000132221 001__ 132221
000132221 005__ 20240322114950.0
000132221 0247_ $$2doi$$a10.1021/acs.jpcc.3c06871
000132221 0248_ $$2sideral$$a137538
000132221 037__ $$aART-2024-137538
000132221 041__ $$aeng
000132221 100__ $$aBarrionuevo, Santiago D.
000132221 245__ $$aStacking-configuration-preserved Graphene quantum dots electrochemically obtained from CVD Graphene
000132221 260__ $$c2024
000132221 5060_ $$aAccess copy available to the general public$$fUnrestricted
000132221 5203_ $$aThe layer stacking morphology in nanocarbons is paramount for achieving new properties and outperforming applications. Here, we demonstrate that graphene quantum dots (GQDs) retain crystallinity and a stacking structure from CVD graphene grown on Ni foam. Our results reveal that GQD subdomains comprise a few-layer graphene structure in the AB···AB and ABC···ABC stacking configuration. HR-TEM images along with a multiple-approach characterization (XRD, XPS, UV–vis, AFM, and ATR-IR) exhibit ∼3.0 to ∼8.0 nm crystalline GQDs with 2–6 graphene layers thick indicating a disk-shape structure. The UV–vis profiles show changes in color of the dispersion (from colorless to red) during and after the electrochemistry, suggesting a systematic electrooxidation of graphene into smaller, highly crystalline, and more complex sp2/sp3 structures. Importantly, a control experiment performed under the same conditions but with a graphitic rod exhibited large, polydisperse, and multilayer carbon structures. This work demonstrates a relatively easy electrochemical synthesis to obtain GQDs which retain the pristine and, in turn, distinctive structure of graphene grown on Ni foam.
000132221 536__ $$9info:eu-repo/grantAgreement/EC/H2020/101007825/EU/ULtra ThIn MAgneto Thermal sEnsor-Ing/ULTIMATE-I$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 101007825-ULTIMATE-I$$9info:eu-repo/grantAgreement/EC/H2020/872631 /EU/Memristive and multiferroic materials for emergent logic units in nanoelectronics/MELON$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 872631 -MELON
000132221 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000132221 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000132221 700__ $$aFioravanti, Federico
000132221 700__ $$aNúñez, Jorge M.
000132221 700__ $$aMuñeton Arboleda, David
000132221 700__ $$aLacconi, Gabriela I.
000132221 700__ $$aBellino, Martín G.
000132221 700__ $$0(orcid)0000-0002-1296-4793$$aAguirre, Myriam H.$$uUniversidad de Zaragoza
000132221 700__ $$aIbáñez, Francisco J.
000132221 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000132221 773__ $$g128, 3 (2024), 1393-1403$$pJ. phys. chem., C$$tJournal of physical chemistry. C.$$x1932-7447
000132221 8564_ $$s2328056$$uhttps://zaguan.unizar.es/record/132221/files/texto_completo.pdf$$yPostprint$$zinfo:eu-repo/date/embargoEnd/2025-01-10
000132221 8564_ $$s1332569$$uhttps://zaguan.unizar.es/record/132221/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint$$zinfo:eu-repo/date/embargoEnd/2025-01-10
000132221 909CO $$ooai:zaguan.unizar.es:132221$$particulos$$pdriver
000132221 951__ $$a2024-03-22-11:48:13
000132221 980__ $$aARTICLE