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Resumen 

Este trabajo pretende evaluar la adecuación de los datos LiDAR ofrecidos por el Plan Nacional 

de Ortofotografía Área (PNOA) para la estimación de variables dasométricas sobre masas regu-

lares de Pinus halepensis. Para ello, se ha elegido una zona piloto en los montes “Dehesa de 

los Enebrales” y “Valdá y Carrilanga”, ubicados en el término municipal de Daroca (Zaragoza). 

La metodología empleada se basa en el establecimiento de modelos de regresión lineal múlti-

ple entre las variables dasométricas, obtenidas a partir de una muestra de 61 parcelas toma-

das en campo, y una colección de variables LiDAR, obtenidas de la extracción de estadísticos 

de la nube de puntos LiDAR de dichas parcelas. Para el establecimiento y validación de los mo-

delos de regresión se empleó la técnica de validación cruzada dejando uno fuera (Leave-one-

out cross-validation LOOCV). Los coeficientes de determinación corregidos, que indican la va-

riabilidad explicada por cada modelo, han sido 0,867 para la estimación del volumen, 0,854 

para el área basimétrica, 0,858 para la densidad y 0,799 para la altura media. Finalmente, la 

espacialización de los modelos establecidos ha permitido la cartografía de las variables daso-

métricas estimadas. 

Palabras Clave: LiDAR, PNOA, inventario forestal, variables dasométricas y regresión lineal 

múltiple. 

Abstract 

This Master Thesis evaluates the suitability of the LiDAR data provided by the National Plan for 

Aerial Orthophotography (PNOA) to estimate dasometric variables of even-aged stands of Pi-

nus halepensis. In order to do so, a pilot area, located in "Dehesa de los Enebrales" and "Valdá 

y Carrilanga" woods, in Daroca municipality (Zaragoza), was chosen. The applied methodology 

is based on the establishment of multiple linear regression models relating dasometric varia-

bles, obtained from a sample of 61 field plots, with a collection of LiDAR variables, obtained 

from the statistics of the LiDAR point cloud in those plots. A leave-one-out cross-validation 

(LOOCV) was performed with the objective of selecting and validating the obtained models. 

The coefficients of determination corrected, indicating the variability explained by each model, 

were 0.867 for volume estimation, 0.854 for basal area, 0.858 for density and 0.799 for aver-

age height. Last but not least, the spatialization of the selected models allowed dasometric 

variables mapping. 

Key Words: LiDAR, PNOA, forest inventory, dasometric variables and multiple linear regres-

sion. 



i 

Índice 

 
1. Introducción .......................................................................  pág. 1 

1.1. Antecedentes ...............................................................  pág. 1 
1.2. Hipótesis y Objetivos .....................................................  pág. 2 

1.3. Materiales y métodos ....................................................  pág. 2 
1.3.1 Área de estudio ....................................................  pág. 2 

1.3.2 Datos LiDAR .........................................................  pág. 4 
1.3.3 Datos de campo ................................................... pág. 11 

1.3.4 Modelos predictivos .............................................. pág. 20 
1.3.5 Representación cartográfica de variables modeladas . pág. 23 

2. Desarrollo analítico: resultados ............................................. pág. 23 
2.1. Pretratamientos y extracción de estadísticos LiDAR ........... pág. 23 

2.2. Datos de campo............................................................ pág. 24 
2.2.1. Planificación del inventario de campo ..................... pág. 24 

2.2.2. Adquisición de datos de campo .............................. pág. 28 

2.2.3. Obtención de variables dasométricas ..................... pág. 29 
2.3. Modelo de estimación del volumen .................................. pág. 32 

2.4. Modelo de estimación del área basimétrica ....................... pág. 34 
2.5. Modelo de estimación de la densidad ............................... pág. 37 

2.6. Modelo de estimación de la altura media .......................... pág. 39 
2.7. Representación cartográfica de variables modeladas ......... pág. 42 

3. Discusión ........................................................................... pág. 42 
4. Conclusiones ...................................................................... pág. 44 

5. Agradecimientos ................................................................. pág. 45 
6. Bibliografía ......................................................................... pág. 46 

7. Anexos .............................................................................. pág. 48 
 Anexo 1: Cartografía. 

 Anexo 2: Descripción funcional del software FUSION. 
 Anexo 3: Correlaciones entre variables de campo y LiDAR. 

 



1 

1. INTRODUCCIÓN. 

1.1. Antecedentes. 

El conocimiento de las masas forestales es fundamental para una correcta gestión y ordenación 

de las mismas. En muchos casos, no basta con un inventario cualitativo del monte, sino que es nece-

saria una valoración cuantitativa, a través de la estimación de variables dasométricas. Tradicional-

mente, esta estimación se ha realizado mediante técnicas de muestreo sistemático por parcelas. Este 

tipo de inventario utiliza la información recogida en una pequeña parte de la superficie (parcelas 

inventariadas) para la estimación de variables en la totalidad del monte, cometiendo un error aso-

ciado a esa fracción de muestreo. Para la correcta elaboración de un inventario de estas característi-

cas, se requiere un muestreo piloto previo, en el que se estima la variabilidad de la masa y, en fun-

ción de esta, se establecen las parcelas de inventario necesarias para alcanzar un error de muestreo 

determinado. Teniendo en cuenta los errores de muestreo requeridos habitualmente (Boletín Oficial 

de Aragón Nº 230 del 26/11/2012), el trabajo de campo demandado para no superarlos es desmesu-

rado. A este hecho hay que sumar la situación económica actual y el cada vez menor valor de nues-

tros montes en términos económicos, que hace que en muchas ocasiones su gestión sea inviable, 

con el riesgo que ello conlleva para la persistencia de los mismos. Ante esta situación no debería-

mos permanecer impasibles, siendo necesario buscar alternativas viables a los inventarios clásicos, 

explotando, para ello, las oportunidades que nos ofrecen las nuevas tecnologías.  

A este respecto, la teledetección ofrece diferentes técnicas que pueden resultar de gran interés, 

entre las que destacan las imágenes satelitales ópticas, la tecnología SAR (Synthetic Aperture Ra-

dar) y la tecnología LiDAR (Light Detection And Ranging).  

Las imágenes de satélite recogen información de la cubierta terrestre en múltiples longitudes de 

onda del espectro electromagnético, optimizando el proceso de estratificación inventarial, debido a 

la diferente respuesta espectral que presenta cada tipo de cubierta. Cuanto menor sea la variabilidad 

del estrato identificado, menor será la intensidad de muestreo del mismo y por consiguiente su coste 

se verá reducido (Cuevas et al., 2008). 

Por su parte, la tecnología LIDAR aporta una nueva perspectiva a los inventarios forestales, ya 

que ofrece de forma directa información tridimensional de toda la superficie a inventariar, desapa-

reciendo la fracción de muestreo. El tratamiento de esta información mediante técnicas de muestreo 

en dos fases con estimador de regresión, hace posible la estimación de variables cuya medición re-

sulta costosa, gracias a la correlación que mantienen con la información LiDAR. La primera fase de 

esta técnica de muestreo consiste en la obtención de las variables independientes en toda la superfi-

cie (información que ofrece el sensor). En la segunda fase se toman un número relativamente pe-

queño de parcelas, en las que se mide tanto la variable objetivo (dependiente), como las variables 

independientes, y se correlacionan en un modelo de regresión (Cochran, 1963). Esta metodología 

supone una notable reducción de las parcelas de muestreo o, lo que es lo mismo, una reducción de 

los recursos necesarios (Condés et al. 2013). 

Por este motivo, este trabajo se centra en el estudio de la aplicabilidad de esta técnica de mues-

treo a las variables independientes obtenidas a partir de los datos LiDAR del Plan Nacional de Orto-

fotografía Aérea (PNOA). Resulta de gran interés estudiar la idoneidad de estos datos para la esti-

mación de parámetros dasométricos, en primer lugar, para dar valor a una información que ya ha 

sido capturada, y, en segundo lugar, para proponer posibles variaciones en cuanto a las característi-

cas de captura de estos datos (periodicidad, densidad de pulsos, número de retornos, etc.).  

Desde los últimos años de la década de los 90, diversos autores han demostrado, en numerosos 

artículos, la utilidad de los sensores LiDAR para la estimación de variables dasométricas. En el nor-

te de Europa, Naesset (1997) demostró la posibilidad de establecer modelos de estimación del vo-

lumen sobre masas de pino silvestre (Pinus sylvestris) y abeto rojo (Picea abies), incluyendo como 

variable predictora la altura media de los retornos. Posteriormente, Naesset (2002) obtuvo resulta-
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dos satisfactorios en la estimación de diferentes variables dasométricas (altura dominante, altura 

media, volumen, densidad de pies/ha, área basimétrica y diámetro medio) empleando, en este caso, 

diversos estadísticos obtenidos de la nube de puntos LiDAR. En Estados Unidos existen estudios 

más recientes acerca de la aplicabilidad de estos sensores activos en la estimación de biomasa (Li et 

al., 2008) y parámetros referentes a combustibilidad de masas arbóreas (Andersen et al., 2005).  

Cabe destacar también, otra corriente enfocada a la estimación de parámetros dendrométricos, 

tanto en el norte de Europa (Hyyppä et al., 1999), como en Estados Unidos (Popescu, 2007). No 

obstante, estos enfoques basados en la individualización de cada árbol que compone la masa fores-

tal, requieren de una mayor densidad de pulsos LiDAR, por lo que no son aplicables a los datos 

utilizados en el presente trabajo, tal y como veremos con posterioridad en el apartado 1.3.2 Datos 

LiDAR. 

En los estudios anteriormente citados, se observa que las variables dasométricas que se estiman 

con mayor precisión son las que tienen una estrecha relación con la altura del árbol (altura dominan-

te, altura media, volumen, etc.), siendo peores las estimaciones para variables como la densidad de 

pies por hectárea o el diámetro medio cuadrático. Sin embargo, estos resultados se deben tomar con 

cautela, porque las singulares condiciones de nuestros sistemas forestales (muy diferentes a las ma-

sas monoespecíficas y completamente regulares del norte de Europa), así como las posibles diferen-

cias en los sensores empleados en cada caso, pueden hacer variar la precisión de las estimaciones. 

En España, las referencias a trabajos de esta temática no son tan numerosas como en el norte de 

Europa, pero encontramos algún estudio orientado a la estimación de biomasa empleando datos, 

tanto de elevación como de intensidad, de los retornos del escáner láser (García et al., 2010), así 

como estudios que tratan de relacionar, de forma directa, la propagación de incendios forestales con 

la estimación de la densidad de copas a partir de datos LiDAR (Riaño et al., 2004). Sin embargo, 

los ejemplos de estudios que hayan utilizado los datos LiDAR PNOA en el ámbito forestal son es-

casos (Montealegre et al., 2013). 

1.2. Hipótesis y objetivos. 

La hipótesis de partida es que es posible estimar distintas variables dasométricas de masas fo-

restales monoespecíficas regulares a partir de información capturada por sensores activos LiDAR. 

Por tanto, el objetivo principal del presente trabajo es evaluar la idoneidad de los datos LiDAR-

PNOA para la estimación de distintas variables dasométricas de masas regulares de pino carrasco 

(Pinus halepensis) mediante el establecimiento de una serie de modelos predictivos.  

Los objetivos secundarios se resumen en los siguientes: 

 Aproximación a la zona para un mayor conocimiento de los montes objeto de estudio. 

 Pretratamiento de los datos LiDAR PNOA con objeto de normalizar los valores de elevación 

para la extracción de estadísticos de la nube de puntos.  

 Diseño y ejecución del inventario de campo para la estimación de la altura individual de cada 

árbol y el cálculo de variables dasométricas. 

 Establecimiento de modelos predictivos que relacionen la información de variables obtenidas 

en campo con las estadísticas de la nube de puntos LiDAR. 

 Cartografía de variables dasométricas a partir de los datos LiDAR PNOA. 

1.3. Materiales y métodos. 

1.3.1. Área de estudio. 

El área objeto de estudio está constituida por los montes denominados “Dehesa de los Enebra-

les” y “Valdá y Carrilanga”. Ambos se encuentran en el término municipal de Daroca, provincia de 

Zaragoza (ver Figura 1 y Mapa 1: Localización, en Anexo 1), siendo la superficie total de los mis-

mos 964 y 138 ha, respectivamente. 
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Figura 1. Localización del área de estudio. 

Desde el punto de vista geológico, Daroca se sitúa en el sector centro-oriental de la Cordillera 

Ibérica, más conocido como Ibérica zaragozana, entre las sierras de Santa Cruz y Herrera, concre-

tamente en la depresión de Calatayud-Daroca. 

El monte “Dehesa de los Enebrales”, fue catalogado como de utilidad pública ya en el primer 

borrador del Catálogo de Montes de Utilidad Pública de la provincia de Zaragoza, elaborado en 

1901 por el Distrito Forestal de Zaragoza, siéndole asignado el nº107 de dicho catálogo. Por su par-

te, el monte “Valdá y Carrilanga” es un monte consorciado (nº de elenco Z-3081), consorcio cuyas 

bases fueron aprobadas por el Patrimonio Forestal del Estado en 1955. 

El monte “Dehesa de los Enebrales” y la zona denominada “Valdá”, ambos colindantes en 

buena parte de sus límites, conforman un monte de origen diluvial que a modo de contrafuerte se 

extiende al norte del río Jiloca y paralelamente al cauce del mismo. Dicho monte, presenta cuatro 

vertientes bien diferenciadas, partiendo todas ellas de la divisoria central del monte que va desde los 

960 a los 940 metros de altitud, de Sureste a Noroeste (como la mayoría de sierras de la zona). En 

general, presenta un relieve erosionado, con numerosos barrancos. La pendiente aumenta conforme 

descendemos en cota, oscilando entre el 10% y el 40%, llegando a fuertes escarpes en las zonas 

bajas del monte (próximas al camino de Manchones), donde la pendiente supera el 50% y, en gene-

ral, el estrato arbóreo es ralo (ver Mapa 2: Orografía, en Anexo 1). 

Por su parte “Carrilanga”, separado del monte “Dehesa de los Enebrales” por la N-234, con-

forma una ladera de exposición solana, que parte de un rafe rocoso situado a 980 metros de altitud. 

Esta ladera desciende hasta la carretera N-234 y N-330, siendo su cota mínima 860 metros. El relie-

ve es marcadamente erosionado y la pendiente oscila entre el 20 y el 40%, siendo mayor en la zona 

norte, próxima al rafe rocoso. En general, la elevada pendiente del terreno se ve atenuada por la 

presencia de pequeños bancales agrícolas abandonados, de unos 5 o 10 metros de anchura, que esca-

lonan regularmente la ladera, permitiendo la evolución edáfica suficiente para el desarrollo de la 

actual masa forestal (ver Mapa 2: Orografía, en Anexo 1).  

La vegetación que puebla ambos montes es principalmente una masa pura de pino carrasco 

(Pinus halepensis) procedente de repoblación.  

El monte “Dehesa de los Enebrales” fue repoblado entre los años 1908 y 1920, en base al pro-

yecto de restauración hidrológico-forestal que ordenó el Estado, con motivo de su inclusión en el 

Catálogo de Montes de Utilidad Pública. Así, la edad actual de la masa ronda los 100 años, hacien-

do que la densidad de esta sea muy variable, en función de las condiciones particulares que ha so-

portado cada zona (tratamientos de mejora, condicionantes bióticos, abióticos, etc.). En la tabla 1 se 

muestra un breve resumen de las principales variables dasométricas del monte “Dehesa de los 

Enebrales”, obtenido a partir de las 52 parcelas inventariadas en el mismo.  
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Tabla 1. Resumen de las principales variables dasométricas del monte “Dehesa de los Enebrales”. Dg: diá-

metro cuadrático medio; Hm: altura media; N: densidad de pies por hectárea; G: Área basimétrica; Vcc: Vo-

lumen maderable con corteza por hectárea. 

