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We unveil the multifractal behavior of Ising spin glasses in their low-temperature phase.
Using the Janus II custom-built supercomputer, the spin-glass correlation function
is studied locally. Dramatic fluctuations are found when pairs of sites at the same
distance are compared. The scaling of these fluctuations, as the spin-glass coherence
length grows with time, is characterized through the computation of the singularity
spectrum and its corresponding Legendre transform. A comparatively small number
of site pairs controls the average correlation that governs the response to a magnetic
field. We explain how this scenario of dramatic fluctuations (at length scales smaller
than the coherence length) can be reconciled with the smooth, self-averaging behavior
that has long been considered to describe spin-glass dynamics.

fractal dimensions | intermittency | disorder systems | large scale simulations

The notion of multifractality (1, 2) refers to situations where many different fractal
behaviors coexist within the same system. A major role is played in this context by
scale symmetry; see, e.g., (3–5): In many situations in physics, chemistry, and beyond,
apparently random objects look the same when the observation scale is changed. The scale
change is often quantitatively characterized through a number, the fractal dimension.
Multifractals (as opposed to fractals) are systems that need many fractal dimensions to
get their scaling properties fully characterized.

Some of the first examples of multifractal behavior appeared in physics, in the contexts
of turbulence (6), Anderson localization (7) and diffusion-limited aggregates (8). A
unifying language was soon introduced in a study of chaotic dynamics (9, 10). The
concept has gained popularity as the list of systems exhibiting some form of multifractality
has steadily grown. To name only a few, let us recall surface growth (11), human heartbeat
dynamics (12), mating copepods (13, 14), rainfall (15), or the analysis of financial time
series (16).

Here, we add a (perhaps) surprising member to the list: the off-equilibrium dynamics
of spin-glass systems (17, 18). These disordered magnetic alloys have long been regarded
as a paradigmatic toy model for the study of glassiness, optimization, biology, financial
markets, or social dynamics. It is surprising that such a prominent feature as multifractality
has gone unnoticed for such a well-studied model.*

The explanation for the above paradox rests on the finite coherence length �(tw)
that develops when a spin glass, initially at some very high temperature, is suddenly
cooled below the critical temperature Tc, and let to relax for a waiting time tw—most
experimental work on spin glasses is carried out under nonequilibrium conditions (20). As
tw increases, glassy domains of growing size �(tw) develop, see Fig. 1. The growth of �(tw)
is sluggish for a spin glass, reaching only � ∼ 200 lattice spacings for tw ∼1 h (21, 22).
Now, when one measures the magnetic response to an external field, which is the main
experimental probe of spin-glass dynamics, an average over the whole sample is carried
out. Since the sample is effectively composed of many independent domains of linear
size ∼ �(tw), the central limit theorem eliminates from the average response the large
fluctuations that could ultimately cause multifractal behavior. With few exceptions (see
below), most numerical work has emphasized the space-averaged correlation function
in Fig. 1. Besides, see Methods, studying correlations without spatial averages is very
demanding computationally.

It follows from the above considerations that multifractal behavior in spin glasses
should be investigated in large statistical deviations that occur at a length scale smaller
than (or comparable to) �(tw), definitively not the standard framework either for
experiments (see refs. 22–24, for instance) or for simulations (25–27). There is, however,

*See ref. 19 for an early, unsuccessful search of multifractality in spin glasses.

Significance

Many seemingly irregular objects
(coast shores, for instance) look
the same at different observation
scales. In many cases, a single
number, the fractal dimension,
characterizes the scale changes.
Other systems, known as
multifractals, need a continuous
range of parameters to
characterize the change of scale.
Multifractal behavior has been
identified in a plethora of
situations, from human
heartbeats to financial time
series, and is often accompanied
by large statistical fluctuations.
Spin glasses are one of the
best-studied model systems for
complexity, and large statistical
fluctuations are completely
absent from their dynamics. Our
finding of multifractal scaling in
the spin-glass off-equilibrium
dynamics is, therefore, surprising.
The paradox is solved through
the concept of coherence length.

Reviewers: J.C., Center for Theoretical Physics, University
of Oxford; and H.K., Molecular Photoscience Research
Center, Kobe University.

