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1 Preservation of log concavity property

The classical Bernstein operators Bn are defined for a bounded real function
on [0, 1] f and a natural number n as:

Bn(f, x) =
n∑
k=0

f

(
k

n

)(
n

k

)
xk(1− x)n−k = E

[
f

(
B(n, x)

n

)]
(1)

= xE

[
f

(
B(n− 1, x) + 1

n

)]
+ (1− x)E

[
f

(
B(n− 1, x)

n

)]
= xE

[
∆1

1
n
f

(
B(n− 1, x)

n

)]
+ E

[
f

(
B(n− 1, x)

n

)]
(2)

=
n∑
k=0

(
n

k

)
∆k

1
n
f(0)xk, x ∈ [0, 1], (3)

where E[.] denotes the expectation operator, ∆k
h is the difference operator of

order k defined as

∆1
hf(x) = f(x+ h)− f(x), h ≥ 0,

for k = 1 and inductively for k ≥ 2

∆k
hf(x) = ∆1

h∆
k−1
h f(x),

and B(n, x) is a binomial random variable with parameters n and x. Expres-

sion (2) is a rearrangement of previous equation which follows since B(n, x)
d
=∑n

i=1 Yi(x), where
d
= means equality in distribution and the Yi(x) are inde-

pendent and identically distributed random variables such that P (Yi(x) =
1) = 1− P (Yi(x) = 0) = x. Equation (3) can be found in [9].

These polynomials are very useful for the shape preserving approxima-
tion. It is well known that they preserve convex, concave functions and
extensions of both types of functions. Shape preservation properties of Bern-
stein and analogous operators as Szàsz can be found in [1, 2]. The log-
concavity preserving property of Bernstein operators was first established in
1988 by T.N.T. Goodman in an article [7] devoted to computer aided ge-
ometric design. A. Komisarski [8] got a similar result by strengthening of
Goodman’s result.Finally, Bieniek el al. [6] gave a different proof, as an ap-
plication of shape properties of the lifetime of a reliability system. On the
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other hand, Vinogradov and Ulitskaya [22] gave an example showing that
Bernstein Polynomials do not preserve log-convexity. For further results and
details about Bernstein polynomials, see the monography [9]. The preserva-
tion of log convexity by some Bernstein-type operators including for instance
Szàsz and Baskakov operators using probabilistic tools was addressed in [4].
The preservation of log concavity was explored in [5] for operators admitting
a probabilistic representation through a stochastic process with non negative
independent increments. Previous property is obtained based on the bivari-
ate characterization of likelihood ratio order, hazard rate order and reversed
hazard rate order (see [23] for an alternative proof of the results in [4, 5]).
In the case of Bernstein operator, since the stochastic process B(n, x) has
dependent increments, previous approach fails for log concavity preservation.
In [8], a probabilistic proof of Bernstein log concavity preservation was con-
jectured and, in some sense, obtained in [6]. In this paper we provide a
short proof of it based on the bivariate characterization of likelihood ratio
stochastic order. As consequence of latter preservation property of Bernstein
operator an application to ageing classes of coherent systems is derived. Nu-
merical applications of shape preserving properties of Bernstein operator are
discussed in [14].

Recall that a non negative real function f on a convex interval I is log
concave if f(λx+ (1− λ)y) ≥ fλ(x)f 1−λ(y) for x, y ∈ I and 0 ≤ λ ≤ 1, thus
ln f is concave on I. A function f on I twice derivable is log concave if

(f ′(x))2 ≥ f(x)f ′′(x) (4)

or, equivalently, if f > 0, f ′(x)/f(x) is non increasing in x ∈ I.
Recall that for X and Y random variables with probability density func-

tions fX and fY , respectively, X is said less than or equal than Y in likelihood
ratio written X ≤lr Y if fY (x)

fX(x)
is non decreasing in x either on the support

of X or Y being a
0

= ∞. Latter definition is analogous for discrete random
variables interchanging probability density function with probability mass
function. Bivariate characterization of likelihood ratio stochastic order says
that X ≤lr Y iff for all bivariate function g such that g(x, y)−g(y, x) ≥ 0 for
x ≤ y, it holds that E[g(X∗, Y ∗)] ≥ E[g(Y ∗, X∗)] for X∗ and Y ∗ independent

random variables such that X
d
= X∗ and Y

d
= Y ∗. This characterization was

stated for the first time in [19].
It is well known that in the case of binomial distribution, it holds that

B(n, x) ≤lr B(n, y) for x ≤ y.
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The derivative of the Bernstein polynomial can be written as (see [9])

B′n(f, x) = n
n−1∑
k=0

(f

(
k + 1

n

)
− f

(
k

n

)
)

(
n− 1

k

)
xk(1− x)n−1−k

= nE

[
∆1

1
n
f

(
B(n− 1, x)

n

)]
. (5)

Next auxiliary result is worthwhile for proving preservation of log con-
cavity by Bernstein operator (see Theorem 1).

