000132265 001__ 132265
000132265 005__ 20240301161207.0
000132265 0247_ $$2doi$$a10.1007/s11356-024-32028-3
000132265 0248_ $$2sideral$$a137424
000132265 037__ $$aART-2024-137424
000132265 041__ $$aeng
000132265 100__ $$aCordoba-Ramirez, Marlon
000132265 245__ $$aExperimental strategy for the preparation of adsorbent materials from torrefied palm kernel shell oriented to CO2 capture
000132265 260__ $$c2024
000132265 5060_ $$aAccess copy available to the general public$$fUnrestricted
000132265 5203_ $$aIn this study, an experimental strategy to obtain biochar and activated carbon from torrefied palm kernel shell as an efficient material for CO2 removal was evaluated. Biochar was obtained by slow pyrolysis of palm kernel shell at different temperatures (350 °C, 550 °C, and 700 °C) and previously torrefied palm kernel shell at different temperatures (220 °C, 250 °C, and 280 °C). Subsequently, activated carbons were prepared by physical activation with CO2 from previously obtained biochar samples. The CO2 adsorption capacity was measured using TGA. The experimental results showed that there is a correlation between the change in the O/C and H/C ratios and the functional groups –OH and C=O observed via FTIR in the obtained char, indicating that both dehydration and deoxygenation reactions occur during torrefaction; this favors the deoxygenation reactions and makes them faster through CO2 liberation during the pyrolysis process. The microporous surface area shows a significant increase with higher pyrolysis temperatures, as a product of the continuous carbonization reactions, allowing more active sites for CO2 removal. Pyrolysis temperature is a key factor in CO2 adsorption capacity, leading to a CO2 adsorption capacity of up to 75 mg/gCO2 for biochar obtained at 700 °C from non-torrefied palm kernel shell (Char700). Activated carbon obtained from torrefied palm kernel shell at 280 °C (T280-CHAR700-AC) exhibited the highest CO2 adsorption capacity (101.9 mg/gCO2). Oxygen-containing functional groups have a direct impact on CO2 adsorption performance due to electron interactions between CO2 and these functional groups. These findings could provide a new experimental approach for obtaining optimal adsorbent materials exclusively derived from thermochemical conversion processes.
000132265 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000132265 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000132265 700__ $$aChejne, Farid
000132265 700__ $$aAlean, Jader
000132265 700__ $$aGómez, Carlos A.
000132265 700__ $$0(orcid)0000-0002-2591-1383$$aNavarro-Gil, África$$uUniversidad de Zaragoza
000132265 700__ $$0(orcid)0000-0003-4493-6540$$aÁbrego, Javier$$uUniversidad de Zaragoza
000132265 700__ $$0(orcid)0000-0002-4364-2535$$aGea, Gloria$$uUniversidad de Zaragoza
000132265 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000132265 7102_ $$15005$$2790$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Tecnologi. Medio Ambiente
000132265 773__ $$pEnviron. sci. pollut. res. int.$$tEnvironmental Science and Pollution Research$$x0944-1344
000132265 8564_ $$s3480065$$uhttps://zaguan.unizar.es/record/132265/files/texto_completo.pdf$$yVersión publicada
000132265 8564_ $$s2440528$$uhttps://zaguan.unizar.es/record/132265/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000132265 909CO $$ooai:zaguan.unizar.es:132265$$particulos$$pdriver
000132265 951__ $$a2024-03-01-14:53:33
000132265 980__ $$aARTICLE