The authors declare no competing interest.

Copyright © 2024 the Author(s). Published by PNAS.
This article is distributed under Creative Commons
Attribution-NonCommercial-NoDerivatives License 4.0
(CC BY-NC-ND).
1To whom correspondence may be addressed. Email:
isidorog@ucm.es or giorgio.parisi@roma1.infn.it.

This article contains supporting information online
at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.
2312880120/-/DCSupplemental.

Published January 4, 2024.

PNAS 2024 Vol. 121 No. 2 e2312880120 https://doi.org/10.1073/pnas.2312880120 1 of 7

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 U
N

IV
 D

E
 Z

A
R

A
G

O
Z

A
 o

n 
Fe

br
ua

ry
 2

8,
 2

02
4 

fr
om

 I
P 

ad
dr

es
s 

15
5.

21
0.

59
.2

10
.

http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2312880120&domain=pdf&date_stamp=2024-01-03
https://orcid.org/0000-0002-8723-906X
https://orcid.org/0000-0003-4640-0125
https://orcid.org/0000-0002-0340-5199
https://orcid.org/0000-0002-3376-0327
https://orcid.org/0000-0002-0420-8605
https://orcid.org/0000-0002-0795-8743
https://orcid.org/0000-0002-6391-0226
https://orcid.org/0000-0001-6500-5222
https://orcid.org/0000-0003-4970-7376
https://orcid.org/0000-0003-0551-9891
https://orcid.org/0000-0002-0132-9196
https://orcid.org/0000-0003-4007-9406
https://orcid.org/0000-0001-7276-2942
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:isidorog@ucm.es
mailto:giorgio.parisi@roma1.infn.it
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2312880120/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2312880120/-/DCSupplemental


Fig. 1. The correlation function, Eq. 10, as computed for the three-
dimensional Ising diluted ferromagnet (DIL) and for the Ising spin glass (EA),
versus distance r. Data were obtained in systems of linear size L = 160 with
coherence length �(tw) = 20 (dashed vertical line) at temperature T = 0.9—
recall that Tc ≈ 1.1 for EA (32). As explained in Methods, the coherence length
is computed from the integral I2 =

∫
∞

0 r2Cav
4 (r)dr (the integrand is shown in

the SI Appendix).

an important exception. Recently, progress has been achieved
(28) in the theoretical interpretation of the experimental re-
juvenation and memory effects in spin glasses (29). Crucial
for this achievement was the study of temperature chaos in
the off-equilibrium dynamics at the �(tw) length scale (30),
through numerical simulations using the Janus II dedicated
supercomputer (31). As we shall show below, the consid-
eration of fluctuations at the �(tw) length scale still holds
surprises.

Specifically, we shall consider the spin-glass correlation func-
tion, see Methods for definitions. The space-averaged correlation
function is a well-known quantity and the basis for the compu-
tation of �(tw) explained in Fig. 1. We shall depart from the
standard approach, however, by avoiding the spatial average. We
shall compute the correlation function for a pair of sites x and
y, and consider the statistical fluctuations induced by varying x
while fixing r = y − x.

The reader may argue that it is difficult to find large statistical
fluctuations in a mathematical object bounded between 0 and 1,
such as the spin-glass correlation function. A moment of thought
will reveal that large fluctuations are only possible if the average
of the correlation function goes to zero as �(tw) grows, so that
the correlation function at a given site can get large if measured
in units of the averaged correlation.

Indeed, spin glasses are peculiar among systems with domain-
growth off-equilibrium dynamics. Fig. 2 compares the space-
averaged correlation function at distance r = �(tw) for two Ising
systems in space dimension D = 3, the link-diluted ferromagnet
and the spin glass. In the ferromagnet, the correlation function
goes to a constant value (the squared spontaneous magnetization)
as � grows. Hence, large deviations and multifractality are
possible for the ferromagnet only at Tc, where the spontaneous
magnetization vanishes.† In the spin glass, instead, the correlation
function scales as 1/r� for distances up to r ∼ �.‡ Hence, unlike
the diluted ferromagnet, the spin glass can accommodate large
fluctuations for all T < Tc. This is why here we decide to focus
on the spin glass.

