there is a Nash equilibrium after redistributing
resources.

After a tie occurs, contender 1 resources become 1 − r
z∗
, while those of

contender 2 are now r(1 + 1
z∗
). For the analysis of the repeated RR game,

it is convenient to rescale the new resources of the contenders, so that the
rescaled resources are 1 for contender 1 and

τ(r) =
r(1 + z∗)

z∗ − r
(57)

for contender 2. The map defined by equation (57) is a continuous monotone
(thus invertible) increasing map with a slope larger than 1 for all r. Figure
9 depicts the graph of this map.
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Figure 10: Probability of tying in RR game as a function of the resource ratio r in the first
round of the game. Every red dot represents the probability of a tie event in a stochastic
simulation averaged over 105 realizations. Horizontal dashed lines represent the analytical
result as given by ρ(x). Theory and simulations match perfectly. Results shown for γr = 5
and γp = 0.5.
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Figure 11: Expected gain urep
2 of contender 2 for the repeated RR game as a function of

the resource ratio r at the beginning of the game. Straight dashed vertical lines mark the
succesive n jumps performed with map τ−n(rRR

th ). Results shown for γr = 5 and γp = 0.5.
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If it is the case that τ(r) < rRR
th , a Nash equilibrium for the “rescaled”

RR game exists, and then contender 1, despite its recent defeat and the fact
that they own lower resources than before, has the incentive to fight and
thus the combat is repeated. Otherwise, if rRR

th < τ(r) < (rRR
th )−1, there is no

Nash equilibrium after the tie, and none of the contenders has the incentive
to fight. The eventuality that τ(r) > (rRR

th )−1 (being r < rRR
th ) would require

rRR
th > z∗/(1 + z∗), a condition that we have never found in our extensive
numerical exploration of the rRR

th values in the plane (γr, γp). This observation
excludes the possibility that a repeated RR game could end in a final victory
of contender 2. Incidentally, there are situations where for some interval of
values of r < rRR

th , τ(r) > 1. In these cases, the repeated RR game ends with
interchanged (rich-poor) contenders’ roles.

We have been led to the conclusion that there are two mutually exclusive
outcomes for a repeated RR game, namely either a victory of contender 1 or
a final situation of survival of the two contenders with no Nash equilibrium,
that we will briefly call peace. For fixed values of γr and γp, we define the
function ρ(r), for r ∈ (0, 1), as the probability that a repeated RR game
where the ratio of the resources is r ends in peace. This function can be
computed once the values of z∗(γp) and rRR

th (γr, γp) have been numerically
determined.

The function ρ(r) is a piecewise constant, i.e. a staircase. It takes the
value 1 for rRR

th < r < 1. If τ−1(rRR
th ) < r < rRR

th , a tie occurs with probability
pt, after which peace is reached, so ρ(r) = pt for r in this interval, and so on.
Then

ρ(x) =

{
1 if rRR

th < r < 1
pnt if τ−n(rRR

th ) < r < τ−n+1(rRR
th ), n = 1, 2, ...

In order to confirm this important result, we perform some mechanistic
simulations of the RR game. These simulations explicitly model the contest
between the contenders. Starting with a resource ratio r, the outcome of
every game round is computed based on the stochastic evaluation of the
Tullock CSFs, resources are redistributed accordingly, and further rounds
are iterated provided conditions apply (that is, a Nash equilibrium exists and
there is an incentive to fight). In Figure 10 it is shown how this expression
matches the stochastic simulations performed on the RR game with γr = 5
and γp = 0.5.
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The computation of the expected gain urep
2 (r) of contender 2 for the re-

peated RR game requires undoing the rescaling of resources made at each iter-
ation of the map τ . The rescaling factor for the i-th iteration is 1−τ i−1(r)/z∗,
and thus if τ−n(rRR

th ) < r < τ−n+1(rRR
th ), after n repeated tying contests end-

ing in a peaceful situation, the final resources of contender 1 will be

Πn
i=1

(
1− τ i−1(r)

z∗

)
,

and then

urep
2 (r) =pnt

(
1 + r − Πn

i=1

(
1− τ i−1(r)

z∗

))
if τ−n(rRR

th ) < r < τ−n+1(rRR
th ), n = 1, 2, .... (58)

Figure 11 shows the staircase form for urep
2 together with the boundaries

marked by the inverse map τ−n(rRR
th ), n = 1, 2, ... Computations have been

done, as usual, for γr = 5 and γp = 0.5.