Características Media Máximo Mínimo Desviación típica 

Dg (cm) 31,4 49,0 23,8 4,9 

Hm (m) 13,0 16,1 9,1 1,2 

N (pies/ha) 336,8 806,4 14,1 162,9 

G (m
2
/ha) 23,5 37,3 2,7 7,2 

Vcc (m
3
/ha) 119,5 195,6 13,0 38,4 

En el monte “Dehesa de los Enebrales”, concretamente en algunos fondos de barranco y en ge-

neral en zonas donde el régimen hídrico edáfico lo permite, aparecen formaciones de frondosas co-

mo el quejigo (Quercus faginea) y la encina (Quercus ilex), que, en ocasiones, han colonizado cier-

tos rodales de pino carrasco, creando un sotobosque más o menos denso. Además, incluso en dicho 

monte encontramos una masa mixta de pino y quercíneas. El origen de dicha masa se remonta a un 

antiguo consorcio de repoblación (nº de elenco Z-3060), cuyas bases fueron aprobadas en 1954 por 

el Patrimonio Forestal del Estado, pese a ello, no se llevó a cabo hasta los años 1975-1979, cuando 

se repoblaron con pino las zonas donde la encina no ofrecía una cobertura del suelo suficiente, 

creando una masa mixta conformada por un mosaico de, en general, rodales puros de encina y de 

pino. 

El monte “Valdá y Carrilanga”, en base a lo establecido en el consorcio que lo originó (nº de 

elenco Z-3081), fue repoblado durante los años 1956 y 1957, conformando actualmente una masa 

de unos 56 años de edad, y, por ello, más homogénea que la anterior. El resumen de las principales 

variables dasométricas, obtenido a partir de las 9 parcelas inventariadas en dicho monte, se muestra 

en la tabla 2. 

Tabla 2. Resumen de las principales variables dasométricas del monte “Valdá y Carrilanga”. Dg: diámetro 

cuadrático medio; Hm: altura media; N: densidad de pies por hectárea; G: Área basimétrica; Vcc: Volumen 

maderable con corteza por hectárea. 

Características Media Máximo Mínimo Desviación típica 

Dg (cm) 20,8 26,0 17,7 3,0 

Hm (m) 9,5 11,9 6,0 1,6 

N (pies/ha) 817,4 1471,3 14,1 401,2 

G (m
2
/ha) 25,6 36,6 0,8 11,4 

Vcc (m
3
/ha) 113,7 179,4 2,1 54,0 

Del área total descrita, conscientes de la limitación para estimar variables dasométricas en ma-

sas mixtas y teniendo en cuenta el objetivo del presente trabajo, se seleccionaron las masas puras de 

pino carrasco sin importar la presencia de sotobosque, ocupando estas un total de superficie de 750 

hectáreas (ver Mapa 3: Vegetación, en Anexo 1). 

1.3.2. Datos LiDAR. 

Introducción al LiDAR. 

El LiDAR es un sistema activo de detección remota basado en un escáner láser. Los sensores 

activos, son aquellos que emiten energía sobre el objeto y reciben la señal reflejada por el mismo. 

La base teórica del funcionamiento de un sensor LiDAR es sencilla: el sensor mide el tiempo que la 

luz láser emitida tarda en ir y volver a un objeto en el cual rebota (distanciómetro láser). Como las 

coordenadas y la dirección exacta de emisión de cada pulso láser son conocidas, el sensor calcula el 

espacio recorrido por cada pulso de luz y por consiguiente, la tripleta de coordenadas de cada re-

torno del láser en las diferentes superficies (Vosselman y Maas, 2010). 
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Existen diferentes clasificaciones de la tecnología LiDAR. Una de las más comunes diferencia 

entre las distintas plataformas empleadas para la captura de los datos: satelital, aeroportado, terrestre 

y terrestre móvil. El sensor empleado en la toma de datos LiDAR-PNOA es un sensor aeroportado, 

en el que la emisión de pulsos a una elevada frecuencia, combinado con el desplazamiento de la 

aeronave, permite la obtención de información tridimensional de la superficie. 

Para conocer con exactitud tanto las coordenadas del sensor, como la orientación de este, y en 

definitiva, para poder ubicar correctamente cada tripleta de coordenadas, se hace necesaria la utili-

zación de un GPS diferencial y un sistema de medición inercial IMU (Inertial Measurement Unit): 

 GPS diferencial: es un tipo de receptor que además de recibir y procesar la información de los 

satélites, recibe y procesa, simultáneamente, otra información adicional procedente de una esta-

ción terrestre situada en un lugar cercano y reconocido por el receptor. Esta información com-

plementaria permite corregir las inexactitudes que se puedan introducir en las señales que el re-

ceptor recibe de los satélites. En este caso, la estación terrestre transmite al receptor GPS los 

ajustes que es necesario realizar en todo momento, este los contrasta con su propia información 

y realiza las correcciones almacenando los datos con una gran exactitud. 

 IMU: es un dispositivo electrónico que mide e informa acerca de la velocidad, orientación y 

fuerzas gravitacionales de un aparato, usando una combinación de acelerómetros y giróscopos. 

La característica fundamental que hace de la tecnología LiDAR una herramienta de gran utili-

dad en el ámbito del inventario forestal, es la capacidad multi-retorno de un mismo pulso. Cuando 

el pulso láser llega al terreno, se comporta de forma diferente dependiendo de las características de 

los objetos que se encuentra:  

 Superficie sólida: el pulso se refleja completamente y regresa al avión (1 retorno).  

 Superficie de agua: el pulso láser es absorbido, por lo que no se obtiene información.  

 Vegetación: generalmente el pulso emitido por el sensor genera múltiples retornos, ya que parte 

del pulso se refleja en el árbol (retorno 1) y el resto del pulso sigue incidiendo hasta encontrar 

otro obstáculo, que puede ser otra parte del árbol, matorral o el propio suelo (retorno 2, 3 y su-

cesivos), así hasta que la superficie que encuentre sea completamente sólida y el pulso regrese 

completamente al sensor (Figura 2).  

 

Figura 2. Múltiples retornos LiDAR cuando el pulso atraviesa un árbol (Fuente: Vosselman y Maas, 2010). 

El número máximo de retornos se ve limitado, además de por la superficie objetivo, por las ca-

racterísticas del sensor. 

Si el pulso láser rebotara sobre la primera superficie con la que contacta, sería imposible obte-

ner retornos procedentes del suelo en una masa arbórea y por tanto, solo dispondríamos de un mo-

delo digital de superficie de copas, no pudiendo conocer la altura respecto al suelo de cada retorno. 
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Se debe tener en cuenta que el sensor trabaja con una elevada frecuencia, por lo que es posible ge-

nerar modelos de gran detalle, muy difíciles de obtener con otras tecnologías (Figura 3). 

   

Figura 3. Izq. Modelo digital de elevaciones (MDE) del IGN, resolución 5x5 metros. Drcha. MDE del IGN 

elaborado con tecnología LiDAR, resolución 5x5 metros. 

Descripción del vuelo y datos LiDAR. 

Para el presente trabajo, como ya se ha mencionado anteriormente, se han empleado los datos 

LiDAR PNOA. El proyecto PNOA es una iniciativa del Instituto Geográfico Nacional (IGN) como 

respuesta a la directiva europea INSPIRE (Infrastructure for Spatial Information in the European 

Community). El proyecto tiene por objetivo lograr una cobertura completa, homogénea, periódica y 

continua de España, con ortofotografías y modelos digitales del terreno de alta resolución, para ello 

cuenta con el respaldo de la Administración General del Estado y de ciertas Administraciones Au-

tonómicas. Con objeto de lograr esta cobertura digital y gracias a la colaboración entre diferentes 

Comunidades Autónomas y Ministerios, el IGN puso en marcha en 2009 la toma de datos LiDAR 

para buena parte del territorio español (Figura 4).  

 

Figura 4. Coberturas LiDAR-PNOA (Fuente: http://www.ign.es/PNOA/vuelo_lidar.html).  

http://www.ign.es/PNOA/vuelo_lidar.html
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En concreto, los datos LiDAR con los que se realizó el presente trabajo fueron tomados durante 

los meses de agosto y octubre del año 2010. Pese a haber cierto desfase temporal con los datos de 

campo (2013), este no se consideró importante, ya que, en ese intervalo de tiempo, no se han produ-

cido cambios significativos en la estructura forestal. Las únicas perturbaciones recientes, que han 

afectado a la zona de estudio, fueron ciertos derribos fruto de la ciclogénesis explosiva que sufrió el 

norte peninsular en el año 2009, luego estas variaciones se encuentran recogidas en la información 

capturada por el sensor.  

El sensor LiDAR empleado fue un Leica ALS 50. Los datos recogidos por dicho sensor, según 

el IGN, deben ajustarse a las siguientes especificaciones: 

 Máximo FOV permitido para planificar 50º efectivos. 

 Frecuencia de escaneado mínima de 70 Hz, debiendo alcanzar un mínimo de 40 Hz con un 

FOV de 50º. 

 Frecuencia de pulso de 45 kHz. 

 Densidad promedio de 0,5 puntos del primer retorno por metro cuadrado (tramos 2 km de pasa-

da). 

 Sensor calibrado con una antigüedad menor de 12 meses. 

 Recubrimiento transversal ≥ 15%. 

 Longitud máxima de las pasadas 3 hojas MTN50 (Figura 5). 

 Pasadas transversales de ajuste altimétrico. 

 Precisión general altimétrica RMSEz ≤ 0,20 m. 

 Discrepancia altimétrica entre pasadas ≤ 0,40 m. 

 Distancia a estaciones de referencia ≤ 40 km. 

 

Figura 5. Ejemplo de planificación de vuelo PNOA (Fuente: Ojeda, 2011). 

El resultado del vuelo se plasma en un fichero en formato “.las” de 2 x 2 km, en el que apare-

cen todos los retornos captados por el sensor. Estos retornos están georreferenciados según el siste-

ma geodésico ETRS89, mediante proyección UTM, su atributo de altura se refiere a altura elipsoi-

dal y no se encuentran clasificados. Únicamente son dos las clases que aparecen, clase “7” confor-

mada por los puntos clasificados como ruido y clase “1” conformada por el resto de puntos. 

Pretratamiento de datos LiDAR. 

Estos ficheros “.las”, tal y como los proporciona el IGN, no pueden ser utilizados para la ex-

tracción de variables estadísticas. Como se ha comentado en el apartado anterior, estos ficheros con-

tienen la totalidad de retornos, que a modo de nube de puntos, han sido recogidos por el sensor. Esta 

información presenta errores, ya que pueden interponerse elementos extraños impropios de la super-

ficie terrestre y su cubierta vegetal o antrópica. Estos retornos, de en general altura muy superior a 

la del suelo, pueden hacer variar los estadísticos extraídos de la nube de puntos. Por otra parte, la 
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nube de puntos no está clasificada, por lo que no se conoce el origen de los retornos, es decir, si 

provienen de la superficie terrestre o de un elemento situado sobre esta. Además, la altura de cada 

retorno está referida al elipsoide de referencia y no a la altura sobre el suelo, que es la realmente 

determinante a la hora de estimar variables dasométricas. 

Así pues, para corregir estas deficiencias se deben realizar los siguientes procesos: 

 Extracción de retornos clase “7”, debidos a ruido. 

 Clasificación de los puntos en “suelo” y “no suelo” y generación de un MDE a partir de los 

puntos de suelo. 

 Normalización de la nube de puntos para obtener las alturas sobre el nivel del suelo y extrac-

ción de estadísticos. 

Extracción de retornos clase “7”, debidos a ruido. 

Primeramente, utilizando la herramienta “BCAL” del software ENVI 5.0, se seleccionaron los 

puntos clasificados como clase “1”, obviando los de clase “7”. Tras este proceso, teóricamente los 

retornos deberían ser de la superficie terrestre o de elementos situados sobre la misma.  

Sin embargo, posteriormente, se observó la presencia de datos erróneos, por lo que se creyó 

conveniente depurarlos. Ocurría que ciertos puntos no clasificados como ruido (clase “7”), presen-

taban una altura sobre el suelo exageradamente elevada, del orden de cien metros. Para su depura-

ción, se generó un ráster con la variable estadística elevación máxima de cada píxel, para poder ubi-

car los puntos con información aberrante (ver Mapa 4: Ruido información LiDAR, en Anexo 1). 

Una vez identificados, se clasificaron como clase “7” empleando ArcGIS 10.1, mediante la genera-

ción del perfil de la nube de puntos en ese píxel (Figura 6). Posteriormente se volvieron a seleccio-

nar en ENVI 5.0 solo los puntos de clase “1”. 

 

Figura 6. Inspección visual de retorno con información aberrante (círculo azul) y reclasificación del mismo. 

Clasificación de los puntos en “suelo” y “no suelo” y generación de MDE a partir de los puntos 

de suelo. 

El siguiente paso, fue la selección de los puntos reflejados por el suelo, empleando el comando 

“GroundFilter” del software FUSION LDV v.3.20, desarrollado por el Departamento de Agricultura 

y el Servicio Forestal de Estados Unidos para el estudio de los bosques. Este comando aplica un 

algoritmo iterativo de clasificación, adaptado de Kraus y Pfeifer (1998), que, en principio, genera 
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una superficie por mínimos cuadrados usando todos los puntos (surface 1). Esta primera superficie, 

se situará entre el verdadero suelo y el dosel arbóreo, de manera que los puntos de suelo se encon-

traran bajo la misma y los puntos de vegetación sobre ella. Así, el algoritmo calcula los pesos de 

todos los puntos, en función de la distancia entre el punto y la superficie, según la siguiente asigna-

ción: 

 

Los parámetros “a” y “b” toman el valor por defecto de 1 y 4, respectivamente, ya que así se 

obtienen buenos resultados en la mayoría de los casos. 

Variando los parámetros “g” y “w” se modifica la distancia máxima para que los puntos inter-

vengan en el cálculo de la superficie siguiente (Figura 7). Este proceso se ejecuta en 5 ocasiones, 

aunque el número de iteraciones se puede variar aplicando la opción “iterations” en el comando. 

Finalmente, tras realizar el número indicado de iteraciones, todos los puntos que cumplan las 

dos primeras condiciones son considerados de suelo. También se puede configurar la tolerancia para 

definir los puntos de suelo después de la última iteración (opción “tolerance”).    

  

Figura 7. Asignación de pesos a cada retorno en función de valores de “g” y “w” (Fuente: Rodríguez y Fer-

nández, 2013).  

Una vez generado el archivo en formato “.lda” en el que se encuentran los puntos de suelo, se 

debe proceder a la generación del MDE. Para ello, se empleó el comando “GridSurfaceCreate” del 

software FUSION, en el que, introduciendo el archivo en formato “.lda” y un tamaño de celda de 

salida, se genera el MDE en formato “.dtm”. 

Para asignar los valores de “g” y “w”, al no disponer de datos reales de campo con los que va-

lidar la precisión de la clasificación generada, se optó por realizar un análisis visual de los resulta-

dos en función de la presencia de rugosidades o irregularidades en los modelos de superficie gene-

rados. Para percibir con mayor detalle las irregularidades, se aplicó un sombreado al MDE mediante 

la herramienta “Hillshade” de ArcGIS 10.1.  

Normalización de la nube de puntos para obtener las alturas sobre el nivel del suelo y extracción 

de estadísticos.  