†At its critical temperature, the two-dimensional diluted ferromagnetic Potts model with
more than two states presents multiscaling as well (33)—this is also the case for the diluted
Ising model in D = 3 (34, 35).
‡The droplet picture of spin glasses (36–38) predicts �= 0, similarly to the ferromagnet.
Neither simulations nor experimental data are compatible with �=0, unless one is willing
to accept that the available range of �(tw) is too small to display the true asymptotic
behavior (27).

Fig. 2. Correlation function Cav
4 (r = �(tw)), see Eq. 10 versus the coherence

length �(tw), as computed for DIL (Top) and for EA (Bottom) at temperatures
T, T̃ = 0.9,0.8 and 0.7 (see Methods for a complete definition of T̃ ). Error
bars are smaller than the point size. The dashed line is our fit to Eq. 2, with
q = 1, for EA at T = 0.9 (to avoid scaling corrections, we fit in the range
�(tw) ∈ [10,20], see SI Appendix for further information). Note that, while the
DIL Cav

4 (r = �(tw)) tends to a T -dependent positive limit for large coherence
length (which excludes multiscaling at T < Tc), the spin-glass correlation
functions steadily decrease with �(tw).

Results
The first indication of large deviations in the statistics of the
spin-glass correlation function C4 is shown in Fig. 3, where we
select the distance r = �(tw). The ratio of the second moment
of C4, C2

4 , to the first moment squared, C4
2, nicely follows a

power law as a function of C4 (this type of analysis was pioneered

Fig. 3. Ratio of the second moment of the spin-glass correlation function C4
computed at r = �(tw), C2

4 , to the squared first moment, C4
2, as a function

of C4. We show the data for all temperatures considered in this work. C4
tends to zero as the coherence length �(tw) gets large, recall Fig. 2. Note that
C2

4 /C4
2 scales with C4 as a power law, which indicates that in the scaling limit

(i.e., �(tw) → ∞ or C4 → 0) the order of magnitude of C2
4 is larger than the

one of C4
2. Data in the glassy phase, T < Tc, roughly follow the same scaling

curve. At the critical point, there is still a power type relation with a slightly
different exponent. Error bars are smaller than the points size. The same
data are shown as a function of �(tw) in SI Appendix.
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in ref. 39). If continued to C4 → 0 (i.e., as �(tw) grows, see
Fig. 2), this power law implies that the orders of magnitude of
C2

4 and C4
2 differ in the large-�(tw) scaling limit. This behavior

is not reminiscent of a monofractal, which in the scaling limit is
characterized by a single quantity (say, C4).

We also note from Fig. 3 that all our data with T < Tc follow
the same scaling curve, which slightly differs from its counterpart
at the critical point. This is not completely unexpected, because
the �-expansion tells us that the averageC4 atTc decays as a power
law with distance with an exponent (40) that is twice as large as
the exponent for T < Tc (41). In fact, we lack an explanation for
the similarity of the two exponents that can be observed in Fig. 3.
From now on, our analysis will focus on our data at T = 0.9,
namely the temperature in the spin-glass phase where we are able
to reach the largest �(tw).

A picture of the physical situation is presented in Fig. 4.
We may expect a different behavior for the average and the
local correlation function when distances up to r ∼ �(tw) are
considered [�(T = 0.9) ≈ 0.4 (27)]:§

C av
4 (r, tw) ∼

1
r�

, C4(x, x + r; tw) ∼
1

r�M(x,r,tw)
. [1]

As the reader can check from Fig. 4, the order-of-magnitude
modulating factor M(x, r, tw) varies by a factor of 16, which
indicates that there are site pairs (x, x + r) a lot more —or a lot
less— correlated than the average. In fact, see Fig. 5, the median
correlation function at distance r = �(tw), scales as [C av

4 ]a, with
a ≈ 1.5. In other words, the typical correlation function is a lot
smaller than the average value.