Lemma 1 If f is log concave on a convex set I, then for x, y, x+δ, y+δ ∈ I
such that x ≤ y and δ > 0,

f(y)f(x+ δ)− f(x)f(y + δ) ≥ 0.

Proof: Assuming assumptions in the Lemma we can write

y =
δ

y − x+ δ
x+

y − x
y − x+ δ

(y + δ)

x+ δ =
y − x

y − x+ δ
x+

δ

y − x+ δ
(y + δ).

Since f is log concave on I, it follows that

f(y) ≥ f
δ

y−x+δ (x)f
y−x
y−x+δ (y + δ)

f(x+ δ) ≥ f
y−x
y−x+δ (x)f

δ
y−x+δ (y + δ)

As f is non negative, multiplying both inequalities leads to the claim. �
We are in conditions to prove the main theorem.

Theorem 1 Bn(f, x) is a log concave function for a log concave function f
on [0, 1] and n = 1, 2, . . .

Proof: Result is obvious either for n = 1 or f
(
k
n

)
constant for k =

0, . . . , n as Bn(f, x) is a linear function. Therefore in order to prove the
theorem we can consider that n ≥ 2 and f is non-constant in k

n
, k = 0, . . . , n.

In this case ∆1
1
n

f
(
k
n

)
6= 0 for some k ∈ {1, . . . , n − 1} and B′n(f, x) is a

polynomial of order between 1 and n − 1 (see (5)), so that there exists a
natural number r and 0 = s0 < s1 < · · · < sr−1 < sr = 1 such that
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B′n(f, sj) = 0, j = 1, . . . , r − 1 and B′n(f, x) 6= 0 in (sj−1, sj), j = 1, . . . , r.
Let us show that Bn(f, x) is log concave on (sj−1, sj), j = 1, . . . , r. Here, it
is obvious that Bn(f, x) > 0 on (sj−1, sj). Therefore by (1), (2) and (5), it
holds that

(logBn(f, x))′ =
B′n(f, x)

Bn(f, x)
=

n

x+
E[f(B(n−1,x)

n )]

E

[
∆1

1
n
f(B(n−1,x)

n )
] , x ∈ (sj−1, sj), (6)

j = 1, . . . , r.
Now we show that for 0 ≤ x ≤ y

E

[
f

(
B(n− 1, y)

n

)]
E

[
∆1

1
n
f

(
B(n− 1, x)

n

)]
− E

[
f

(
B(n− 1, x)

n

)]
E

[
∆1

1
n
f

(
B(n− 1, y)

n

)]
≥ 0. (7)

Observe that
B(n− 1, x) ≤lr B(n− 1, y).

Applying bivariate characterization of likelihood ratio order, (7) holds if

f

(
b

n

)
∆1

1
n
f
(a
n

)
− f

(a
n

)
∆1

1
n
f

(
b

n

)
= f

(
b

n

)
f

(
a

n
+

1

n

)
− f

(a
n

)
f

(
b

n
+

1

n

)
≥ 0, 0 ≤ a ≤ b ≤ 1.

The claim above is fulfilled by Lemma 1 with x = a
n
, y = b

n
, δ = 1

n
and

I = [0, 1]. Hence, (7) holds.
Based on equation (6) for x, y ∈ (sj−1, sj) such that x ≤ y

B′n(f, x)

Bn(f, x)
≥ n

y +
E
[
f
(
Sn−1,x

n

)]
E

[
∆1

1
n
f
(
Sn−1,x

n

)]
≥ n

y +
E
[
f
(
Sn−1,y

n

)]
E

[
∆1

1
n
f
(
Sn−1,y

n

)]
=
B′n(f, y)

Bn(f, y)
,

where the second inequality holds by (7). Therefore, (lnBn(f, x))′ is non-
increasing in x on (sj−1, sj). Hence, lnBn(f, x) is concave on (sj−1, sj), and
(4) holds true into these intervals. As Bernstein polynomials and their deriva-
tives are continuous we conclude that Bn(f, x) is a log concave function on
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[0, 1], as (4) can be extended to the whole interval by using a limiting argu-
ment. �

For the applications in Section 2, we will need a result concerning preser-
vation of log-concavity for Bernstein operators when we have functions de-
fined on the set {0, 1, 2, . . . , n} being log-concave. Note that Theorem 1 will
also apply to this case, as shown in the next proposition.