10 

Tras la generación del MDE, se obtuvieron las alturas respecto al suelo de todos los retornos, 

proceso conocido como normalización (Figura 8). Para ello se empleó el comando “GridMetrics”, 

que genera un archivo “.csv” en el que figuran las variables estadísticas de cada píxel del área de 

estudio, es decir, las variables independientes que utilizaremos para extrapolar el modelo a toda la 

superficie, lo que equivale a la primera fase del muestreo en dos fases (Cochran, 1963). En este ca-

so, el tamaño del píxel en el que se engloban los resultados fue de 25 metros, lo que equivale a una 

superficie de 625 m
2
, similar a los 706,86 m

2
 que ocupa una parcela de campo. Es importante que el 

tamaño del píxel para el que se calculan las estadísticas sea similar al tamaño de la parcela con la 

que se trabaja, para que las variables estadísticas calculadas en una y otra sean comparables. Esta 

afirmación es tanto más importante cuanto mayor sea la heterogeneidad del monte a escala de deta-

lle. Si eligiéramos un tamaño menor de píxel las estadísticas tendrían mayor variabilidad y no se 

podrían asociar a la información obtenida en la parcela de campo. 

 

Figura 8. Normalización de la nube de puntos LiDAR (Fuente: Rodríguez y Fernández, 2013). 

El fichero “.csv” generado, mediante la herramienta “AddXYData” de ArcGIS 10.1, se trans-

formó en una capa vectorial de puntos y, posteriormente, con la herramienta “Point shapefile to ras-

ter”, se convirtió a formato raster, asignando la variable a representar y el paso de malla determina-

do. 

Para obtener los estadísticos LiDAR de cada parcela (segunda fase del muestreo), primero, una 

vez inventariadas todas las parcelas, se extrajo la nube de puntos de cada una, mediante el comando 

“ClipData” de FUSION, comando que automáticamente normaliza la nube de puntos, incluyendo en 

él el MDE generado. Así, se obtiene un archivo “.las” normalizado por cada parcela muestreada. 

Finalmente, mediante el comando “CloudMetrics”, también de FUSION, se obtuvieron las variables 

independientes, extrayendo en un archivo “.csv” todos los estadísticos de cada parcela, que son los 

que se emplearan para el ajuste con las variables obtenidas en campo (variables dependientes).  

Tanto para ejecutar el comando “CloudMetrics”, como el comando “GridMetrics”, es necesario 

aplicar un umbral de altura mínima. Si un determinado retorno presenta una altura normalizada me-

nor a esta altura mínima, dicho retorno no será contabilizado en los estadísticos. En el monte 

“Dehesa de los Enebrales”, el umbral se estableció en 6 metros de altura y, en “Valdá y Carrilanga”, 
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en 3 metros. Estos valores responden a la información recopilada durante el inventario de campo, en 

el que se observó que el sotobosque emergente en algunos rodales del monte “Dehesa de los 

Enebrales” presentaba, en general, una altura inferior a 6 metros. También se advirtió de la ejecu-

ción de podas en el monte “Valdá y Carrilanga”, podas que en ningún caso superaban los 3 metros.  

De no haber actuado así, los estadísticos hubiesen variado por la presencia o no de podas o so-

tobosque, no influyendo ninguno de estos dos factores en las variables a estimar, lo que hubiese 

generado errores en los modelos de estimación. 

En el Anexo 2, se muestra una descripción detallada de los comando del software FUSION 

empleados para el pretratamiento de los datos LiDAR. 

1.3.3. Datos de campo 

Planificación del inventario de campo 

El inventario de campo forma parte de la segunda fase del muestreo (ver apartado “1.1 Antece-

dentes”). El objetivo de este es cuantificar de forma precisa ciertos parámetros dasométricos (varia-

bles dependientes) sobre una pequeña fracción de la superficie total. Para ello, se inventarían, de 

forma precisa, cierto número de parcelas de campo, cuya ubicación debe conocerse con la mayor 

precisión posible. En base a la información obtenida en dichas parcelas, se ajustarán los modelos de 

estimación para toda la superficie, por lo que el inventario debe recoger toda la variabilidad de esta, 

para minimizar los errores de extrapolación. Así, la planificación del inventario consta de las si-

guientes fases: 

 Estratificación. 

 Elección del número y tamaño de las parcelas. 

 Segregación de rodales no objetivo.  

 Clasificación en áreas homogéneas. 

 Asignación de parcelas por categorías. 

 Distribución de parcelas. 

Estratificación. 

Una de las ventajas que presenta el inventario LiDAR, frente al clásico, es la sencilla estratifi-

cación. En el inventario tradicional, la superficie se debe dividir en estratos lo más homogéneos 

posibles en cuanto a especie y estructura de la masa, lo que conlleva un conocimiento previo ex-

haustivo de la zona, o de lo contrario unos malos resultados. Sin embargo, empleando datos LiDAR 

las variaciones de estructura de la masa ya entran en juego en el modelo, mediante determinados 

estadísticos, por lo que sólo es necesario estratificar en función de especie, ya que cada especie, 

debido a su diferente arquitectura, presentará una distribución diferente de los retornos.  

En este caso, se va a realizar un solo estrato, ya que son masas con diferente edad y estructura, 

pero de la misma especie principal.  

Elección del número, forma y tamaño de las parcelas. 

Con el empleo de la técnica del muestreo en dos fases con estimador de regresión, el número 

de parcelas no depende de la variabilidad del monte ni de su superficie, sino que se determina en 

base a la validez estadística del modelo de estimación a generar. Universalmente, se establece que 

en modelos de regresión lineal, el tamaño adecuado de la muestra depende del número de variables 

independientes según la siguiente relación: 

Tamaño muestral = 20 x (Nº de variables independientes) 

En general, según estudios previos (Naesset, 2002) son tres o menos las variables predictoras 

empleadas, por lo que se estableció 60 como número mínimo total de parcelas. 

Se eligió la forma circular por el fácil replanteo de esta, ya que para ello solo se necesita obte-

ner la localización de un punto, el centro de la parcela. 
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Para la elección del tamaño de las parcelas, se tuvo en consideración la densidad del monte y la 

significación de los estadísticos LiDAR que se obtendría para cada parcela. Observando los valores 

de densidad en campo, como primera aproximación, y consultando la base de datos del Tercer In-

ventario Forestal Nacional (IFN3) disponibles en la página web del Ministerio de Agricultura, Ali-

mentación y Medioambiente (http://www.magrama.gob.es/es/biodiversidad/servicios/banco-datos-

naturaleza/informacion-disponible/ifn3.aspx) para la zona de estudio, se consideró que con un radio 

de 15 metros el número de pies por parcela era mayor a 15 en todo caso, considerando este valor 

suficiente. Además los 706,86 m
2
de superficie que comprende la parcela, también se consideraron 

suficientes para que los estadísticos LiDAR fueran significativos, ya que como mínimo incluiría 

unos 300 retornos (teniendo en cuenta los 0,5 pulsos/m
2
 de densidad que se indican en las especifi-

caciones técnicas). 

Segregación de rodales no objetivo.  

Para no incluir en el inventario zonas pobladas por quercíneas, se estableció un proceso de 

identificación y delimitación cartográfica de estas zonas. Como ya se ha comentado, estos pequeños 

rodales de quercíneas ocupan, en general, el fondo de algunos barrancos del monte “Dehesa de los 

Enebrales” y su delimitación no es sencilla.  

Como solución a este problema, se planteó el uso de los propios datos LiDAR para discriminar 

este tipo de masas. Para ello, primero se pensó en los estadísticos LiDAR que más podrían acusar el 

diferente tipo de estructura de estos dos tipos de masas (quercíneas y pinares). Las masas de quercí-

neas en monte bajo, como es el caso del área de estudio, presentan una mayor continuidad vertical 

que los pinares, lo que puede traducirse en un menor coeficiente de curtosis, una mayor rango inter-

cuartílico, un mayor coeficiente de variación, etc. Para determinar el mejor o peor ajuste de cada 

variable se utilizó una ortofotografía de alta resolución, perfiles de la nube de puntos LiDAR (Figu-

ra 9) y el conocimiento previo de la zona de estudio. Así, se generaron diferentes capas ráster de 

dichas variables mediante el comando “GridMetrics” (ver apartado 1.3.2 Datos LiDAR) y mediante 

un proceso empírico de ensayo/error se estudió la adecuación de estas y otras variables. Para una 

precisa delimitación, una vez seleccionada la variable más adecuada y sobre la capa ráster de la 

misma, se fotointerpretaron estos rodales, utilizando como fondo la ortofotografía, quedando reco-

gidos en una capa vectorial (capa “quercíneas”). 

        

Figura 9. Distribución puntos LiDAR: Izq. Encinar. Drcha. Pinar adulto.  

Clasificación en áreas homogéneas. 

El pequeño tamaño muestral hace que una distribución regular que vendría dada por la realiza-

ción de un muestreo sistemático no asegure la representatividad de la muestra. Los modelos de es-

timación deben recoger toda la variabilidad que potencialmente puede presentar el área de estudio, 

por lo que se diseñó una categorización de la zona, en base a la cual se establecerán el número de 

parcelas de cada clase. 

En primer lugar, se establecieron las variables que podrían derivar en un tipo de masa diferente 

o que afectaran a la toma de datos LiDAR, es decir variables que pudieran alterar los resultados del 

modelo. Así, se consideró que algunas variables como la fracción de cabida cubierta (FCC) o la 

http://www.magrama.gob.es/es/biodiversidad/servicios/banco-datos-naturaleza/informacion-disponible/ifn3.aspx
http://www.magrama.gob.es/es/biodiversidad/servicios/banco-datos-naturaleza/informacion-disponible/ifn3.aspx
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altura dominante, influyen enormemente en las variables dasométricas de una masa, y que variables 

como la pendiente o la presencia de sotobosque pueden influir en la precisión del MDE. En la figura 

10 se observa como en la zona oeste, con elevada pendiente y presencia de sotobosque, las irregula-

ridades son notablemente mayores que en la zona este. 

 

Figura 10. Sombreado del MDE. 

Como no se disponía de ninguna cartografía previa de dichas variables se estudió el uso de los 

propios datos LiDAR para esta segmentación, seleccionando las variables más adecuadas.  

Posteriormente se creó un capa ráster con cada una de estas variables y se reclasificó, mediante 

“Reclassify” de ArcGIS 10.1, para que cada intervalo fuese representativo de cierta superficie del 

monte. 

Una vez obtenidas dichas capas ráster se realizó una superposición, sumándolas mediante la 

herramienta “Raster Calculator” de ArcGIS 10.1., de manera que cada categoría presentara una nu-

meración única que indicase sus características. Es importante que a la hora de realizar este proceso 

todos los rasters presenten la misma extensión espacial y el mismo tamaño de celda, para evitar el 

solape de celdas que dará lugar a imprecisiones en la capa ráster final. 

Asignación de parcelas por categorías. 

A las capas ráster generadas, una por cada monte, se les extrajo las zonas pobladas por quercí-

neas, para así contar solo con las zonas de pinar. Para este paso, se crearon dos capas vectoriales 

con el área de interés de cada monte (capas “área de estudio”), eliminando la capa “quercíneas” de 

las capas vectoriales de cada monte, mediante la herramienta “Erase” de ArcGIS 10.1. Posterior-

mente con estas capas vectoriales se recortaron las capas ráster empleando la herramienta “Extract 

by Mask”. 

Utilizando las capas ráster resultantes se calculó la superficie objeto de inventario de cada ca-

tegoría. El número de parcelas a inventariar en cada categoría se estableció en función de la superfi-

cie ocupada por cada una.  

Distribución de las parcelas. 

Una vez calculado el número de parcelas de cada categoría, se seleccionó aleatoriamente la lo-

calización de cada una. Con el objeto de evitar el denominado “efecto borde” de las masas foresta-

les, se llevó a cabo un proceso de extracción de áreas colindantes a espacios abiertos y a masas de 

quercíneas, para así evitar también que parte de la parcela esté ocupada por especies de este género.  

El efecto borde, consecuencia de la colindancia con espacios abiertos o masas de menor altura, 

genera que los pies afectados por este efecto presenten un mayor diámetro que los inclusos en la 
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masa, debido principalmente a la mayor fracción de copa viva de los pies afectados, fruto de una 

mayor exposición solar. 

Para eliminar este efecto, primero se obtuvieron las capas vectoriales de los elementos que po-

drían ocasionarlo. Así, las capas empleadas fueron: la de quercíneas (obtenida previamente en este 

mismo apartado, 1.3.3 Datos de campo), la de caminos y cortafuegos (obtenida del Sistema de In-

formación Territorial de Aragón) y la de áreas ralas o desarboladas. Esta última capa, se generó a 

partir de la capa ráster creada en base a lo expuesto en este mismo apartado (1.3.3 Datos de campo) 

para la clasificación de la zona de estudio en áreas homogéneas, seleccionando las celdas que pre-

sentasen una FCC estimada menor al 20% y transformando esta selección en polígonos, utilizando 

la herramienta “Raster to Polygon” de ArcGIS 10.1.  

Posteriormente, se generaron las áreas de influencia de las capas vectoriales empleadas para lo-

calizar el efecto borde, mediante la herramienta “Buffer”, estableciendo una distancia de 50 metros. 

Estas capas buffer, que representan las posibles áreas de influencia del efecto borde, se unieron me-

diante la herramienta “Union”, para luego extraerlas de la capa “área de estudio” mediante la he-

rramienta “Erase”, obteniendo como resultado la capa vectorial del área a muestrear. 

Finalmente, extrayendo dicha capa vectorial, mediante la herramienta “Extract by Mask”, a la 

capa ráster que representa la clasificación de la zona de estudio en áreas homogéneas, se obtuvieron 

las zonas a muestrear de cada categoría. A continuación, se crearon diversas capas vectoriales a 

partir de la selección de los píxeles que componen cada categoría, creando tantas capas como cate-

gorías a muestrear, empleando para ello la herramienta “Raster to Polygon”. Por último, mediante la 

herramienta “Create Random Points” se crearon tantos puntos aleatorios en cada capa como parce-

las correspondían a cada categoría. 

Como resultado se obtienen diversas capas de puntos con todas las parcelas a inventariar. El 

modelo cartográfico empleado para la distribución de las parcelas de campo se muestra en la figura 

11: 

 

Figura 11. Modelo cartográfico empleado para la distribución de las parcelas de campo. 

Adquisición de datos de campo. 

La ejecución del trabajo de campo se llevó a cabo durante los meses de junio y julio de 2013. 

El personal encargado de su materialización fue un equipo formado por al menos dos personas, en 

el que al menos una de ellas tenía cierta experiencia en el empleo del material de inventario. 
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El material empleado fue el siguiente: 

 Una cinta métrica de 25 metros de longitud. 

 Dos cintas diamétricas (o métricas en su defecto). 

 Dos hipsómetros Suunto. 

 Cinco jalones. 

 Post-its numerados y agujas. 

 Estadillos de campo (Figuras 14 y 15). 

 GPS de mano. 

 GPS diferencial Leica. 

La metodología seguida en el levantamiento de las parcelas fue la siguiente:  

Primero, para realizar una primera aproximación a las parcelas, se localizaron en la cartografía 

generada a tal efecto (ver Mapa 6: Parcelas inventariadas, en Anexo 1), para después, mediante el 

GPS de mano localizarla de forma más precisa (aprox. 2-3 metros). Posteriormente, empleando un 

GPS-GNSS de precisión centimétrica, modelo GS15 de Leica, se tomó el punto preciso del centro 

de las parcelas, procurando que la precisión de la captura fuese lo mejor posible, para que los esta-

dísticos extraídos de la nube de puntos concuerden con la posición exacta de estas.  