Fig. 4. Grayscale representation of the order-of-magnitude modulating factor M(x, r, tw), see Eq. 1, computed for site x = (64,64,64) of a sample with
coherence length �(tw) = 20, at T = 0.9, with an NR = 512 estimator (Methods). We show results for displacement vectors r = (rx , ry , rz) in a cube −40 ≤
rx , ry , rz ≤ 40. The Top-Left panel depicts the three visible faces of the cube, while the other three panels show sections at rz = −20,0,20, respectively. Our color
code is darker the smaller M(x, r, tw) (hence, the more slowly correlations decay with distance). For ease of representation, we have chosen a color code linear
between the minimal value of M(x, r, tw) and 2.5. Displacements r with M(x, r, tw) > 2.5 are depicted as if M(x, r, tw) = 2.5. See SI Appendix for more examples
of this modulating factor.

§The correlation function behaves as Cav
4 (r, tw) ∼ G(r/�(tw))/r� for large r, where the cut-off function G(x) decays faster than exponentially as x grows [see, e.g., refs. 42 and 43]. Hence,

for r ∼ �(tw) one may consider either power-law scaling in r—as in Eq. 1—or in �(tw)—as in Eq. 2. The analysis of scale invariance in a fractal (or multifractal) geometry typically involves
power laws.
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Fig. 5. Median of the distribution P[C4(r = �)] in units of the first moment,
C4(r = �), versus C4(r = �), as computed for the spin glass at temperature
T = 0.9. We show data in the logarithmic scale. Therefore, the dashed line (a
power-law fit with exponent ∼ 0.5, see SI Appendix for details) appears as a
straight line.

In order to make the above qualitative description quantitative,
we consider the moments of the probability distribution of C4
at distance r = �(tw). The q-th moment turns out to follow a
scaling law

Cq
4 ∼

Aq
��(q)

. [2]

Fig. 6 shows the �(q) function, which significantly differs from
the monofractal behavior �mono(q) = q �mono(1). It is this
departure from linear behavior that justifies using the term
multifractal to describe spin-glass dynamics (see, e.g., ref. 9).

For large moments, �(q) seems to grow as log q (see the Inset
in Fig. 6). The origin of this logarithmic growth seems to be
in the behavior of the probability distribution function P(C4)
near C4 = 1. As shown in SI Appendix, the numerical data are
consistent with P(C4) ∝ (1−C4)B(�) for C4 close to 1, with an
exponent that grows as B(�(tw)) ∼ log �(tw). This behavior of
the correlation function would explain the observed logarithmic
growth of �(q). However, just to be on the safe side, we have
tried two different functional forms to fit the numerical data in
Fig. 6:

�1(q) = mq
1 + c1q
1 + c2q

, �2(q) = mq
1 + d1q log q
(1 + d2q)2 . [3]

Both �1 and �2 have the same derivative m at q = 0. We
do not treat m as a fitting parameter. Rather, we take it from
the scaling of the median of the distribution P(C4) with � (SI
Appendix). Although both �1(q) and �2(q) make an excellent job

Fig. 6. Scaling exponent �(q) for the q-th moment C4(r = �)q ∼ �−�(q)
computed from simulations of the Ising spin glass at T = 0.9 (see SI
Appendix for results at Tc). The nonlinear behavior is a strong indication of
multifractality. The dashed lines are fits to the functional forms in Eq. 3 (the
goodness-of-fit statistics are presented in the SI Appendix). The inset presents
the same data as a function of log(q).

at fitting our data (see again SI Appendix), only �2(q) displays the
logarithmic growth with q, at large q, that we find more plausible.

Discussion
Following ref. 9, we shall discuss our results in terms of a different
stochastic variable, � = logC4(r = �(tw))/ log[1/�(tw)], so that
(we drop the argument in � for the sake of shortness)

C4 =
1
��

, P(C4)
dC4

d�
∼ �f (�) . [4]

Eq. 4 defines the large-deviations function f (�). Then, we find
for the moments of C4

Cq
4 =

∫ 1

0
dC4 P(C4)C

q
4 ∼

∫
∞

0
d� elog(�)[f (�)−q�] . [5]

For large �, the above integral is dominated by the maximum of
[f (�)− q�] at some value � = �∗:

Cq
4 ∼

1
�−[f (�∗)−q�∗]