Proposition 1 Let f : {0, 1, 2, . . . , n} → [0,∞) being log-concave, that is,
having no internal zeroes and such that

f(i+ 1)2 ≥ f(i)f(i+ 2), i = 0, . . . , n− 2.

Then, Ef (B(n, x)) is a log-concave function on x

Proof: Let us define the function fn : {0, 1/n, 2/n, . . . , 1} → [0,∞) such
that fn(i/n) = f(i). Clearly we have

fn

(
i+ 1

n

)2

≥ fn

(
i

n

)
fn

(
i+ 2

n

)
, i = 0, . . . , n− 2.

Now consider f̂n : [0, 1] → [0,∞) such that f̂n(i/n) = fn(i/n), and for
i/n < x < (i + 1)/n with f(i)f(i + 1) > 0, log f̂n(x) is obtained by lin-
ear interpolation between consecutive values of {log(f̂n(i/n))}. Note that
log(f̂n(x)) is a concave function in its domain of definition. We extend f̂n to
the interval [0, 1], if f(0)f(n) = 0, as f̂n(x) = 0 in the extreme lower and/or
upper intervals. We have, by construction, that f̂n is a log-concave function.
Thus, by Theorem 1, Bn(f̂n, x) is log-concave. The conclusion follows as

Ef (B(n, x)) = Bn(f̂n, x).

�

2 Application: Conditions for IFR and DRFR

property of a coherent system with n i.i.d.

components

Coherent systems are basic systems in reliability theory. A system is coher-
ent if each component is relevant and its structure function increases in each
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component (the structure function indicates the state of a system (working
or not), in terms of the state of each component). The lifetime of a system
is determined by its components and its structure. See, for instance, [13], for
a recent reference concerning coherent systems. Samaniego [17] introduced
the concept of “signature” of a system, which depends on the structure of
the system, and proved that the lifetime distribution of a coherent system,
whose components have continuous, independent and identically distributed
(i.i.d.) lifetimes, can be obtained as a linear combination of distributions
of order statistics obtained from the lifetimes of the components. The sig-
nature s = (s1, . . . , sn) of a coherent system with n i.i.d. lifetimes of the
components is the n-dimensional probability vector whose ith element is
si = P (SX(s) = Xi:n), where SX(s) denotes the lifetime of the coherent
system and X1:n, . . . , Xn:n denotes the order statistics of n i.i.d. component
lifetimes X = (X1, . . . , Xn) with a common continuous distribution function.
Let us define

Rj =
n∑
i=j

si, and Lj =

j∑
i=1

si, j = 1, . . . , n, (8)

and Rn+1 = L0 = 0. The reliability function of SX(s) for i.i.d. compo-
nents with common distribution function F and reliability function F can be
expressed as (see equation (1) in [21]).

F SX(s)(t) =
n∑
j=1

sjF j:n(t) =
n−1∑
j=0

(
n∑

i=j+1

si)

(
n

j

)
F (t)jF (t)n−j = E

[
RB(n,F (t))+1

]
.

As an immediate consequence of Proposition 1 together with the fact that
Rj is non increasing in j we have the following (see [10, p.689]).

Corollary 1 If Rj is log concave, and F is convex into its support, then
SX(s) has reliability function being log concave, that is, SX(s) is increasing
failure rate. (IFR)

Moreover, the cumulative distribution function of SX(s) for i.i.d. components
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is given by

FSX(s)(t) =
n∑
j=1

sj

n∑
i=j

(
n

i

)
F (t)iF (t)n−i

=
n∑
i=1

i∑
j=1

sj

(
n

i

)
F (t)iF (t)n−i = E

[
LB(n,F (t))

]
.

As an immediate consequence of Proposition 1 together with the fact that
Lj is non decreasing in j we have the following (see [10, p.689]).