Dependiendo de la cobertura móvil, necesaria para la realización de la corrección diferencial, y 

de la cobertura satelital, la precisión varía considerablemente, por lo que primó la obtención de una 

mayor precisión frente al replanteo del punto exacto de localización teórica de la parcela.  

Con respecto al replanteo de la parcela, en primer lugar se fijó un jalón en el centro de la parce-

la, y haciendo uso de la cinta métrica se establecieron cuatro más en los límites de esta (radio 15 

metros), distribuidos adecuadamente con el fin de evitar dudas en la inclusión de los pies más aleja-

dos.  

En relación a las mediciones realizadas, se obtuvo el diámetro normal (a 1,3 metros de altura) 

de todos los pies de la parcela, fijando a cada uno un post-it con su número. Para facilitar y homo-

geneizar la medición de los diámetros normales, cada operario midió a que parte de su cuerpo co-

rrespondían esos 1,3 metros y así siempre medir el diámetro a esa altura. 

Para la medición de las alturas, al objeto de obtener una muestra significativa, se eligieron cua-

tro pies de forma aleatoria (arboles tipo), a ser posible un pie de cada clase diamétrica presente con 

mayor frecuencia en el monte (22,5-27,4; 27,5-32,4; 32,5-37,4; 37,5-42,4). Este dato previo se ob-

tuvo tras la inspección del IFN3 (El post-it es la forma de conocer visualmente el diámetro del pie 

en cuestión, para facilitar la selección). A estos cuatro pies seleccionados se les midió la altura total 

y la altura hasta la primera rama viva, empleando para ello el hipsómetro. También se les asignó un 

parámetro de forma para estimar su volumen (Figura 12).  

El procedimiento para obtener su altura es sencillo (Figura 13): 

1. El operario, se debe colocar a la distancia que a priori más se asemeje a la altura del árbol, 

15 o 20 metros en este caso (depende del hipsómetro). Se debe intentar que desde esta po-

sición se observe tanto la copa como la base del fuste y, a ser posible, se esté en curva de 

nivel con el árbol. 

2. Se lanza una visual al ápice del árbol y se toma la lectura que marca la intersección de la 

línea horizontal del hipsómetro con la escala correspondiente a la distancia elegida.  

3. Se lanza otra visual a la base del árbol y se toma de la misma forma la lectura correspon-

diente en la escala. 

4. La altura se obtendrá restando las dos medidas tomadas en la escala si las lecturas son una 

positiva y otra negativa, y sumándolas si son las dos positivas o negativas. 

Finalmente, tomando como radio 5 metros, se contabilizaron los pies de regenerado, que, aun-

que no se emplearon en las estimaciones con datos LiDAR, resultan de interés para la planificación 

de los tratamientos forestales. Así mismo, mientras se realizaba la medición o al finalizar la misma, 

dependiendo del número de componentes del equipo, se recopiló información general de la parcela 
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como altura de poda, cubierta de sotobosque y su altura, cubierta de regenerado y sus característi-

cas, presencia de daños y agentes causantes, pedregosidad y superficie erosionada y tipo de esta. 

Para evitar cierta subjetividad y facilitar la estimación de la cobertura de sotobosque se insertó un 

croquis en el estadillo. 

En las figuras 14 y 15 se muestran los estadillos empleados para la recopilación de los datos de 

campo. 

Obtención de variables dasométricas. 

En base a los datos de campo obtenidos se calcularon los parámetros dasométricos de cada par-

cela. Los parámetros obtenidos han sido los siguientes: volumen con corteza, área basimétrica, den-

sidad y altura media. 

 

Figura 12. Parámetro de forma (Fuente: IFN3). 
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Figura 13. Cálculo de la altura del árbol (Fuente: FAO, 2004). 

El volumen con corteza (m
3
/ha) se refiere al volumen maderable del fuste principal, desde la 

base hasta el diámetro mínimo de 7,5 cm, excluidas las ramas. Para la estimación de esta variable, 

se ha empleado la tarifa de cubicación del IFN3 en la provincia de Zaragoza para pino carrasco. 

Pese a haber inventariado árboles tipo con parámetro de forma “1”, no se dispone para la especie y 

provincia tarifa de cubicación para estos, por lo que se aplica la generada para los de forma “2”: 

    (   )          (  )       ( )       

Donde: 

dn: diámetro normal del árbol (mm). 

h: altura del árbol (m). 

Una vez obtenido el volumen de cada pie se realiza el sumatorio de todos ellos y se refiere a la 

hectárea, según la siguiente expresión: 

        (
  

  
)  

∑    ( 
 )

        
        

Donde: 

Vcci: volumen con corteza de cada pie (m
3
). 

Sparcela: área de las parcelas inventariadas en (m
2
). 

Del procedimiento presentado para el cálculo del volumen, se deduce la necesidad de obtener 

la altura de cada árbol de la parcela, pero, tal y como se ha comentado anteriormente, este valor 

únicamente se midió en cuatro árboles de cada parcela, por lo que para la estimación de la altura de 

los árboles no medidos en campo, se ha generado un modelo predictivo generalizado, es decir in-

cluyendo en él todos los árboles tipo inventariados (239 árboles). Este modelo trata de establecer 

una relación entre la altura de cada árbol (variable dependiente) y otros parámetros medidos en 

campo (variables independientes), como el diámetro normal o el área basimétrica. Con excepción de 

la variable dependiente y de las independientes, la metodología seguida para la generación del mo-

delo predictivo es similar a la que se presenta en el siguiente apartado para la generación de mode-
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los de estimación de variables dasométricas (1.3.4 Modelos predictivos) por lo que se explicará en 

el citado apartado. 

 

Figura 14. Cara A del estadillo de campo. 
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Figura 15. Cara B del estadillo de campo. 

El área basimétrica se obtiene sumando las secciones normales (a 1,3 metros de altura) de to-

dos los pies de la parcela y dividiendo entre la superficie de la misma, para finalmente, extrapolarlo 

a una superficie de una hectárea.  

 

  (
  

  
)  

 
 
∑   

 

        
        

Donde: 

dni: diámetro normal de cada pie inventariado en (m). 
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Sparcela: Área de las parcelas inventariadas en (m
2
). 

La densidad, expresada en número de pies por hectárea, se calcula refiriendo a la hectárea los 

pies contabilizados en la parcela: 

  (
    

  
)  

  
        

        

Donde: 

  : número de pies en la parcela i. 

Sparcela: área de las parcelas inventariadas en (m
2
). 

La altura media de cada parcela, se ha obtenido realizando el promedio de las alturas individua-

les de cada árbol, obtenidas según el modelo de estimación de las alturas de los arboles citado en la 

descripción del cálculo del volumen. 

1.3.4. Modelos predictivos para la estimación de variables. 

Una vez obtenidas las variables dependientes, a partir de los datos de campo, y las variables in-

dependientes, en el caso de la estimación de la altura de los árboles mediante trabajo de campo, y en 

el caso de variables dasométricas mediante el tratamiento de los datos capturados por el sensor Li-

DAR, se relacionaron mediante un modelo de regresión lineal. 

Para la generación de los modelos de regresión, primero se preseleccionaron las variables inde-

pendientes que mejor se correlacionaban con la variable a estimar (coeficiente de correlación de 

“Spearman” y significación estadística). Posteriormente, estas variables se incluyeron en un proceso 

de selección, en el que, finalmente, se eligieron el menor número de las que aportasen más informa-

ción, empleando para ello el método de selección “paso a paso” del paquete “R-Commander” del 

software estadístico “R”. Una vez seleccionadas las variables independientes se ajustó un modelo de 

regresión lineal por el método de mínimos cuadrados, empleando también el software “R”. El mo-

delo resultante debe ser significativo, al igual que las variables independientes seleccionadas (nive-

les de significación del 0,05). Si alguna variable no resultase significativa al nivel establecido, o 

presentase cierta correlación con otra de mayor significancia, sería excluida del modelo.  

Tras establecer el modelo se comprobó el cumplimiento de las hipótesis básicas que debe cum-

plir un modelo de regresión lineal, empleando para ello las gráficas básicas de diagnóstico del soft-

ware “R”. En la figura 16 se muestran las gráficas básicas de diagnóstico, conformadas por la gráfi-

ca “Residuals vs Fitted”, que representa los residuos frente a los valores predichos; la gráfica 

“Normal Q-Q”, que muestra los residuos tipificados frente a los cuantiles teóricos de una distribu-

ción gausiana; la gráfica “Scale-Location”, que representa la raíz del valor absoluto del residuo 

frente al valor predicho, y la gráfica “Residuals vs Leverage”, que muestra los residuos tipificados 

frente a “leverage” (que da idea de la influencia del dato en el modelo) y la distancia de “cook” de 

cada dato (mostrada mediante líneas rojas discontinuas). 

Cuando el diagnostico gráfico resultó ambiguo, se recurrió a otras pruebas analíticas realizadas 

mediante el software estadístico “R”.  

A continuación se listan las hipótesis básicas de un modelo de regresión lineal (García, 1992), 

así como las características gráficas y pruebas analíticas empleadas para evaluar su cumplimiento: 

 Ausencia de errores de especificación: dichos erros hacen que el modelo de regresión no pro-

porcione un buen ajuste, haciendo que las predicciones sean malas sobre todo fuera del rango 

de valores observados. Esto puede ser por falta de linealidad o porque existen variables explica-

tivas relevantes que no han sido incluidas en el modelo. Este error se da cuando los parámetros 

que indican la bondad del ajuste (R
2
 corregido, RMSE y sesgo) no son aceptables o cuando las 

variables predictoras carecen de significancia en el modelo. También podemos validar la rela-

ción lineal de las variables realizando el test reset de “no linealidad” o de “Ramsey”, en el que 
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si el p-valor es menor de 0,05, se rechaza la hipótesis nula, luego el modelo adolece de errores 

de especificación, siendo más acertado establecer un modelo cuadrático o cúbico.  

 Normalidad: los residuos obtenidos deben presentar una distribución normal. El cumplimiento 

de esta hipótesis se puede evaluar en el grafico “Normal Q-Q”, observando si los puntos no se 

desvían de la recta diagonal. También podemos aplicar a los residuos el test de “Shapiro–

Wilk”, en el que para aceptar la hipótesis nula, es decir, la normalidad de los residuos, el p-

valor debe ser mayor que 0,05. 

 Homocedasticidad: los errores presentan una varianza constante. El gráfico “Escale-Location” 

facilita la diagnosis de la homocedasticidad, que se cumple cuando la línea representada es ho-

rizontal y los puntos presentan una distribución homogénea, sin grandes agrupaciones. Como 

prueba cuantitativa se aplica el test de “Breush-Pagan”, en el que si el p-valor es inferior a 0.05, 

se rechaza la hipótesis nula, existiendo heterocedasticidad en el modelo. 

 Independencia: los errores en la medición de las variables explicativas son independientes entre 

sí. Esta hipótesis se puede verificar observando que la línea que describen los puntos en el gra-

fico “Residuals vs Fitted” sea horizontal. Aplicando el test de “Durbin-Watson” podemos veri-

ficarlo cuantitativamente, cumpliendo la hipótesis si el resultado está entre 1 y 3, siendo 2 el 

valor óptimo. 

 No colinealidad: las variables regresoras son muy dependientes entre sí, y es difícil separar su 

contribución individual al modelo. En este caso, si una variable es dependiente de otra no ten-

drá significación en el modelo. Sí se da este caso, los parámetros del modelo se muestran muy 

inestables, presentado varianzas muy grandes. Aplicando el “factor de inflación de varianza” 

puede percibirse dicha colinealidad, cuando este factor supera el valor 4. 

 Ausencia de valores atípicos o heterogéneos: existen datos atípicos que se separan de la nube de 

datos muestrales que pueden influir en la estimación del modelo de regresión o que no se ajus-

tan al modelo. Realizando el test “Bonferroni”, se pueden detectar dichos valores atípicos, y 

observando el grafico “Residuals vs Leverage” se puede apreciar si estos puntos presentan una 

distancia de “Cook” inferior a 1, lo que significará que ninguno de ellos resulta influyente en la 

estimación del modelo.  

 

Figura 16. Graficas básicas de diagnóstico. 

Se estudió la idoneidad tanto de las variables originales como de nuevas variables generadas 

mediante la transformación logarítmica de estas. En ocasiones, esta transformación de variables 

resulta útil para el cumplimiento de las hipótesis básicas de los modelos lineales. Además, en cier-

tos casos, las relaciones que se establecen entre la variable dependiente y las independientes no son 

lineales, pero realizando este tipo de transformaciones podemos ajustarlas adecuadamente mediante 

regresión lineal (Naesset, 2002): 

 Si la relación entre variables es exponencial, se puede solucionar mediante regresión lineal 

aplicando el logaritmo natural a la variable dependiente. El modelo lineal generado, aplicando 
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la transformación logarítmica inversa (conversión exponencial), será equivalente a un modelo 

exponencial, en el que intervienen las variables originales: 

  ( )    ( )              

 Si la relación entre variables es potencial, se puede solucionar mediante regresión lineal apli-

cando el logaritmo natural a todas las variables. El modelo lineal generado, aplicando la trans-

formación logarítmica inversa, será equivalente a un modelo potencial, en el que intervienen las 

variables originales: 

  ( )     ( )      ( )         

En ambos casos, la transformación logarítmica inversa introduce un sesgo (subestimación) en 

el modelo, ya que el error aditivo, generado en el modelo lineal, se convierte en multiplicativo al 

aplicar dicha transformación (Baskerville, 1972). Para la eliminación de este sesgo, el resultado 

final debe ser multiplicado por un factor de corrección (FC), calculado a partir del error estándar de 

estimación (SEE), según la siguiente expresión (Sprugel, 1983): 

    
    

  

Donde: 

    √
∑(         )

 

     
  

Siendo “N” el tamaño de la muestra, K el número de parámetros del modelo, LnYi el valor ob-

servado y     el valor predicho por el modelo. 

De entre los modelos establecidos que cumplen las citadas hipótesis básicas, se seleccionó el 

modelo óptimo, comparando para ello los estadísticos que indican la bondad del ajuste: el coeficien-

te de determinación ajustado (R
2
 corregido) y la media (sesgo) y la raíz de la media cuadrática de 

los errores (RMSE). El sesgo evalúa la desviación del modelo respecto a los valores observados, el 

RMSE analiza la precisión de las estimaciones y el R
2
 corregido determina la variabilidad total que 

es explicada por el modelo, teniendo en cuenta el número de variables. Se debe tener en cuenta que, 

en modelos cuyas variables han sido transformadas logarítmicamente tanto el sesgo, como el 

RMSE, no están en las mismas unidades que la variable a estimar, por lo que para hacer compara-

bles estos valores se deben recalcular una vez aplicada la transformación logarítmica inversa al mo-

delo.  

Finalmente, debido a que la bondad del ajuste no refleja necesariamente la bondad de una pre-

dicción futura (Myers, 1990), es recomendable, para analizar la capacidad predictiva del modelo, 

realizar una validación del mismo con un conjunto independiente de datos (Kozak y Kozak, 2003). 