. [6]

Comparing with Eq. 2, we realize that f (�) is just (minus) the
Legendre transform of the singularity spectrum �(q):

f (�) = −max
q

[
�(q) − q�

]
. [7]

We show f (�) in Fig. 7, as computed from our fitting ansätze
�1(q) and �2(q), in Eq. 3. In the range of Fig. 6—since
�(q) = � ′(q)—the results from the two ansätze can hardly
be distinguished. The two, however, differ in that the range
of � for �2(q) goes all the way down to � = 0 (because
�2(q) = d�2/dq ∼ 1/q). Indeed, if �(q) goes as log(q) for large
q, then the large-deviations function goes as f (�→ 0) ∼ log(�).

Let us recapitulate: the probability of finding a site x with
C4(x, x + r) scaling as 1/r� for r ∼ � goes in the scaling limit
as �f (�). There are, hence, a lot more sites displaying the median
scaling exponent � ≈ 0.65 than there are for the average scaling
� ≈ 0.4 (because f (0.65) > f (0.4), recall Fig. 5). The larger
�(tw) grows, the more pronounced this difference is. Thus, the
expression “silent majority” (44) could be aptly employed to

Fig. 7. Legendre transformation f (�) of function �(q), see Eq. 7, as a
function � = d�/dq, computed from the fitting ansätze in Eq. 3. Errors on
both axes have been obtained as explained in Methods (for further details,
see ref. 50). Since f (�) is the large-deviations function of the decay rate
C4(r = �) ∼ r−� , the data show that the majority of sites have the median
decay rate of approximately 0.65, much larger than the mean decay rate
� ≈ 0.4.

4 of 7 https://doi.org/10.1073/pnas.2312880120 pnas.org
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describe spin-glass dynamics: the central limit theorem ensures
that it is the (somewhat exceptional) average value the one that
can be measured on length scales larger than �(tw) (hence,
in experiments). The experimental-scale dynamics is, however,
not completely blind to these short-scale fluctuations. Indeed,
temperature chaos (30)—and, hence, rejuvenation (28), which is
certainly experimentally observable (see, e.g., ref. 29)—is ruled
by statistical fluctuations at the scale of r smaller than, or similar
to, �(tw).

Our data show that varying T simply changes �(q) by an
essentially constant factor [e.g., �(q, Tc) ≈ 1.5�(q, T = 0.9),
see SI Appendix]. Furthermore, Fig. 3 makes us confident that,
taking C4 as scaling variable instead of �(tw), the overall picture
is essentially temperature independent for T < Tc.

Whether or not multifractal behavior is also present in
equilibrium correlation functions in the spin-glass phase stands
out as an interesting open question. Statics-dynamics equivalence
(26, 45–47) suggests that the answer will be positive.

As a final remark, let us stress that ongoing efforts to build
a mathematically rigorous theory of nonequilibrium spin-glass
dynamics through the concept of the maturation metastate (see
ref. 48 and references therein) should take into account the
extreme spatial heterogeneity unveiled in this work.

Materials and Methods
Model and Simulations. We focus on the Edwards–Anderson model (EA) in a
simple cubic lattice with linear size L = 160 and periodic boundary conditions.
Our Sx = ±1 spin, placed at the lattice sites, interact with their nearest
neighbors through the Hamiltonian:

H = −
∑
〈x,y〉

Jx,ySxSy . [8]

The coupling constants Jx,y are independent random variables (Jx,y = ±1 with
equal probability), fixed once and for all at the beginning of the simulation (this
is named quenched disorder). A realization of the couplings is called a sample.
We shall use 16 samples in this work. In general, errors will be computed with
a jackknife method over the samples (see, for instance, refs. 49 and 50). We
have also considered a diluted Ising model (see below), as a baseline model
displaying domain-growth off-equilibrium dynamics.

We have simulated the model in Eq. 8 through a Metropolis dynamics on
the Janus II supercomputer (31). Our time unit is a full-lattice sweep, roughly
equivalent to a picosecond of physical time (17). The critical temperature for this
model is Tc = 1.1019(29) (32).