6. Concluding remarks

In this work, we have explored the resolution of conflicts under the prob-
abilistic framework of Tullock’s contest success functions and game theory.
These functions depend on the ratio resources of the contenders, r = y/x,
and a parameter γ, called the technology parameter. In particular, we have
focused on conflicts taking part simultaneously on two fronts. Each front
is characterized by a different value of γ, being one front rich-rewarding
(γR > 1), where the richer contender has incentives to fight, and the other
poor-rewarding (0 < γP < 1), where the poorer may take the lead. We define
the game or combat in such a way that if a contender wins on both fronts,
takes all of the adversary resources plus their initial resources, 1+ r, and the
one losing is defeated and the game is over. Not all resolutions lead to a total
victory, if a contender wins one front but loses the other, a tie happens. In
case of a tie, different scenarios are possible in order to reward/punish the
contenders and allow for the next round. Here, we proposed two scenarios
and thus gave birth to two different games. In the keeping resources (KR)
game, after a tie, both contenders conserve their original resources and sim-
ply a next round takes place. In the redistributing resources (RR) game, the
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winner of each front gains all the resources deployed at that front. These
different rules give rise to different conflict dynamics and resolutions.

Just by performing elementary mathematical analysis on the expected
gain functions and the best-response maps for each player, we can almost fully
characterize each game. However, in order to gain a full understanding of the
situation, the analytical results were checked and extended with numerical
analysis and simulations of the conflict dynamics.

The following main results are worth remarking on. For both games,
there exists a threshold value of the resource ratio r separating a regime
where a Nash equilibrium exists in the best-response dynamics between con-
tenders and a regime where this does not happen. This threshold is solely
determined by the tuple of Tullock technology parameters (γR, γP ). In case
of the existence of that equilibrium, combat takes place whereas if not, the
contenders remain at peace. In the KR game, it is found that the peaceful
regime occurs for r ∈ [0, rKR

th ), whereas in the RR game, this happens for
r ∈ (rRR

th , 1).

In particular, for the KR game, when a Nash equilibrium exists, it is found
that the investment fractions maximizing the contenders’ expected gains are
identical, ᾱ. The existence of a Nash equilibrium is subjected to a set of
conditions. The value of ᾱ must be a global maximum for both expected
gains and it turns out that for a certain set of values of r, this condition does
not always hold. It is also found that provided a Nash equilibrium exists
with Tullock parameters γR and γP for the KR game, the repeated game is
equivalent to a game with a single front where the technology parameter is
γR + γP , the sum of the parameters at both fronts and thus it is equivalent
to a more rich-rewarding front.

In the RR game, when a Nash equilibrium exists, it is found that the in-
vestment fraction at the rich-rewarding front for Contender 2 is always zero,
while for Contender 1 an analytical expression is found (not holding in the
peaceful regime, indeed). In this game, a tie occurs whenever Contender 2
reaches victory in the poor-rewarding front. As resources are redistributed
after a tie, the repeated RR game involves a richer behavior than the KR
game. It is found that, provided a Nash equilibrium exists, the tie outcome
occurs with a probability pt higher than the total victory of Contender 1
(winning at both fronts) and this probability is independent of r and ul-
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timately determined by γP . Redistribution after a tie always leads to the
enrichment of the poorer contender and impoverishment of the richer one
and thus the resource ratio after every round tends to increase. If repetition
continues, eventually r > rRR

th , and thus there is no incentive to fight for any
contender. While there is a chance to surpass r > 1 from a higher enough
r < rRR

th , these jumps cannot overcome r = 1/rRR
th , and thus nonexistence

of a Nash equilibrium still holds. We conclude for this repeated game that
there are two mutually exclusive outcomes, namely either a victory of Con-
tender 1 or a final situation of survival of the two contenders with no Nash
equilibrium, a state of peace, where the contenders’ resource difference has
diminished. This repeated RR game dynamic is nicely represented in the
staircase diagram, formulated analytically and perfectly reproduced by sim-
ulations, that depicts the probability of reaching a tie as a function of the
resource ratio r in the first round.