En este caso sólo se dispone de los datos de campo empleados para el ajuste, por lo que se ha reali-

zado para ello un proceso de validación cruzada dejando uno fuera (Leave-one-out cross-validation 

LOOCV), mediante el software estadístico “R”. Este procedimiento consiste en extraer en cada ite-

ración una parcela del conjunto muestral, ajustar el modelo (con las mismas variables independien-

tes) y evaluar la estimación en la parcela extraída. Este proceso iterativo se repite tantas veces como 

parcelas se han tomado, comparando el valor estimado con el valor real, obteniendo así el error co-

metido en cada una, comparando el sesgo, la RMSE y la media de los R
2
 corregidos, con los obte-

nidos empleando la totalidad de la muestra, se puede validar la capacidad predictiva del modelo. Si 

dichos parámetros son similares, se descarta el sobreajuste del modelo a los datos de entrenamiento, 

siendo este útil para fines predictivos. En el caso de modelos con variables transformadas, su vali-

dación se realizó manteniendo su forma lineal, sin realizar la transformación logarítmica inversa 

descrita anteriormente. Una vez validado el modelo, se obtuvieron los coeficientes aplicables a cada 

variable, realizando para ello la media aritmética de los resultantes en cada iteración.  
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1.3.5. Representación cartográfica de variables modeladas. 

Con los modelos de estimación de variables dasométricas calculados, es posible representar 

gráficamente sus estimaciones. El método más sencillo, y que menos resultados intermedios genera, 

consiste en crear un fichero “.csv” con los estadísticos que intervienen en los modelos, empleando 

para ello el comando “GridMetrics” del software FUSION, para posteriormente convertir este fiche-

ro en una capa vectorial de puntos, mediante la herramienta “AddXYData” de ArcGIS 10.1 (ver 

apartado 1.3.2 Datos LiDAR), y, mediante la calculadora de campos “Field calculator”, aplicar, en 

un nuevo campo, la ecuación que establece el modelo. Finalmente, empleando la herramienta “Point 

to raster” generaremos la capa continua que representa la variable dasométrica estimada. 

2. DESARROLLO ANALÍTICO: RESULTADOS. 

2.1. Pretratamientos y extracción de estadísticos LiDAR. 

Los valores de “g” y “w”, empleados en la fase de selección de los puntos de “suelo”, que me-

jor resultado ofrecen para el área de estudio son -2,5 y 2 respectivamente. En la figura 17 se puede 

observar el MDE generado con estos parámetros y compararlo con otro MDE generado en el proce-

so de ensayo/error. 

  

Figura 17. Detalle de algunos sombreados de los MDE generados: Izq. “g”=-2,5 y “w”=2. Dch. “g”=-2 y 

“w”=2,5. 

En general, aumentado el valor de “w”, se incrementaban las irregularidades, y disminuyendo 

el valor de “g”, el número de puntos clasificados como suelo se veía notablemente disminuido. 

Para la generación del MDE, necesario para la normalización de la nube de puntos, se empleó 

un tamaño de celda de 1 metro, ya que, pese a no disponer de información en todas las celdas, em-

pleando un tamaño mayor (2 o 3 metros) las irregularidades del modelo debidas a una errónea clasi-

ficación eran mayores. Esta situación se daba en zonas donde la gran espesura arbórea y arbustiva 

hace que los retornos de suelo captados por el sensor sean escasos. Además, el problema de no dis-

poner de información en algunas celdas (densidad media de 0,5 pulsos por m
2
) se ve corregido por 

la interpolación con celdas vecinas que realiza el algoritmo en estos casos. 

En la tabla 3, se muestra el resumen de los estadísticos LiDAR extraídos para el total de las 

parcelas inventariadas. De los estadísticos que ofrece el software FUSION se han obviado los no 

normalizados, como el número total de retornos, el número de primeros retornos, el número de re-

tornos por encima de cierta altura, etc. El solape que se produce entre dos vuelos genera zonas con 

una mayor densidad de datos, por lo que no es adecuado comparar variables no normalizadas. Se 

puede observar que los estadísticos cubren un amplio rango de valores, lo que da idea del correcto 

diseño del inventario de campo, ya que en él se recoge gran parte de la variabilidad presente en la 

zona de estudio. 
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Tabla 3. Resumen de los estadísticos LiDAR en las parcelas inventariadas.  

Estadísticos Media Máximo Mínimo 
Desviación 

típica 

Mínimo 5,87 8,25 3,03 1,21 

Máximo 14,49 20,07 5,09 2,66 

Media 10,43 13,51 3,66 2,03 

Moda 10,43 13,72 3,03 2,25 

Desviación estándar 1,79 2,70 0,70 0,40 

Varianza 3,37 7,30 0,49 1,44 

Coef. variación 0,17 0,27 0,11 0,03 

Rango intercuartílico 2,45 3,63 0,88 0,59 

Asimetría -0,22 0,99 -0,92 0,35 

kurtosis 2,74 3,81 1,82 0,43 

AAD 1,44 2,21 0,55 0,32 

Percentil 01 6,35 9,99 3,03 1,33 

Percentil 05 7,31 11,18 3,04 1,55 

Percentil 10 7,98 11,69 3,05 1,71 

Percentil 20 8,90 12,21 3,07 1,89 

Percentil 25 9,25 12,47 3,09 1,94 

Percentil 30 9,56 12,68 3,11 1,98 

Percentil 40 10,07 13,15 3,22 2,02 

Percentil 50 10,54 13,66 3,42 2,09 

Percentil 60 11,01 14,21 3,68 2,15 

Percentil 70 11,46 14,75 3,90 2,21 

Percentil 75 11,70 15,09 3,98 2,24 

Percentil 80 11,98 15,49 4,05 2,29 

Percentil 90 12,65 16,13 4,77 2,34 

Percentil 95 13,19 17,38 5,07 2,48 

Percentil 99 13,98 19,44 5,08 2,63 

Porcentaje de primeros retornos por encima de 3 ó 6 metros 64,04 93,63 4,34 19,45 

Porcentaje de retornos por encima de 3 ó 6 metros 48,55 70,58 4,33 13,03 

Porcentaje de retornos por encima de 3 ó 6 metros respecto 

del total de primeros retornos 
64,80 95,75 4,34 19,74 

Porcentaje de primeros retornos por encima de la media 33,99 52,17 1,86 10,56 

Porcentaje de primeros retornos por encima de la moda 32,49 62,44 4,03 11,90 

Porcentaje de retornos por encima de la media 25,48 39,81 1,85 7,04 

Porcentaje de retornos por encima de la moda 24,51 43,04 4,02 8,41 

Porcentaje de retornos por encima de la media respecto del 

total de primeros retornos 
34,00 52,17 1,86 10,56 

Porcentaje de retornos por encima de la moda respecto del 

total de primeros retornos 
32,51 62,56 4,03 11,91 

2.2. Datos de campo. 

2.2.1. Panificación del inventario de campo. 

Para la identificación de los rodales de quercíneas se optó por la utilización del Percentil 95 de 

la altura (P95). La adecuación de esta variable es debida a que estas masas de quercíneas presentan 

una menor altura que los pinares (pinares adultos de unos 100 años de edad), por lo que estable-
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ciendo un límite de 9,5 metros en la variable P95 se discriminaban perfectamente estos dos tipos de 

masa.  

Las variables empleadas para la clasificación en áreas homogéneas de la zona de estudio fueron 

las siguientes: 

 Porcentaje de primeros retornos por encima de una determinada altura respecto del total de 

primeros retornos: como estimación de la FCC a cierta altura (Hopkinson y Chasmer, 2009). 

 Para el monte “Dehesa de los Enebrales” se consideró una altura de 6 metros para el cálculo 

de este porcentaje, para así no considerar la posible presencia de sotobosque  

 Para el monte “Valdá y Carrilanga” se consideró una altura de 3 metros para el cálculo de 

este porcentaje, para que así no influya la ejecución de podas.  

 P95: como estimación de determinada altura de la masa, que da idea de la calidad de estación a 

igualdad de edad. 

 Pendiente: obtenida del MDE generado con los propios datos LiDAR. 

 Porcentaje de retornos entre 1,5 y 6 metros respecto del total: para estimar la presencia de soto-

bosque. 

Estas variables, una vez convertidas en capas ráster, y para lograr que cada intervalo fuese re-

presentativo de cierta superficie del monte, se reclasificaron del siguiente modo: 

 Porcentaje de primeros retornos por encima de 6 o 3 metros (en función del monte) respecto del 

total de primeros retornos: 

 Clase 1.000: <= 20% (arbolado ralo o desarbolado). 

 Clase 2.000: 20% < x <= 40% (densidad baja). 

 Clase 3.000: 40% < x < =70% (densidad media). 

 Clase 4.000: >70% (densidad alta). 

 P95
*
: 

 “Dehesa de los Enebrales”: 

 Clase 100: <= 15 metros. 

 Clase 200: >15 metros. 

 “Valdá y Carrilanga”: 

 Clase 100: <= 9,5 metros. 

 Clase 200: >9,5 metros. 

 Pendiente: 

 Clase 10: <= 20%. 

 Clase 20: 20% < x <= 40%. 

 Clase 30: > 40%. 

 Porcentaje de retornos entre 1,5 y 6 metros respecto al total
**

: 

 Clase 1: <=15% (ausencia de sotobosque). 

 Clase 2: >15% (presencia de sotobosque). 

*
La reclasificación del P95 es diferente dependiendo del monte, ya que son de edad marcada-

mente diferenciada y por ello también de altura diferente. 

**
Este último parámetro sólo se tiene en cuenta en el monte “Dehesa de los Enebrales”, ya que 

en “Valdá y Carrilanga” no hay sotobosque (ver apartado 1.3.1 Área de estudio). La determinación 

del nivel crítico de 15% se ha establecido, al igual que la selección y reclasificación de las variables 

empleadas para la segregación en áreas homogéneas, mediante un proceso empírico de ensayo/error 

empleando el conocimiento previo de la zona y los perfiles de la nube de puntos LiDAR (Figuras 18 

y 19). Obviamente, esta cifra crítica sólo es aplicable al área de estudio en cuestión, igual que la 

establecida para delimitar rodales de quercíneas. 

El resultado de la suma de las capas reclasificadas son dos capas ráster (una por cada monte) en 

las que el valor de cada celda indica las características de esta: las unidades revelan la presencia o 

no de sotobosque, las decenas la pendiente media, las centenas la calidad de estación y las unidades 

de millar la FCC. En el Mapa 5: Áreas homogéneas del Anexo 1, se presenta la localización de las 

categorías, para ilustrar la gran variedad y heterogeneidad existente en la zona respecto a las varia-
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bles de categorización utilizadas. Aunque la calidad de representación no es buena y la interpreta-

ción de este mapa es realmente difícil, debido al excesivo número de categorías resultantes, se debe 

tener en cuenta, que la utilidad de estas capas ráster de categorías no reside en la visualización y 

ubicación de cada categoría, sino en la obtención de la superficie de cada una, a fin de lograr un 

muestreo del área de estudio lo más representativo posible.  

 

Figura 18. Perfil de la nube de puntos en rodal con sotobosque. 

 

Figura 19. Perfil de la nube de puntos en rodal sin sotobosque. 

Finalmente, tras obtener el área de cada categoría, se asignó el número de parcelas a inventariar 

en cada una (Tabla 4 y Tabla 5). A las categorías “arbolado ralo o desarbolado” (unidades de millar 

1) solo se les asignaron dos parcelas, una en cada monte, debido a su escasa aportación en cuanto a 

recursos forestales. 

En el Mapa 6: Parcelas inventariadas del Anexo 1, se muestra la ubicación final de las parcelas 

de campo, en el que se puede observar su distribución aleatoria, no mostrando ningún patrón especí-

fico. También se observa como en el tercio sur del área de estudio, donde la pendiente es elevada y 

el estrato arbóreo es ralo, encontramos un menor número de parcelas, ya que como se ha comenta-

do, a estas tipologías de masa solo se les han asignado dos parcelas. 
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Tabla 4. Superficie y número de parcelas por categoría, “Dehesa de los Enebrales”. 

Categoría Superficie (ha) Nº parcelas 

1.xxx 83,3 1 

3.121 70,9 7 

3.122 43,8 4 

3.132 40,3 4 

3.131 31,2 3 

3.111 30,8 3 

3.221 30,1 3 

4.121 29,6 3 

2.132 28,3 3 

3.231 27,4 3 

2.122 21,4 2 

3.112 18,3 2 

2.121 16,6 2 

4.111 15,0 1 

3.232 12,3 1 

4.221 12,1 1 

2.111 11,6 1 

2.131 10,3 1 

2.112 10,1 1 

3.222 10,0 1 

4.122 9,8 1 

4.131 7,5 1 

4.132 6,9 1 

4.231 6,6 1 

3.211 6,6 1 

3.212 5,2 0 

4.112 4,0 0 

2.231 3,9 0 

4.232 3,7 0 

2.221 3,6 0 

2.232 3,6 0 

4.211 3,1 0 

4.222 2,9 0 

2.222 2,8 0 

2.211 1,3 0 

2.212 1,1 0 

4.212 0,6 0 

Total 626,3 52 

Tabla 5. Superficie y número de parcelas por categoría, “Valdá y Carrilanga”. 

Categoría Superficie (ha) Nº parcelas 

1.xx0 42,9 1 

3.220 11,8 1 

4.220 8,9 1 

2.120 8,3 1 

3.120 7,8 1 

3.230 7,1 1 

2.130 4,9 1 

4.210 4,7 1 
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Categoría Superficie (ha) Nº parcelas 

3.210 4,7 1 

2.220 3,9 0 

2.110 3,8 0 

2.230 3,8 0 

3.110 3,6 0 

3.130 2,8 0 

2.210 1,8 0 

4.230 1,7 0 

4.120 0,6 0 

4.110 0,2 0 

4.130 0,1 0 

Total 123,1 9 

2.2.2. Adquisición de datos de campo. 

El número total de parcelas inventariadas fue 61, lo que equivale a una fracción de muestreo de 

0,58%. La precisión obtenida en la ubicación de las parcelas se muestra en la tabla 6, en la que se 

observa que el 95% de los puntos presenta una precisión submétrica. 

Tabla 6. Precisión planimetría obtenida en la ubicación de las parcelas. 

Parcela Precisión planimetría (m) Parcela Precisión planimetría (m) 

1 1,004 32 0,157 

2 0,093 33 0,109 

3 0,444 34 0,116 

4 0,487 35 0,276 

5 4,053 36 0,091 

6 0,630 37 0,021 

7 0,587 38 0,178 

8 0,128 39 0,583 

9 0,137 40 0,150 

10 0,396 41 0,101 

11 0,108 42 0,100 

12 0,207 43 0,120 

13 0,129 44 0,103 

14 0,597 45 0,108 

15 0,506 46 0,124 

16 0,427 47 0,008 

17 0,168 48 0,030 

18 0,190 49 0,223 

19 0,454 50 0,002 

20 0,115 51 0,117 

21 0,082 52 0,102 

22 1,107 53 0,031 

23 0,152 54 0,009 

24 0,693 55 0,116 

25 0,204 56 0,014 

26 0,029 57 0,084 

27 0,019 58 0,108 

28 0,033 59 0,128 

29 0,623 60 0,364 

30 0,142 61 0,428 

31 0,032   
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La información recopilada en este apartado se empleó para el cálculo de las variables dasomé-

tricas: volumen con corteza, área basimétrica, densidad y altura media (ver apartado siguiente 2.2.3. 

Obtención de variables dasométricas).  

2.2.3. Obtención de variables dasométricas. 

Para construir el modelo de estimación de la altura de cada árbol, en primer lugar se incluyó 

únicamente el diámetro normal (dn) medido en campo, estableciéndose dos modelos (modelo 1 y 

2). Posteriormente, debido a los bajos coeficientes de correlación obtenidos, se probó a introducir 

variables de masa, ya que según la literatura consultada, en general mejoran los resultados del mo-

delo (Diéguez-Aranda et al., 2005). Disponíamos pues del área basimétrica de cada parcela (G), 

variable que se introdujo en los nuevos modelos (modelos 3, 4 y 5). Finalmente, se comprobó que el 

modelo se ajustaba mejor a los datos utilizando como variables los logaritmos naturales de estas, ya 

que el parámetro R
2
 corregido pasaba de 0,555 a 0,628. En la tabla 7 se muestran las características 

tenidas en cuenta para la elección del modelo: 

Tabla 7. Resumen de los modelos analizados para la estimación de la altura. 

