000132256 001__ 132256
000132256 005__ 20241125101154.0
000132256 0247_ $$2doi$$a10.1021/jacs.3c03125
000132256 0248_ $$2sideral$$a134103
000132256 037__ $$aART-2023-134103
000132256 041__ $$aeng
000132256 100__ $$0(orcid)0000-0002-8932-9085$$aConcellón, Alberto$$uUniversidad de Zaragoza
000132256 245__ $$aUltratrace PFAS Detection Using Amplifying Fluorescent Polymers
000132256 260__ $$c2023
000132256 5060_ $$aAccess copy available to the general public$$fUnrestricted
000132256 5203_ $$aPer- and poly(fluoroalkyl) substances (PFAS) are environmentally persistent pollutants that are of growing concern due to their detrimental effects at ultratrace concentrations (ng·L–1) in human and environmental health. Suitable technologies for on-site ultratrace detection of PFAS do not exist and current methods require complex and specialized equipment, making the monitoring of PFAS in distributed water infrastructures extremely challenging. Herein, we describe amplifying fluorescent polymers (AFPs) that can selectively detect perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) at concentrations of ng·L–1. The AFPs are highly fluorinated and have poly(p-phenylene ethynylene) and polyfluorene backbones bearing pyridine-based selectors that react with acidic PFAS via a proton-transfer reaction. The fluorinated regions within the polymers partition PFAS into polymers, whereas the protonated pyridine units create lower-energy traps for the excitons, and emission from these pyridinium sites results in red-shifting of the fluorescence spectra. The AFPs are evaluated in thin-film and nanoparticle forms and can selectively detect PFAS concentrations of ~1 ppb and ~100 ppt, respectively. Both polymer films and nanoparticles are not affected by the type of water, and similar responses to PFAS were found in milliQ water, DI water, and well water. These results demonstrate a promising sensing approach for on-site detection of aqueous PFAS in the ng·L–1 range.
000132256 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000132256 590__ $$a14.5$$b2023
000132256 592__ $$a5.489$$b2023
000132256 591__ $$aCHEMISTRY, MULTIDISCIPLINARY$$b18 / 231 = 0.078$$c2023$$dQ1$$eT1
000132256 593__ $$aBiochemistry$$c2023$$dQ1
000132256 593__ $$aColloid and Surface Chemistry$$c2023$$dQ1
000132256 593__ $$aChemistry (miscellaneous)$$c2023$$dQ1
000132256 593__ $$aCatalysis$$c2023$$dQ1
000132256 594__ $$a24.4$$b2023
000132256 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000132256 700__ $$aCastro-Esteban, Jesús
000132256 700__ $$aSwager, Timothy M.
000132256 7102_ $$12013$$2765$$aUniversidad de Zaragoza$$bDpto. Química Orgánica$$cÁrea Química Orgánica
000132256 773__ $$g145, 20 (2023), 11420-11430$$pJ. Am. Chem. Soc.$$tJournal of the American Chemical Society$$x0002-7863
000132256 8564_ $$s2797594$$uhttps://zaguan.unizar.es/record/132256/files/texto_completo.pdf$$yPostprint$$zinfo:eu-repo/date/embargoEnd/2024-05-11
000132256 8564_ $$s3310465$$uhttps://zaguan.unizar.es/record/132256/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint$$zinfo:eu-repo/date/embargoEnd/2024-05-11
000132256 909CO $$ooai:zaguan.unizar.es:132256$$particulos$$pdriver
000132256 951__ $$a2024-11-22-12:08:14
000132256 980__ $$aARTICLE