For each sample, we have simulated NR = 512 statistically independent
system copies or replicas. We denote by 〈· · · 〉 the average over thermal noise for
one sample (as explained below, we obtain unbiased estimators of the thermal
expectation values 〈· · · 〉 by averaging over the replicas). The subsequent
average over samples is denoted by an overline (〈· · · 〉).

The main quantity of interest is the correlation function

C4(x, y, tw) = 〈Sx(tw)Sy(tw)〉2 . [9]

Note that, for a given sample and (x, y, tw), C4(x, y, tw) is not a stochastic
variable. However, it is a stochastic variable if we regard the variations induced
by the choice of couplings Jx,y and over the considered sites (x, y, tw). We term
these stochastic variables C4, without arguments.

As explained in the next paragraph, although C4(x, y, tw) cannot be
computed with a finite number of replicas, unbiased estimators of its moments
can be computed. In particular, previous work has mostly focused on the average
correlation function

Cav
4 (r, tw) =

1

L3

∑
x

C4(x, y = x + r, tw) . [10]

Table 1. Maximum tw and coherence length reached
for each of our models and simulation temperatures
T or T̃ tw(EA) �max(EA) tw(DIL) �max(DIL)

0.7 46,531,866,276 12 498 15
0.8 18,734,780,191 15 919 21
0.9 15,172,184,825 20 954 23

Cubic symmetry, present in averages over the samples, allows us to average over
the three equivalent displacements r = (r, 0, 0) and permutations. We shall
use the shorthand Cav

4 (r, tw) to indicate this average over the three equivalent
r. To compute the coherence length �(tw), we follow (27, 42, 51) and compute
the integrals

In(tw) =

∫
∞

0
rn Cav

4 (r, tw)dr . [11]

Then, �(tw) = I2(tw)/I1(tw).
As stated above, we have simulated, as a null experiment, the link-diluted

Ising model (DIL). The only difference with the Hamiltonian in Eq. 8 is in the
choice of the couplings: Jx,y = 1 (with 70% probability) or Jx,y = 0 (with 30%
probability). Since all couplings are positive or zero, this is a ferromagnetic system
without frustration. All our simulation and analysis procedures are identical for
the DIL and EA models. The critical temperature is TDIL

c = 3.0609(5) (52).
Actually, this is twice the value reported in ref. 52 due to our use of an Ising,
rather than Potts, formulation. In fact, with some abuse of language, in the main
text, we refer to DIL temperatures as T̃ = 0.9, T̃ = 0.8 or 0.7 rather than to
their real value TDIL = T̃ (TDIL

c /TEA
c ).

The range of coherence length and simulation times in this study can be
found in Table 1.

Unbiased Estimators of Powers of C4(x, y, tw). Given x and y, we need an
unbiased estimator of Cq4(x, y, tw) = 〈Sx(tw)Sy(tw)〉2q. Note that the q = 1
instance is needed to evaluate Eq. 10.

Should we have (at least) 2q replicas at our disposal, a tentative solution
would be provided by the estimator

[C4(x, y, tw)]
poor
q =

2q∏
a=1

S(a)x (tw)S(a)y (tw) . [12]

[C4(x, y, tw)]
poor
q = (−1)p, where p is the number of replicas for

which S(a)x (tw)S(a)y (tw) = −1. However, the statistical independence of

the different replicas ensures for the expectation value 〈[C4(x, y, tw)]
poor
q 〉 =

〈Sx(tw)Sy(tw)〉2q.
Nevertheless, if we have at our disposal a number of replicas NR � 2q,

as is our case, the solution in Eq. 12 is very unsatisfactory. Rather, one would
like to consider all possible picks of 2q different replicas (out of the NR possible
choices), compute [C4(x, y, tw)]

poor
q for every pick, and take the average of those

products.
To achieve our goal, we have solved the following auxiliary combinatorial

problem. Given a set of NR different signs ca = ±1, M of which negative, we
have computed P̃(NR, M; S, p), namely the probability of getting p negative
signs in a pick (with uniform probability) of S distinct signs. With this probability
in our hands, the solution is straightforward. We just need to look at our set

S(a)x (tw)S(a)y (tw), a = 1, 2 . . . , NR, count the numberM of them that turn out
to be negative and compute the estimator

[C4(x, y, tw)]q = G(NR, M, q) , [13]

G(NR, M, q) =

2q∑
p=0

(−1)p P̃(NR, M; S = 2q, p) . [14]
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[C4(x, y, tw)]q is an unbiased estimator of 〈Sx(tw)Sy(tw)〉2q, because it is
an average over all possible (poor, but unbiased) estimators in Eq. 12. Our
computation of P̃(NR, M; S = 2q, p) is explained in the SI Appendix.