Nº 
Variable de-

pendiente 

Variables indepen-

dientes 
Hipótesis básicas R

2
 corregido RMSE Sesgo 

1 H Dn Sí 0,482 1,932 0,00 

2 Ln(H) Dn No (normalidad) - - - 

3 H Dn, G Sí 0,555 1,786 0,00 

4 Ln(H) Dn, G No (homocedasticidad) - - - 

5 Ln(H) Ln(Dn), Ln(G) Sí 0,628 1,736
*
 -0,01

*
 

*
Calculados tras aplicar la trasformación logarítmica inversa. 

En la figura 20 se muestra el resumen del modelo seleccionado (modelo “5”), obtenido del 

programa estadístico “R”. Se puede observar que tanto el modelo como las variables explicativas, 

son significativas.  

 

Figura 20. Modelo seleccionado para la estimación de la altura individual. 

Para comprobar el cumplimiento de las hipótesis básicas se representaron las gráficas básicas 

de diagnóstico (Figura 21), en las que se puede observar que el modelo se comporta correctamente.  

Una vez seleccionado el modelo, se validó. En la tabla 8, se observa que los estadísticos sesgo, 

RMSE y R
2
 corregido obtenidos mediante la validación cruzada son similares a los generados em-

pleando la totalidad de la muestra, lo que indica que el modelo es válido para la estimación. 
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Figura 21. Graficas básicas de diagnóstico del modelo de estimación de la altura individual. 

Tabla 8. Validación del modelo lineal de estimación de la altura individual. 

Estadísticos Modelo original Validación cruzada 

Sesgo -0,01 0,00 

RMSE 0,135 0,136 

R
2
 corregido 0,628 0,628 

Finalmente, una vez validado el modelo, se recalcularon sus coeficientes empleando los resul-

tados de la validación cruzada y se transformó a un modelo potencial, realizando la transformación 

logarítmica inversa, todo según lo explicado en el apartado 1.3.4 Modelos predictivos. Siendo este 

el resultado obtenido: 

          
         

         

Donde: 

h: altura del árbol (m). 

dni: diámetro normal del árbol (cm). 

G: área basimétrica de la parcela (m
2
/ha) 

CF: coeficiente de corrección del sesgo del modelo, 1,009. 

En el modelo obtenido la variable más significativa es el diámetro normal (variable que más in-

formación aporta al modelo), presentando una relación directa con la variable a estimar. El área 

basimétrica de la parcela, siendo menos significativa, también tiene una relación directa con la altu-

ra del árbol. Estos resultados son completamente lógicos, ya que el diámetro normal es la única va-

riable individual del modelo, luego debe ser la más significativa. Además, la relación directa, entre 

diámetro y altura, es obvia, ya que el diámetro aumenta con el paso del tiempo, igual que la altura. 

La relación directa entre el área basimétrica y la altura, hace que se compense el menor crecimiento 

diametral de los pies desarrollados en rodales de mayor espesura, haciendo que, a igualdad de diá-

metro, un árbol presente mayor altura si ha sufrido una mayor competencia. El crecimiento en altura 

de un árbol no está influenciado por la espesura de la masa (a no ser que este se encuentre comple-

tamente dominado o sumergido), sin embargo, su crecimiento diametral sí que se ve drásticamente 

reducido por la espesura y, en definitiva, por la competencia a la que ha sido sometido.  
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Tras estimar la altura de cada árbol se procedió a calcular las variables dasométricas de cada 

parcela, variables que se muestran en la tabla 9. En ella se puede observar el amplio rango de los 

valores calculados, lo que concuerda con la variabilidad observada en la extracción de los estadísti-

cos LiDAR de cada parcela. Este amplio rango también constata la correcta planificación del inven-

tario de campo, que hace que la variabilidad de la zona de estudio esté bien representada en la 

muestra inventariada. En las tablas 1 y 2, del apartado 1.3.1 Área de estudio, se muestra un resumen 

de estas variables, para el monte “Dehesa de los Enebrales” y para el monte “Valdá y Carrilanga”, 

respectivamente. 

Tabla 9. Resumen de las principales variables dasométricas por parcela. Dg: diámetro cuadrático medio; 

Hm: altura media; N: densidad de pies por hectárea; G: Área basimétrica; Vcc: Volumen maderable con cor-

teza por hectárea. 

Parcela Dg (cm) Hm (m) N (pies/ha) G (m
2
/ha) Vcc (m

3
/ha) 

1 30,1 13,4 424,4 30,2 156,4 

2 29,6 12,8 367,8 25,3 125,6 

3 26,3 12,3 608,3 33,0 164,3 

4 27,0 11,9 438,6 25,2 120,3 

5 29,4 12,3 282,9 19,3 96,7 

6 26,7 12,4 551,7 30,9 154,5 

7 28,7 12,8 367,8 23,9 118,6 

8 30,7 12,8 212,2 15,7 77,8 

9 34,3 14,1 254,6 23,5 127,3 

10 30,1 13,1 410,3 29,1 150,4 

11 28,7 12,4 424,4 27,5 134,3 

12 38,3 15,4 254,6 29,4 170,8 

13 30,7 13,0 254,6 18,8 94,7 

14 25,0 11,1 481,0 23,7 108,5 

15 27,8 11,2 339,5 20,6 97,2 

16 24,9 11,8 650,8 31,7 154,3 

17 31,7 12,4 212,2 16,8 80,2 

18 33,3 13,5 254,6 22,1 112,4 

19 36,4 13,8 183,9 19,2 100,8 

20 43,5 16,1 127,3 18,9 106,6 

21 36,2 13,5 155,6 16,0 82,7 

22 35,4 13,3 155,6 15,3 78,8 

23 28,9 12,7 396,1 25,9 129,3 

24 36,0 14,0 226,4 23,0 124,0 

25 28,4 12,1 282,9 17,9 89,0 

26 36,2 12,9 99,0 10,2 50,4 

27 33,3 14,4 382,0 33,3 179,9 

28 31,2 11,2 141,5 10,8 51,5 

29 26,9 12,4 509,3 28,9 144,4 

30 32,3 13,6 282,9 23,2 123,3 

31 35,0 14,6 282,9 27,3 147,0 

32 35,8 14,2 212,2 21,3 113,1 

33 27,8 12,6 438,6 26,6 131,5 

34 35,3 14,5 254,6 25,0 134,8 

35 30,3 12,2 282,9 20,4 96,8 

36 30,6 12,8 339,5 25,0 126,3 

37 33,6 12,5 141,5 12,5 60,8 

38 29,0 12,1 339,5 22,4 105,3 

39 43,3 15,9 169,8 25,0 140,5 
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Parcela Dg (cm) Hm (m) N (pies/ha) G (m
2
/ha) Vcc (m

3
/ha) 

40 32,2 13,2 254,6 20,7 104,2 

41 27,7 12,3 452,7 27,3 133,8 

42 29,8 13,4 466,9 32,6 172,7 

43 25,2 12,1 636,6 31,8 152,5 

44 30,0 13,6 452,7 32,0 169,2 

45 31,0 12,7 254,6 19,2 95,2 

46 29,0 12,8 438,6 28,9 145,0 

47 49,0 13,5 14,1 2,7 13,0 

48 28,5 9,1 127,3 8,1 31,7 

49 17,7 9,6 1471,3 36,4 155,5 

50 17,8 8,9 1061,0 26,5 109,7 

51 24,5 11,9 778,1 36,6 179,4 

52 19,8 10,1 1032,7 31,7 141,5 

53 19,2 9,2 834,7 24,1 104,7 

54 21,6 10,7 933,7 34,3 159,9 

55 18,4 8,6 693,2 18,5 75,0 

56 22,6 10,2 537,6 21,6 95,2 

57 26,0 6,0 14,1 0,8 2,1 

58 28,3 13,5 594,2 37,3 195,6 

59 25,8 11,9 537,6 28,2 132,8 

60 23,8 11,7 806,4 36,0 175,8 

61 33,6 13,9 282,9 25,1 132,7 

2.3. Modelo de estimación del volumen. 

En la tabla 10 se muestran las variables preseleccionadas para la generación de cada modelo. 

Los coeficientes de correlación empleados para la preselección de variables se pueden consultar en 

el Anexo 3.  

Tabla 10. Variables preseleccionadas para cada modelo. 

Nº 

Variables 

Dependiente Independientes 

1 Vcc 

Percentil 10, Porcentaje de primeros retornos por encima de 3 ó 6 metros, Porcentaje de 

retornos por encima de 3 ó 6 metros respecto del total de primeros retornos, Moda y 

Percentil 75. 

2 Ln(Vcc) 

Percentil 10, Percentil 80, Porcentaje de primeros retornos por encima de 3 ó 6 metros, 

Porcentaje de retornos por encima de 3 ó 6 metros respecto del total de primeros retor-

nos y Moda 

3 Ln(Vcc) 

Ln(Percentil 40), Ln(Porcentaje de retornos por encima de la media), Ln(Porcentaje de 

primeros retornos por encima de 3 ó 6 metros), Ln(Porcentaje de retornos por encima de 

la media respecto del total de primeros retornos), Ln(Percentil 99), Ln(Percentil 80) 

En la siguiente tabla se muestran las características generales de los modelos generados para la 

estimación del volumen, una vez seleccionadas las variables que mejor resultado ofrecen. 

Como se puede observar, únicamente el modelo “1”, cuyas variables no están transformadas 

logarítmicamente, cumple las hipótesis básicas de los modelos de regresión lineal. En la figura 22 se 

muestra el resumen de dicho modelo, obtenido del programa estadístico “R”. Se puede observar el 

error estándar de estimación (Residual standard error), el R
2
 corregido y los coeficientes del mode-
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lo. También podemos observar, que tanto el modelo como las variables explicativas, son significati-

vas.  

Tabla 11. Resumen de los modelos analizados para la estimación del volumen. 

Nº 
Variables 

Hipótesis básicas R
2
 corregido RMSE Sesgo 

Dependiente Independientes 

1 Vcc 

Percentil 10, Porcentaje de retor-

nos por encima de 3 ó 6 metros 

respecto del total de primeros re-

tornos. 

Sí 0,867 14,45 0,00 

2 Ln(Vcc) 

Percentil 80, Porcentaje de prime-

ros retornos por encima de 3 ó 6 

metros. 

No (normalidad) - - - 

3 Ln(Vcc) 
Ln(Percentil 40), Ln(Porcentaje de 

retornos por encima de la media) 
No (normalidad) - - - 

 

Figura 22. Modelo seleccionado para la estimación del volumen. 

Para comprobar el cumplimiento de las hipótesis básicas se representaron las gráficas básicas 

de diagnóstico (Figura 23). Como dichas graficas generan ciertas dudas, se ejecutaron los análisis 

cuantitativos descritos en el apartado 1.3.4 Modelos predictivos, obteniendo un resultado aceptable 

en todos ellos (Tabla 12). 

 

Figura 23. Graficas básicas de diagnóstico del modelo de estimación del volumen. 



34 

Tabla 12. Diagnostico analítico del modelo de estimación del volumen. 

 

Test reset de 

“no lineali-

dad” 

Test de Sha-

piro-Wilk 

Test de 

Breush-Pagan 

Test de Dur-

bin-Watson 

Factor de 

inflación de 

varianza 

Test de Bon-

ferroni 

Estadístico 2,276 0,984 0,216 1,954 1,028 Sin atípicos 

P-valor 0,073 0,589 0,642    

Tras seleccionar el modelo, se procedió a su validación. En la tabla 13, se muestra que los esta-

dísticos sesgo, RMSE y R
2
 corregido obtenidos mediante la validación cruzada son similares a los 

generados empleando la totalidad de la muestra, lo que indica que el modelo es válido para la esti-

mación. 

Tabla 13. Validación del modelo de estimación del volumen. 

Estadísticos Modelo original Validación cruzada 

Sesgo 0,00 0,16 

RMSE 14,45 15,42 

R
2
 corregido 0,867 0,867 

Finalmente, el modelo, una vez recalculados los coeficientes con los obtenidos en el proceso de 

validación, es el siguiente: 

                                           

Donde: 

Vcc: volumen con corteza por hectárea (m
3
/ha). 

Percentil 10: percentil 10 de la altura de los puntos LiDAR (m). 

%retornos1: porcentaje de retornos por encima de 3 ó 6 metros (depende del monte) respecto del 

total de primeros retornos (%). 

La variable que mayor información aporta al modelo es el porcentaje de retornos por encima de 

3 ó 6 metros respecto del total de primeros retornos, presentando una relación directa con el volu-

men. El percentil 10 de la altura de la nube de puntos LiDAR, siendo su significación menor, tam-

bién presenta una relación directa. El modelo opera de forma lógica, ya que, a mayor porcentaje de 

retornos por encima de 3 ó 6 metros respecto del total de primeros retornos, mayor será la superficie 

del suelo cubierta por el estrato arbóreo y por consiguiente mayor será el volumen maderable por 

hectárea, y a mayor altura del percentil 10, mayor será el desarrollo de los pies que componen la 

masa y por tanto también será mayor el volumen que aportan. El percentil 10, puede parecer un per-

centil excesivamente bajo para la estimación de una variable como el volumen, pero se debe tener 

en cuenta, que solo se han computado los retornos LiDAR del dosel de copas (con altura mínima de 

3 ó 6 metros, dependiendo del monte). 

2.4. Modelo de estimación del área basimétrica. 

En la tabla 14 se muestran las variables preseleccionadas para la generación de cada modelo. 

Los coeficientes de correlación empleados para la preselección de variables se pueden consultar en 

el Anexo 3.  

En la tabla 15 se muestran las características generales de los modelos generados para la esti-

mación del área basimétrica, tras la selección de las variables que mejor resultado ofrecen. 

Como se puede observar en la tabla 15, solo un modelo cumple las hipótesis básicas de los mo-

delos de regresión lineal. El modelo “1”, solo incumple el requisito de linealidad, pero al presentar 

el modelo “2” estadísticos de bondad similares, empleando tan solo una variable, se decidió selec-

cionar este modelo. La inclusión de una segunda variable solo aumenta en un 3,6% la variabilidad 
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explicada por el modelo. En la figura 24 se muestra el resumen del modelo “2”, obtenido del pro-

grama estadístico “R”. Se puede observar el error estándar de estimación (Residual standard error), 

el R
2
 corregido y los coeficientes del modelo. También podemos observar, que tanto el modelo co-

mo las variables explicativas, son significativas. En este caso, el término constante (Intercept) no 

resulta significativo, sin embargo el modelo es igualmente válido, ya que, simplemente, se debe a 

que su valor es próximo a cero. 

Tabla 14. Variables preseleccionadas para cada modelo. 

Nº 

Variables 

Dependiente Independientes 

1 G 
Percentil 05, Moda, Porcentaje de primeros retornos por encima de 3 o 6 metros y Por-

centaje de retornos por encima de 3 ó 6 metros respecto del total de primeros retornos. 

2 G Percentil 05 y Porcentaje de primeros retornos por encima de 3 o 6 metros. 

3 Ln(G) 
Percentil 10, Percentil 80, Percentil 99, Máximo, Moda, Porcentaje de primeros retornos 

por encima de 3 o 6 metros, Porcentaje de retornos por encima de 3 ó 6 metros, 

4 Ln(G) 

Ln(Percentil 40), Ln(Percentil 80),  Ln(Máximo), Ln(Moda),   Ln(Porcentaje de prime-

ros retornos por encima de 3 o 6 metros), Ln(Porcentaje de retornos por encima de 3 ó 6 

metros respecto del total de primeros retornos) y Ln(Porcentaje de retornos por encima 

de la media respecto del total de primeros retornos). 