Corollary 2 If Lj is log concave, and F is concave into its support, then
SX(s) has log concave cumulative distribution function, that is, SX(s) is de-
creasing reversed failure rate (DRFR).

Remark 1 Conditions given in Corollary 1 (Corollary 2) are different to
those in Tavangar [20], and those given in Navarro et al. [12]. The condi-
tions for IFR and DRFR in Tavangar [20] which are denoted by C1 and C2,
respectively, are given as follows:

• (C1) F is log concave and (n− i) si+1

Ri+1
is non decreasing on i whenever

the expression has sense;

• (C2) F is log concave and i si
Li

is non increasing on i whenever the
expression has sense.

Arnold et al. [3] showed that Tavangar conditions for the monotone failure
rate hold for coherent systems with identically distributed components, but not
necessarily independent.

In Navarro et al. [12], ageing properties for a system SX(s) with ex-
changeable components are derived on the basis of functional properties of
the domination function denoted by H. In i.i.d. case, the domination func-
tion is a polynomial which is defined as

H(p) =
n∑
j=0

Rn+1−j

(
n

j

)
pj(1− p)n−j = E[Rn+1−B(n.p)], 0 ≤ p ≤ 1. (9)

It is shown in [12] that if F (F ) is log concave and

p
H ′(p)

H(p)

(
p

H ′(1− p)
1−H(1− p)

)
, 0 ≤ p ≤ 1 (10)
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is non increasing on p, the IFR (DRFR) property for the system SX(s) holds.
Next, using straightforward algebra and the bivariate characterization of

the lr stochastic order, we show that under Tavangar condition C1 (C2),

pH
′(p)

H(p)
(p H′(1−p)

1−H(1−p)) is non increasing on p. Therefore, Tavangar results are a

particular case of results in [12].
Under Tavangar condition C1, let us define the bivariate function g as

follows
g(i, j) = Ri+1(n− j)sj+1, i, j = 1, . . . , n− 1.

Note that, if Ri+1Rj+1 > 0, we have, as Ri+1 ≥ Rj+1 and C1, that

g(i, j)− g(j, i) = Ri+1Rj+1

(
(n− j)sj+1

Rj+1

− (n− i)si+1

Ri+1

)
≥ 0, i ≤ j,

and obviously Ri+1 ≥ Rj+1 implies that g(i, j)− g(j, i) ≥ 0 for i ≤ j in case
Ri+1Rj+1 = 0. Hence, by bivariate characterization of lr stochastic order and
the fact that B(n, p1) ≤lr B(n, p2) (p1 ≤ p2), we have

E[RB(n,p1)+1]E[(n−B(n, p2))sB(n,p2)+1] ≥ E[RB(n,p2)+1]E[(n−B(n, p1))sB(n,p1)+1],

or equivalently as B(n, p)
d
= n−B(n, 1− p)

E[Rn+1−B(n,1−p1)]E[B(n, 1− p2)sn+1−B(n,1−p2)]

≥ E[Rn+1−B(n,1−p2)]E[B(n, 1− p1)sn+1−B(n,1−p1)]. (11)

We now show that pH
′(p)

H(p)
is non increasing iff (11) holds. Indeed, the deriva-

tive of (9) by (5) is given by

H ′(p) = n
n−1∑
j=0

(Rn+1−j−1−Rn+1−j)

(
n− 1

j

)
pj(1−p)n−1−j = n

n−1∑
j=0

sn−j

(
n− 1

j

)
pj(1−p)n−1−j.

Thus, for Yi(p), i = 1, . . . , n independent Bernoulli random variables with
parameter p,

pH ′(p) = nE
[
[Yn(p)sn−∑n−1

i=1 Yi(p)

]
= nE

[
Yn(p)sn+1−

∑n
i=1 Yi(p)

]
= nE

[∑n
i=1 Yi(p)

n
sn+1−

∑n
i=1 Yi(p)

]
=

n∑
j=0

jsn+1−j

(
n

j

)
pj(1− p)n−j

= E[B(n, p)sn+1−B(n,p)],
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where the second equality holds because the terms inside the expectation in
both sides give the same value either if Yn(p) = 0 or Yn(p) = 1, and the
third equality holds by identical distribution. Finally, the sought monotonicity
result follows by (11) as

p
H ′(p)

H(p)
=
E[B(n, p)sn+1−B(n,p)]

E[Rn+1−B(n.p)]

Next, under Tavangar condition C2, let us define the bivariate function g
as follows

g(i, j) = Ljisi, i, j = 1, . . . , n.