The Probability Distribution of the Correlation Function. We wish to study
the probability distribution function (pdf) for 〈Sx(tw)Sx+r(tw)〉2 (periodic
boundary conditions are assumed for x + r). We have only considered
displacements r = (r, 0, 0) —and permutations— and we have chosen the
measuring times in such a way that r = �(tw).

Note that, given the starting point x and the sample {Jx,y}, 〈SxSx+r〉
2 is not

a fluctuating quantity. Hence, we are referring to the pdf as x and the sample
vary. 〈SxSx+r〉

2 can be computed exactly only in the limitNR →∞. However,
as explained in the previous paragraph, we can compute without bias its q-th
moment provided that the number of replicas at our disposal is NR ≥ 2q.

The basic object we compute from our simulation is the pdf P(M;NR, �),
namely the probability, as computed over the starting point x and the samples,

that exactly M of the NR signs S(a)x (tw)S(a)x+r(tw) turn out to be −1 in our
simulation of this specific sample. Hence, the unbiased estimator of the q-th
moment of 〈Sx(tw)Sx+r(tw)〉

2 with r = �(tw) is

Cq4(�) =

NR∑
M=0

P(M;NR, �)G(NR, M, q) , [15]

where G(NR, M, q) was defined in Eq. 14.
Unfortunately, the median of the pdf for 〈Sx(tw)Sx+r(tw)〉2 is more difficult

to compute. Our strategy, explained in full detail in SI Appendix, consists in
computing biased estimators of the median, with bias of order 1/NR. Then we
compute these biased estimators for a sequence NR

′ = 32, 64, 128, 256 and
512, and proceed to an extrapolation NR →∞. We obtain theP(M′;NR

′, �)
from their NR = 512 counterpart as

P(M′;NR
′, �) =

NR∑
M=0

P(M;NR, �) P(NR, M; S = NR
′, p = M′) . [16]

The probabilities P(NR, M; S, p) were defined in the previous subsection in this
Methods section.

Computation of �(q). In order to minimize corrections to scaling, we have
fitted the normalized moments as

Cq4
C4

q =
[ Aq
C4

]�(q)
, �(q) = �(1)[q− �(q)] . [17]

Fig. 3 provides an example. In order to obtain good fits, we have needed to discard
(at most) one data point corresponding to the smallest �(tw). An advantage of
this method is that we only need to consider the �(tw) dependence to obtain
�(1), as shown in Fig. 2. The full procedure is illustrated in SI Appendix.

To compute errors, we have followed the strategy of ref. 50, namely carrying
out all fits separately for each jackknife block (when minimizing �2 to perform
the fits, we only consider the diagonal elements of the covariance matrix). Errors
in the fit parameters are obtained from the fluctuations of the jackknife blocks.

ComputationofM(x, r). The order-of-magnitude factor in Eq.1 is computed as

log |[C4(x, x+ r, tw)]1|/ log Cav
4 (
√
r2x + r2y + r2z ), where [C4(x, x+ r, tw)]1

is the q = 1 estimator in Eq. 13 (as computed with NR = 512). Cav
4 (r)

is interpolated to noninteger arguments using a fit obtained from data with
integer r (SI Appendix).

Data,Materials, and Software Availability. All study data are included in the
article and/or SI Appendix. The data and the scripts that generate the figures in
the main text can be downloaded from https://github.com/JanusCollaboration/
multifractal_EA/tree/main/MAIN (53). The data and the scripts that generate
the figures in the SI Appendix can be downloaded from https://github.com/
JanusCollaboration/multifractal_EA/tree/main/SI (54).
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