Tabla 15. Resumen de los modelos analizados para la estimación del área basimétrica. 

Para comprobar el cumplimiento de las hipótesis básicas se representaron las gráficas básicas 

de diagnóstico (Figura 25), en las que se puede observar que el modelo se comporta de forma nor-

mal. Sin embargo, para cerciorarnos se realizaron los análisis cuantitativos descritos en el apartado 

1.3.4 Modelos predictivos (Tabla 16), obteniendo un resultado satisfactorio en todos ellos. 

Una vez seleccionado el modelo, se validó. En la tabla 17, se observa que los estadísticos ses-

go, RMSE y R
2
 corregido obtenidos mediante la validación cruzada son similares a los generados 

empleando la totalidad de la muestra, lo que indica que el modelo es válido para la estimación. 

Finalmente, el modelo, una vez recalculados los coeficientes con los obtenidos en el proceso de 

validación, es el siguiente: 

                          

 

Nº 
Variables 

Hipótesis básicas R
2
 corregido RMSE Sesgo 

Dependiente Independientes 

1 G 

Percentil 05, Porcentaje de prime-

ros retornos por encima de 3 o 6 

metros. 

No (linealidad) 0,890 2,55 0,00 

2 G 
Porcentaje de primeros retornos 

por encima de 3 o 6 metros. 
Sí 0,854 2,96 0,00 

3 Ln(G) 

Percentil 80, Porcentaje de prime-

ros retornos por encima de 3 o 6 

metros. 

No (normalidad) - - - 

4 Ln(G) 

Ln(Percentil 40), Ln(Porcentaje de 

primeros retornos por encima de 3 

o 6 metros) 

No (normalidad) - - - 
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Donde: 

G: área basimétrica (m
2
/ha). 

%retornos2: porcentaje de primeros retornos por encima de 3 o 6 metros (en función del monte) 

(%). 

 

Figura 24. Modelo de estimación del área basimétrica. 

 

Figura 25. Graficas básicas de diagnóstico del modelo de estimación del área basimétrica. 

Tabla 16. Diagnostico analítico del modelo de estimación del área basimétrica. 

 

Test reset de 

“no lineali-

dad” 

Test de Sha-

piro-Wilk 

Test de 

Breush-Pagan 

Test de Dur-

bin-Watson 

Factor de 

inflación de 

varianza 

Test de Bon-

ferroni 

Estadístico 1,222 0,987 2,459 1,864 
Modelo uni-

variable 
Sin atípicos 

P-valor 0,274 0,782 0,117    

Tabla 17. Validación del modelo lineal de estimación del área basimétrica. 

Estadísticos Modelo original Validación cruzada 

Sesgo 0,00 0,01 

RMSE 2,96 3,05 

R
2
 corregido 0,854 0,854 
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La única variable independiente que conforma el modelo es el porcentaje de primeros retornos 

por encima de 3 o 6 metros, presentando una relación directa con la variable a estimar. Así, el mo-

delo es coherente, ya que a mayor porcentaje de primeros retornos por encima de 3 o 6 metros, ma-

yor será la superficie ocupada por el estrato arbóreo y mayor será el área basimétrica del rodal. 

El modelo no incluye ninguna variable referida a la altura de la masa. Se podría pensar que este 

tipo de variables debieran estar incluidas en el modelo, ya que la altura de la masa, guarda relación 

con el diámetro medio, y este, junto con la densidad, determina el área basimétrica de un rodal. Sin 

embargo, en general, a mayor altura y mayor desarrollo de los pies, la densidad de estos es menor, 

por lo que se compensa el mayor diámetro medio de las masas más adultas (mayor altura), con la 

mayor densidad de las masas más jóvenes (menor altura), haciendo que el área basimétrica sea simi-

lar, no siendo muy influyentes en el modelo las variables relacionadas con la altura de la masa.  

2.5. Modelo de estimación de la densidad. 

En la tabla 18 se muestran las variables preseleccionadas para la generación de cada modelo. 

Los coeficientes de correlación empleados para la preselección de variables se pueden consultar en 

el Anexo 3.  

Tabla 18. Variables preseleccionadas para cada modelo. 

Nº 

Variables 

Dependiente Independientes 

1 N 

Mínimo, Percentil 90, Porcentaje de primeros retornos por encima de 3 o 6 metros y 

Porcentaje de retornos por encima de 3 ó 6 metros respecto del total de primeros retor-

nos.  

2 Ln(N) 
Porcentaje de primeros retornos por encima de 3 o 6 metros y Porcentaje de retornos por 

encima de 3 ó 6 metros respecto del total de primeros retornos 

3 Ln(N) Ln(Porcentaje de primeros retornos por encima de 3 o 6 metros). 

4 Ln(N) Ln(Percentil 95), Ln(Porcentaje de primeros retornos por encima de 3 o 6 metros). 

En la tabla 19 se muestran las características generales de los modelos generados, una vez se-

leccionadas las variables que mejor resultado ofrecen. 

Tabla 19. Resumen de los modelos analizados para la estimación de la densidad. 

Nº 
Variables 

Hipótesis básicas R
2
 corregido RMSE Sesgo 

Dependiente Independientes 

1 N 

Percentil 90, Porcentaje de prime-

ros retornos por encima de 3 o 6 

metros. 

No (normalidad) - - - 

2 Ln(N) 
Porcentaje de primeros retornos 

por encima de 3 o 6 metros. 
No (normalidad) - - - 

3 Ln(N) 
Ln(Porcentaje de primeros retor-

nos por encima de 3 o 6 metros). 
No (linealidad) 0,760 - - 

4 Ln(N) 

Ln(Percentil 95), Ln(Porcentaje de 

primeros retornos por encima de 3 

o 6 metros). 

Sí  0,858 113,93
*
 1,92

*
 

*
Calculados tras aplicar la trasformación logarítmica inversa. 

Como se puede observar en la tabla 19, solo un modelo (modelo “4”) cumple las hipótesis bá-

sicas de los modelos de regresión lineal, además es este el que mejores estadísticos de bondad del 
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ajuste presenta. El RMSE puede parecer elevado, pero se debe tener en cuenta que el número de 

pies por hectárea presenta una gran variabilidad en la zona de estudio (desviación típica en las 61 

parcelas, 271,22 pies/ha), por lo que un RMSE de 113,93 pies/ha es aceptable. 

Se incluyó la variable percentil 95 de la altura, pese a su baja correlación, por el siguiente razo-

namiento lógico. Existen masas, que presentando una densidad notablemente menor a otras, poseen 

una superficie ocupada por el dosel arbóreo similar, es decir, un similar porcentaje de primeros re-

tornos por encima de una altura determinada, debido al mayor desarrollo de las copas en estas ma-

sas. Por ello, incluyendo el percentil 95 de la altura, que da idea de la altura de la masa y por tanto, 

indirectamente, del desarrollo de los pies, es posible discernir entre masas, que teniendo el mismo 

porcentaje de primeros retornos sobre una altura determinada, presentan un número de pies por hec-

tárea sensiblemente diferente. En este caso, el razonamiento anterior es corroborado con unos bue-

nos estadísticos de ajuste. 

En la figura 26 se muestra el resumen del modelo “4”, obtenido del programa estadístico “R”. 

Se puede observar el error estándar de estimación (Residual standard error), el R
2
 corregido y los 

coeficientes del modelo. También podemos observar, que tanto el modelo como las variables expli-

cativas, son significativas.  

 

Figura 26. Modelo de estimación de la densidad. 

Para comprobar el cumplimiento de las hipótesis básicas se representaron las gráficas básicas 

de diagnóstico (Figura 27). En la gráfica “Residuals vs Leverage”, se puede observar que la parcela 

“57” hace desviarse visiblemente el trazo rojo, por lo que se realizaron las pruebas analíticas descri-

tas en el apartado 1.3.4 Modelos predictivos (Tabla 20). Tras aplicar el test de “Bonferroni” la par-

cela “57” no se consideró como valor atípico. Dicho test destacó la parcela “48” como atípica, pero 

se puede observar que su distancia de “cook” es inferior a uno, por lo que su influencia en la esti-

mación del modelo no es considerable. El resultado del resto de pruebas analíticas fue aceptable. 

Tras seleccionar el modelo, se procedió a su validación. En la tabla 21, se muestra que los esta-

dísticos sesgo, RMSE y R
2
 corregido obtenidos mediante la validación cruzada son similares a los 

generados empleando la totalidad de la muestra, lo que indica que el modelo es válido para la esti-

mación. 

Finalmente, el modelo, una vez recalculados los coeficientes y realizada la transformación lo-

garítmica inversa, es el siguiente: 

                   
                       

Donde: 

N: densidad (pies/ha). 

%retornos2: porcentaje de primeros retornos por encima de 3 o 6 metros (%). 

Percentil 95: percentil 95 de la altura de los puntos LiDAR (m). 
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CF: coeficiente de corrección del sesgo del modelo, 1,045. 

 

Figura 27. Graficas básicas de diagnóstico del modelo de estimación de la densidad. 

Tabla 20. Diagnostico analítico del modelo de estimación de la densidad. 

 

Test reset de 

“no lineali-

dad” 

Test de Sha-

piro-Wilk 

Test de 

Breush-Pagan 

Test de Dur-

bin-Watson 

Factor de 

inflación de 

varianza 

Test de Bon-

ferroni 

Estadístico 0,931 0,983 6,025 1,462 1,173 Parcela 48 

P-valor 0,400 0,579 0,052   No influyente 

Tabla 21. Validación del modelo de estimación de la densidad. 

Estadísticos Modelo original Validación cruzada 

Sesgo 0,00 0,00 

RMSE 0,30 0,34 

R
2
 corregido 0,858 0,857 

La variable que más información aporta al modelo es el porcentaje de primeros retornos por 

encima de 3 o 6 metros, presentando una relación directa con la densidad. Por el contrario, el per-

centil 95 de la altura de la nube de puntos LiDAR presenta una relación inversa. Así, el modelo es-

tablecido se comporta de manera natural, ya que al aumentar el porcentaje de primeros retornos por 

encima de 3 o 6 metros, aumentará la superficie cubierta por el estrato arbóreo y por consiguiente el 

número de pies por hectárea, y al aumentar el percentil 95 de la altura, aumentará la altura general 

del rodal y por tanto el desarrollo de los árboles, haciendo que el número de estos por hectárea dis-

minuya. 

2.6. Modelo de estimación de la altura media. 

En la tabla 22 se muestran las variables preseleccionadas para la generación de cada modelo. 

Los coeficientes de correlación empleados para la preselección de variables se pueden consultar en 

el Anexo 3.  

En la tabla 23 se muestran las características generales de los modelos generados, tras seleccio-

nar las variables que mejor resultado ofrecen. 
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Tabla 22. Variables preseleccionadas para cada modelo. 

Nº 
Variables 

Dependiente Independientes 

1 Hm Percentil 70 y Percentil 90 

2 Ln(Hm) Percentil 70 y Percentil 90 

3 Ln(Hm) Ln(Percentil 50), Ln(Media) 

Tabla 23. Resumen de los modelos analizados para la estimación de la altura media. 

Nº 
Variables 

Hipótesis básicas R
2
 corregido RMSE Sesgo 

Dependiente Independientes 

1 Hm Percentil 70 No (Linealidad) 0,720 - - 

2 Ln(Hm) Percentil 70 No (normalidad) - - - 

3 Ln(Hm) Ln(Percentil 50) Sí 0,799 0,903
*
 0,017

*
 

*
Calculados tras aplicar la trasformación logarítmica inversa. 

Como se puede observar en la tabla 23, solo un modelo (modelo “3”) cumple las hipótesis bá-

sicas de los modelos de regresión lineal, siendo este el que mejores estadísticos de ajuste presenta. 

En la figura 28 se muestra el resumen de dicho modelo, obtenido del programa estadístico “R”. Se 

puede observar el error estándar de estimación (Residual standard error), el R
2
 corregido y los coe-

ficientes del modelo. También podemos observar, que tanto el modelo como las variables explicati-

vas, son significativas.  

 

Figura 28. Modelo de estimación del número de la altura media. 

Para comprobar el cumplimiento de las hipótesis básicas se representaron las gráficas básicas 

de diagnóstico (Figura 29). Debido a las dudas que generaban dichas gráficas, se ejecutaron los aná-

lisis cuantitativos descritos en el apartado 1.3.4 Modelos predictivos, obteniendo un resultado satis-

factorio en todos ellos (Tabla 24). 

Tras seleccionar el modelo, se realizó la validación del mismo. En la tabla 25, se muestra que 

los estadísticos sesgo, RMSE y R
2
 corregido obtenidos mediante la validación cruzada son idénticos 

a los generados empleando la totalidad de la muestra, lo que indica que el modelo es válido para la 

estimación. 
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Figura 29. Graficas básicas de diagnóstico del modelo de estimación de la altura media. 

Tabla 24. Diagnostico analítico del modelo de estimación de la altura media. 

 

Test reset de 

“no lineali-

dad” 

Test de Sha-

piro-Wilk 

Test de 

Breush-Pagan 

Test de Dur-

bin-Watson 

Factor de 

inflación de 

varianza 

Test de Bon-

ferroni 

Estadístico 2,252 0,985 0,107 2.014 
Modelo uni-

variable 
Sin atípicos 

P-valor 0,139 0,649 0,744    

Tabla 25. Validación del modelo de estimación del número de la altura media. 

Estadísticos Modelo original Validación cruzada 

Sesgo 0,00 0,00 

RMSE 0,07 0,07 

R
2
 corregido 0,799 0,799 

Finalmente, el modelo, una vez recalculados los coeficientes y realizada la transformación lo-

garítmica inversa, es el siguiente: 

                         

Donde: 

Hm: altura media (m). 

Percentil 50: percentil 50 de la altura de los puntos LiDAR (m). 

  : coeficiente de corrección del sesgo del modelo, 1,003. 

El percentil 50 de la altura de la nube de puntos LiDAR es la única variable dependiente del 

modelo, presentando como es lógico una relación directa con la altura media de los pies del rodal. 

Se puede pensar que el percentil 50 de la altura de la nube de puntos LiDAR resulta un percentil 

bajo para la estimación de la altura media de la masa, sin embargo, se debe tener en cuenta que para 

su cálculo solo se han tenido en cuenta los retornos LiDAR de más de 3 ó 6 metros de altura respec-

to al suelo (dependiendo del monte), lo que, en general, equivale a tener en consideración única-

mente los retornos referentes al dosel de copas. 
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2.7. Representación cartográfica de variables modeladas. 

En el Anexo 1, Mapas del 7 al 10, se muestra la representación cartográfica de cada una de las 

variables estimadas mediante los modelos generados en los apartados anteriores.  

Como las ecuaciones de estimación no parten del origen, las estimaciones son en algunos casos 

negativas (en zonas ralas o desarboladas), por lo que, antes de rasterizar la capa de puntos, se selec-

cionaron los de valor negativo y se les asignó el valor cero. 

Para facilitar la visualización de las estimaciones, se ha aplicado un sombreado gris con trans-

parencia a las zonas excluidas del área de estudio (ver apartado 1.3.1 Área de estudio), proporcio-

nando un mayor peso visual a los resultados sin perder la referencia espacial de estos. 