Using the same arguments as above, we can show that g(i, j) − g(j, i) ≥
0 for i ≤ j due to C2 and the fact that Li ≤ Lj. Hence, by bivariate
characterization of lr stochastic order and the fact that B(n, p1) ≤lr B(n, p2)
(p1 ≤ p2), we have

E[LB(n,p2)]E[(B(n, p1)sB(n,p1)] ≥ E[LB(n,p1)]E[(B(n, p2)sB(n,p2)]. (12)

Simple algebra analogous to the IFR case leads to

1−H(1− p) =
n∑
j=1

Lj

(
n

j

)
pj(1− p)n−j = E[LB(n,p)], (13)

and

H ′(1− p) = n
n−1∑
j=0

sj+1

(
n− 1

j

)
pj(1− p)n−1−j.

Similarly to the IFR case, we have

pH ′(1− p) = nE
[
Yn(p)s1+

∑n−1
i=1 Yi(p)

]
= nE

[
Yn(p)s∑n

i=1 Yi(p)

]
= nE

[∑n
i=1 Yi(p)

n
s∑n

i=1 Yi(p)

]
= E[B(n, p)sB(n,p)]. (14)

Hence, the DRFR case under Tavangar conditions C2 holds by (12) taking
into account (13) and (14).

On the other hand, if we compare conditions obtained in Corollaries 1
and 2 and the ones in [12], we see that F concave implies that F is log-
concave, and F convex implies F concave (and therefore, log-concave). Thus,
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conditions for F in both corollaries are stronger than the corresponding ones
in [12]. However, with respect to Corollary 2, taking into account Proposition
1 and (13), we have that 1−H(1− p) is log concave, and therefore

H ′(1− p)
1−H(1− p)

is non-increasing on p.

But if we multiply it by the increasing factor p, the monotonicity condition
can be lost, thus condition in Corollary 2 does not necessarily imply condition
in [12]. For instance, let us consider a coherent system having 4 components
with vector signature s = (1/4, 7/12, 1/6, 0) (see [16, p.25, system 3]). The
vector of values for Lj is (1/4, 10/12, 1, 1) which is log-concave. As a conse-
quence of Corollary 2 the lifetime of the system is DRHR when F is concave.
However,

p
H ′(1− p)

1−H(1− p)
=

p(1− p)3 + 7p2(1− p)2 + 2p3(1− p)
p(1− p)3 + 5p2(1− p)2 + 4p3(1− p) + 2p4

(15)

does not satisfy the monotonicity condition in [12] (see Figure 1).
With respect to Corollary 1, we can consider the dual model of system 3

in [16, p.25]), which is system 16, and has signature s? = (0, 1/6, 7/12, 1/4),
and call H?(p) the function defined in (9) for the dual system. It is clear that
R?
i = 1− Li, so that

H?(p) = 1−
n∑
j=0

Ln+1−j

(
n

j

)
pj(1− p)n−j = 1−

n∑
k=0

Lk

(
n

k

)
(1− p)kpn−k

= 1−H(1− p), 0 ≤ p ≤ 1

and the desired monotonicity condition for H?(p) is then not satisfied, due to
(15).

Remark 2 Under the assumptions in Corollary 1 (Corollary 2) if Rj (Lj)
is a log concave sequence, F SX(s) (FSX(s)) being log concave, does not entail
that the common distribution is IFR (DRFR). Indeed, let consider the system
max(min(X1, X2), X3, X4, X5) for X1, . . . , X5 i.i.d with common distribution

function F with support on (0, 1) defined as F (t) = t
1
2 , 0 < t < 1. The

signature of this system is (0, 0, 0, 2
5
, 3

5
). the signature itself is log-concave,

Rj is a log concave sequence. It is straightforward to show that F is not IFR
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Figure 1: Plot of the function p(1−p)3+7p2(1−p)2+2p3(1−p)
p(1−p)3+5p2(1−p)2+4p3(1−p)+2p4

and in this case

F SX(s)(t) =
5∑
j=0

Rj+1

(
5

j

)
F (t)jF (t)5−j

= 1− 2

5

(
5

4

)
F 4(t)F (t)− F 5(t)