Throughout this analysis, we have assumed perfect rationality for the con-
tenders involved and perfect information. We recognize that these assump-
tions may be too rigid to translate our analysis and conclusions into practical
applications. Thus, a direction of future work demands clearly a relaxation
of some of these hypotheses. Another readily possible extension of the model
could be to include more realism on the managing and deployment of re-
sources by the contenders. Finally and most importantly, we have restricted
ourselves to thoroughly analyzing the conflict involving just two agents and
thus pairwise interactions. Although pairwise scenarios may be seen as too
simple, they are ubiquitous in firm competition, economics, national politics,
and geopolitics (e.g. [42, 43, 45, 47, 57]). Nevertheless, reality sometimes is
more complex and conflict may involve an arbitrarily large number of entities
or contenders, each of it with its particularities while interacting in complex
ways (i.e. higher-order interactions). For this, the frameworks of complex
networks and hypergraphs [50] arise as very suggestive tools to extend this
conflict dynamic to large heterogeneous systems.

All the above remarks point to improvements in some cornerstone ele-
ments of the analysis of contests through Game theory and Tullock CSF
formalism. Mainly inspired by the framework developed in [20], we hope to
have contributed to extending it to more general settings. But even more
importantly, the power and utility of such a framework are best proved when
successfully applied to real case studies. Such a task lies beyond the scope
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of this paper, but by no means should we restrict ourselves to the theoretical
realm in future works. For this reason, the other main line of action to be
pursued is to find amenable real-case situations to apply and test this frame-
work of contest modeling. Hopefully, this could bring useful guidelines for
decision-makers in any area when facing real-life conflicts.
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[8] M. Vojnović, Contest theory: Incentive mechanisms and ranking meth-
ods, Cambridge University Press, 2015.

[9] N. Van Long, The theory of contests: A unified model and review of the
literature, Companion to the Political Economy of Rent Seeking (2015).

[10] B. L. Connelly, L. Tihanyi, T. R. Crook, K. A. Gangloff, Tournament
theory: Thirty years of contests and competitions, Journal of Manage-
ment 40 (1) (2014) 16–47.

[11] M. R. Baye, D. Kovenock, C. G. De Vries, Rigging the lobbying process:
an application of the all-pay auction, The american economic review
83 (1) (1993) 289–294.

[12] S. Rosen, Prizes and incentives in elimination tournaments (1985).

[13] J. Hirshleifer, Conflict and rent-seeking success functions: Ratio vs. dif-
ference models of relative success, Public choice 63 (2) (1989) 101–112.

[14] S. Skaperdas, Cooperation, conflict, and power in the absence of prop-
erty rights, The American Economic Review (1992) 720–739.

[15] S. Skaperdas, B. Grofman, Modeling negative campaigning, American
Political Science Review 89 (1) (1995) 49–61.

[16] G. S. Epstein, C. Hefeker, Lobbying contests with alternative instru-
ments, Economics of Governance 4 (1) (2003) 81–89.

[17] D. Acemoglu, M. Golosov, A. Tsyvinski, P. Yared, A dynamic theory
of resource wars, The Quarterly Journal of Economics 127 (1) (2012)
283–331.

[18] F. Caselli, M. Morelli, D. Rohner, The geography of interstate resource
wars, The Quarterly Journal of Economics 130 (1) (2015) 267–315.

[19] N. Novta, Ethnic diversity and the spread of civil war, Journal of the
European Economic Association 14 (5) (2016) 1074–1100.
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[25] S. Baliga, T. Sjöström, The hobbesian trap, in: M. R. Garfinkel,
S. Skaperdas (Eds.), The Oxford handbook of the economics of peace
and conflict, Oxford University Press, 2012.

[26] J. Fahy, The role of resources in global competition, Routledge, 2002.

[27] J. C. Levinson, Guerrilla advertising: cost-effective techniques for small-
business success, Houghton Mifflin Harcourt, 1994.

[28] J. C. Levinson, S. Godin, The guerrilla marketing handbook, Houghton
Mifflin Harcourt, 1994.

[29] G. Baltes, I. Leibing, Guerrilla marketing for information services?, New
Library World (2008).

[30] M. Shakeel, M. M. Khan, Impact of guerrilla marketing on consumer
perception, Global Journal of Management and business research 11 (7)
(2011).

[31] G. Nufer, et al., Guerrilla marketing—innovative or parasitic marketing,
Modern Economy 4 (9) (2013) 1–6.
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