= 1− 2t2(1− t
1
2 )− t

5
2 = 1− 2t2 + t

5
2 , 0 < t < 1

Obviously, F SX(s) is a concave function on its support, therefore F SX(s) is
log concave. For Corollary 2 we consider the dual system of the previous one
whose signature is (3

5
, 2

5
, 0, 0, 0) and for which Lj is a log concave sequence. In

this case the common distribution function of the components of the system
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is F with support (0, 1), defined as F (t) = 1− (1− t) 1
2 , 0 < t < 1. Obviously

F is not DRFR and simple algebra leads in this case to

FSX(s)(t) =
5∑
j=0

Lj

(
5

j

)
F (t)jF (t)5−j

= 1− 2

5

(
5

1

)
F (t)F

4
(t)− F 5

(t)

= 1− 2(1− t)2(1− (1− t)
1
2 )− (1− t)

5
2

= 1− 2(1− t)2 + (1− t)
5
2

It is derived easily that FSX(s) is a concave function on its support, therefore
FSX(s) is log concave.

On the other hand, for a given signature satisfying assumptions in Corol-
lary 1, F the common survival function for the components being log-concave,
does not imply that F SX(s) is log-concave. For instance, it is shown in
Samaniego et al. [17, p. 71] that F SX(s) is not log-concave for the system
with log-concave signature (0, 2/3, 1/3) and lifetimes of the components being
exponential. However, the DRFR property holds, as a consequence of Corol-
lary 2, because the exponential distribution has concave distribution function.
To find a a signature in the settings of Corollary 2, and a log-concave distri-
bution function F which does not imply FSX(s) log-concave, we can take the
dual signature as before, and a random variable with support in (−∞, 0] such
that F (t) = et, t ≤ 0. that is (1/3, 2/3, 0). It is straightforward to see that

FSX(s)(t) =
3∑
j=0

Lj

(
3

j

)
F (t)jF (t)3−j = 1− 2

3

(
3

1

)
F (t)F (t)2 − F (t)3

= 1− 2F (t)F (t)2 − F (t)3 = 1− 2et(1− et)2 − (1− et)3, t ≤ 0,

which is not a log-concave function.

Acknowledgments

The authors would like to thank the Editor and reviewers for very careful
review and insightful comments. The work of first and fourth authors was
supported by the Spanish research project PID2021-123737NB-100 (MINECO/FEDER).

13



The work of the second author was supported by Basic Science Research Pro-
gram through the National Research Foundation of Korea (NRF) funded by
the Ministry of Education (Grant Number: 2019R1A6A1A11051177). The
work of third author was supported by Hankuk University of Foreign Stud-
ies Research Fund of 2023 and the National Research Foundation of Ko-
rea (NRF) grant funded by the Korea government (MSIT) (No. RS-2023-
00240817). The work of first and fourth author was also supported by project
S41 20R and E48 23R, respectively, funded by Gobierno de Aragǿn.

References

[1] Acar, T., Aral, A. & Gonska, H. (2017).Szàsz–Mirakyan Opera-
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[5] Bad́ıa, F.G. & Sangüesa, C. (2014). Log concavity for Bernstein-
type operators using stochastic orders. J. Math. Anal. Appl. 413: 953-
962.

[6] Bieniek, M., Burkschat, M. & Rychlik, T. (2018). Conditions on
unimodality and logconcavity for densities of coherent systems with an
application to Bernstein operators. J. Math. Anal. Appl. 467: 863-873.

[7] Goodman, T.N.T (1989). Shape preserving representations, in Mathe-
matical Methods in Computer Aided Geometric Design, ed. by T. Lyche,
L. Schumaker, Academic Press, Boston, 333-351.

14



[8] Komisarski, A. (2020). Log-concavity preserving property of Bernstein
operators and Bernstein semigroup. Journal of Mathematical Analysis
and Applications 489: Paper no 124107.

[9] Lorentz, G.G. (1953). Bernstein Polynomials, University of Toronto
Press.

[10] Marshall, A.W. and Olkin, I. (2007). Life Distributions, Springer:
New York.

[11] Müller, A. & Stoyan, D. (2002). Comparison Methods for Stochas-
tic Models and Risks. Chichester: Wiley.

[12] Navarro, J., del Aguila, Y., Sordo, M.A. & Súarez-Llorens,
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