En los diferentes mapas creados, se observa como los valores estimados son normales, no ob-

servando en ningún caso valores extremos que indiquen una estimación errónea. En general, se per-

cibe que, como es lógico, las zonas en las que las estimaciones de la altura y la densidad o el área 

basimétrica son elevadas, también lo son las del volumen. Se aprecia como el sector sur del monte 

“Dehesa de los Enebrales” presenta unas existencias notablemente menores, este hecho es debido al 

relieve escarpado de la zona que hace que la cobertura arbórea sea escasa, igual que sucede en las 

áreas ocupadas por caminos o cortafuegos. Observando los mapas de variables estimadas y el Mapa 

2: Orografía, podemos apreciar como, en general, las mayores estimaciones de alturas, densidades y 

por tanto de volúmenes se dan en zonas llanas o cóncavas, como fondos de barrancos o planicies, 

hecho propiciado por el mayor desarrollo edáfico en estos lugares. Tanto en el Mapa 9: Densidad 

estimada, como en el Mapa 10: Altura media estimada, se observa el marcado contraste existente, 

respecto a estas dos variables, entre el monte “Dehesa de los Enebrales” y el monte “Valdá y Carri-

langa”, contraste completamente lógico debido a la diferente edad de estas masas. Tanto en el Mapa 

9: Densidad estimada, como en el Mapa 8: Área basimétrica estimada, se observa una zona en el 

monte “Dehesa de los Enebrales” (coordenadas X: 631.500 Y: 4.554.000) de gran espesura, donde, 

en campo, se observó que nunca se habían realizado tratamientos de mejora en la masa, alertando de 

la presencia de gran cantidad de pies “gemelos” o “hermanados”, es decir, pies que compiten en el 

mismo antiguo hoyo de repoblación. 

3. DISCUSIÓN. 

La minuciosa planificación del inventario de campo, ha hecho que este cumpla el objetivo para 

el que fue diseñado, obteniendo una muestra completamente representativa del área de estudio. En 

el Mapa 11: Áreas fuera del rango muestral del Anexo 1, se puede observar, a modo de ejemplo, las 

áreas que se encuentran fuera del rango de aplicación del modelo para la estimación del volumen 

(rojo), considerando este rango como el establecido por los datos muestrales (2,1-195,6 m
3
/ha). Se 

observa, como tan solo algunas zonas (un 1% de la superficie), donde la ausencia de arbolado hace 

que el volumen sea cero, se encuentran fuera de dicho rango, lo que pone en evidencia el correcto 

diseño del inventario, minimizando así los posibles errores generados por la extrapolación de los 

resultados. 

Los resultados logrados en el ajuste de los modelos de estimación han sido muy similares a los 

obtenidos por otros autores (García, 2010, Li, 2008 y Naesset, 2002), empleando una metodología 

de trabajo semejante, siendo además notablemente menor el número de variables independientes 

empeladas (Tabla 26).  

Como se puede observar en la tabla 26, el ajuste de los modelos para la estimación del volu-

men, área basimétrica y densidad ha sido similar, ofreciendo un buen coeficiente de determinación 

corregido, en torno a 0,86. Sin embargo, el coeficiente de determinación corregido del modelo em-

pleado para la estimación de la altura media ha sido algo inferior, 0,799. Las variables LiDAR em-

pleadas parar la estimación de las variables dasométricas han sido similares respecto a las emplea-

das por otros autores (Li, 2008 y Naesset, 2002). En general, en los modelos establecidos se inclu-

yen al menos un estadístico referente a altura (m) y otro referente a distribución horizontal de la 

nube de puntos (densidad o porcentaje de retornos LiDAR por encima de una altura determinada). 
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A diferencia del estudio elaborado por García (2010), en el que el empleo de diversos estadísticos 

referentes a la distribución vertical de la nube de puntos LiDAR (coeficiente de variación, asimetría 

o desviación típica) es muy frecuente, en el presente estudio, no ha resultado significativo ningún 

estadístico de este tipo. También cabe destacar que en los estudios citados anteriormente, siempre se 

ha realizado una transformación logarítmica de las variables, a diferencia del que se presenta, en el 

que solo se ha recurrido a ella para la estimación de la densidad y la altura media. 

Tabla 26. Resumen de los modelos obtenidos García, 2010, Li, 2008, Naesset, 2002 y el presente trabajo. 

(V: volumen, G: área basimétrica, N: pies/ha, Hm: altura media, Hd: altura dominante, % retornos: densidad 

de puntos LiDAR a una determinada altura) 

Autores 
Variable 

dependiente 
Variables Independientes 

Coeficientes de 

determinación 

García, 

2010 

Ln(V) 
Ln(media), Ln(asimetría), Ln(desv. típica) y 

Ln(%retornos) 
0,897 

Ln(G) Ln(media), Ln(moda), Ln (percentil 30) y Ln(asimetría) 0,883 

Ln(N) 

Ln(percentil 70), Ln(percentil 80), Ln(mediana), Ln( per-

centil 95), Ln(asimetría), Ln(coef. variación) y 

Ln(%retornos) 

0,798 

Li, 2008 Ln(V) Media, coef. variación y % retornos 0,670-0,880 

Naesset, 

2002 

Ln(V) 
Ln(percentil 30), Ln(percentil 50), Ln(percentil 60) y 

Ln(% retornos) 
0,800 

Ln(G) Ln(percentil 50), Ln(percentil 60) y Ln (% retornos) 0,690 

Ln(N) Ln(percentil 0), Ln(máximo) y Ln (% retornos) 0,650 

Ln(Hd) Ln(percentil 90) y Ln(percentil 50) 0,860 

Cabrera, 

2013 

V % retornos y percentil 10 0,867 

G % retornos 0,854 

Ln(N) Ln(% retornos) y Ln(percentil 95) 0,858 

Ln(Hm) Ln(percentil 50) 0,799 

Generalmente, como puede apreciarse en la tabla 26, los mejores ajustes se obtienen para va-

riables como el volumen, área basimétrica y alturas, siendo peores los ajustes para variables como la 

densidad o el diámetro medio. En este trabajo, el modelo obtenido para la estimación de la densidad 

(pies/ha) ha logrado un mejor ajuste que en el resto de estudios citados. Este hecho puede deberse a 

la especie objeto de estudio, ya que en las masas de pino carrasco, por el marcado carácter heliófilo 

de la especie, no es habitual la presencia de pies dominados o sumergidos. La presencia de pies do-

minados es difícilmente detectable por el sensor, no reflejándose esta en los estadísticos generados. 

Sin embargo, la escasa aportación de estos pies en términos de volumen o área basimétrica, hace 

que las estimaciones de estas variables no se vean afectadas.  

El modelo obtenido para la estimación de la altura media, a diferencia del resto de estudios ci-

tados, no ha resultado ser el que mejor ajuste presenta (Tabla 26). A priori, parece lógico, que una 

variable como la altura obtenga un ajuste extraordinario, ya que está completamente correlacionada 

con las alturas de la nube de puntos que proporciona el sensor LiDAR. En este caso, este peor ajus-

te, puede deberse a las imprecisiones y errores generados por la estimación de la altura individual de 

cada árbol (a partir de árboles tipo), ya que en el resto de estudios se ha medido la altura de todos y 

cada uno de los pies que componen la muestra, siendo en estos casos la precisión en la obtención de 

la altura general de la parcela mucho mayor.  

Al igual que ocurre con la altura individual, el volumen unitario con corteza también ha sido 

estimado, no empleando tarifas de cubicación diseñadas específicamente para el monte en cuestión, 

sino empleando las establecidas por el IFN 3 para la provincia de Zaragoza. Así, además de los 

errores introducidos por el modelo de predicción, hay que considerar la existencia de los generados 

en la estimación de la variable de campo.  
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Aparentemente, no hay razón para pensar que el desfase temporal existente entre la toma de da-

tos LiDAR y datos de campo (3 años) haya sido influyente en la validez de los resultados del pre-

sente trabajo, ya que, como se ha comentado, en ese lapso no ha habido cambios significativos en la 

estructura de la masa.  

En cuanto al cálculo de los errores cometidos en el tipo de muestreo empleado en este trabajo, 

no se ha encontrado ninguna referencia. Cochran (1963) describe esta técnica como un muestreo en 

dos fases, con estimador de regresión, pero las ecuaciones que desarrolla para el cálculo de los erro-

res solo tienen validez para regresiones lineales simples. Otros autores (Naesset, 2002 y Li, 2008) 

solo consideran los errores estadísticos del modelo ajustado, ya que realmente se obtiene informa-

ción LiDAR de toda la superficie, desapareciendo el error de muestreo. Así, utilizan los estadísticos 

de bondad del ajuste del modelo (R
2
 corregido, RMSE y sesgo), obtenidos del proceso de valida-

ción cruzada, para evaluar el error de las estimaciones. Sin embargo, esta práctica no proporciona el 

error cometido en toda el área, sino el cometido considerando solamente los datos muestrales, por lo 

que si la muestra ofrece un ajuste extraordinario, pero no es representativa del monte, los errores 

reales que cometeremos serán mucho mayores que los que estaremos estimando con los citados 

estadísticos de bondad del ajuste. Así, ante la dificultad que plantea establecer una metodología para 

el cálculo de errores en muestreos de dos fases con regresiones lineales múltiples, y más aún con 

regresiones potenciales y exponenciales, quizás la solución sea, como se ha planteado en este traba-

jo, adquirir una muestra completamente representativa de la población, haciendo que los estadísti-

cos que indican la bondad del ajuste del modelo sean aplicables a toda el área de estudio. 

4. CONCLUSIONES. 

Los resultados ofrecidos por este trabajo reafirman la hipótesis de partida del mismo, mostran-

do la utilidad de los datos LiDAR PNOA para el inventario de masas regulares de pino carrasco. La 

metodología empleada tanto para el diseño del inventario de campo, como para el establecimiento 

de los modelos de estimación, ha resultado adecuada, obteniendo precisas estimaciones de variables 

como el volumen, área basimétrica, densidad y altura media para toda la zona de estudio, encon-

trándose un elevado porcentaje de esta (99%) dentro del rango de aplicación de la regresión, mini-

mizando así los errores debidos a la extrapolación de las estimaciones. En este sentido, cabe desta-

car la utilidad de los estadísticos LiDAR en la estratificación y planificación del inventario de masas 

forestales, permitiendo, como se ha demostrado en este trabajo, realizar un muestreo en cierto modo 

dirigido, discriminando tipologías de masa a escala de detalle, con un mínimo trabajo de campo. 

También es importante resaltar, que se ha conseguido establecer una metodología adecuada para 

que la presencia de sotobosque no altere los resultados, haciendo además innecesaria la estratifica-

ción por este motivo, con la optimización de recursos que ello conlleva. Así mismo, no se debe ol-

vidar, lo que hasta ahora, empleando los métodos de inventario tradicional, era impensable, y es que 

estos resultados se obtienen de forma continua para toda la superficie y a una escala de gran detalle, 

ofreciendo un gran avance en la planificación y gestión de masas forestales.  

El buen ajuste de los modelos de estimación generados, pone de manifiesto, no solo la adecua-

ción de la metodología empleada, sino también, y aún más importante, la correlación existente entre 

los estadísticos obtenidos de la nube de puntos LiDAR y las variables dasométricas. Concretamente, 

han sido los percentiles (bajo, medio o alto, según la variable a estimar) y el porcentaje de retornos 

LiDAR por encima de una altura determinada, los estadísticos LiDAR que mejor ajuste han propor-

cionado en los modelos establecidos. 

El empleo de una cobertura de datos LiDAR tres años anterior a la toma de datos de campo, no 

ha afectado a la existencia de altas y significativas correlaciones entre las variables obtenidas en 

campo y las obtenidas a partir de los datos LiDAR, por lo que se cree que este hecho no es influyen-

te en la obtención de unos buenos resultados. Sin embargo, a la hora de la interpretación de los mo-

delos generados, sí que se debe tener en cuenta ese desfase, ya que de haber contado con una cober-

tura LiDAR simultánea a los datos de campo, probablemente, tanto las variables seleccionadas, co-

mo, evidentemente, los coeficientes de los modelos hubieran sido otros. 
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Como ya se ha comentado, ante la división de opiniones que genera el cálculo de errores, se ha 

concluido, viendo la representatividad de la muestra, fruto del estricto diseño del muestreo, que los 

estadísticos de bondad del ajuste (R
2
 corregido, el RMSE y sesgo), obtenidos del proceso de valida-

ción cruzada, son aplicables al total de la población, dando idea de los errores y la variabilidad ex-

plicada por el modelo en toda el área de estudio. De todos modos, se cree necesario el desarrollo de 

una técnica adecuada para este fin, ya que los estadísticos de bondad del ajuste no son comparables 

con el error calculado en un inventario tradicional, ya que no consideran el tamaño muestral, ni la 

variabilidad, ni extensión de la zona a inventariar, siendo estos factores enormemente influyentes en 

la precisión de las estimaciones. De no ser posible el desarrollo de esta técnica, deberían ser los 

mismos organismos encargados de ratificar estos inventarios quienes se amoldasen a estas nuevas 

metodologías, estableciendo nuevas directrices para su aprobación, marcando así los niveles críticos 

de tamaños y representatividad muestrales y de los citados estadísticos de ajuste. 

Los posibles errores introducidos por la estimación de las variables de campo volumen y altura, 

no deben lastrar los resultados del presente trabajo, ni, en definitiva, la posibilidad de estimar estas 

variables a partir de datos LiDAR, ya que, aunque no se citen, están presentes en la gran mayoría de 

inventarios forestales. Comúnmente, variables como el volumen, biomasa, crecimientos corrientes o 

altura, se obtienen a partir de pequeñas muestras o modelos de estimación de ámbito regional. 

Se debe considerar que los resultados obtenidos en este trabajo demuestran la utilidad de los 

datos LiDAR PNOA en el inventario de masas regulares monoespecíficas, no siendo extrapolable 

dicha afirmación a otras tipologías de masa, debido a la dificultad que plantea la discriminación 

entre especies y clases diamétricas a partir de datos LiDAR. En este sentido, sería deseable que se 

estudiara la utilidad de estos datos en otras masas, irregulares, pluriespecíficas, montes bajos, etc., 

así como, en inventarios de grandes superficies, donde el uso de esta tecnología podría suponer un 

aumento en la precisión de los resultados y una disminución en los costes. Así mismo, teniendo en 

cuenta que la cobertura LiDAR PNOA va a ser un producto presumiblemente periódico, sería 

deseable evaluar la adecuación de los modelos ya generados, empleando las futuras coberturas Li-

DAR. También, en la misma línea, sería deseable la evaluación de la aplicabilidad de los modelos 

generados en este trabajo a masas de similares características. A priori, parece lógico que los mode-

los ya generados para los montes objeto de estudio, obtendrían resultados similares en masas de 

características análogas, igualmente, parece lógico que, sobre todo en montes cuya variabilidad ha-

ga que estén presentes en él todas las clases de edad (para minimizar la extrapolación), el ajuste del 

modelo tras el paso del tiempo y empleado la cobertura LiDAR actualizada, fuera similar al obteni-

do en primera instancia. Sin embargo, en el caso concreto del presente estudio, se debe tener en 

cuenta el hándicap del desfase temporal existente entre datos LiDAR y datos de campo, ya que es-

tamos relacionando las variables dasométricas actuales con datos LiDAR 3 años anteriores a estas, 

afectando posiblemente a las dos hipótesis anteriores. De todos modos, se cree conveniente evaluar 

dichas conjeturas, en este y en otros trabajos similares, ya que de constatarse, se obtendrían datos de 

gran valor a muy bajo coste, posibilitando la gestión de un mayor número de masas forestales. 

Como último propósito, este trabajo pretende servir de estímulo, promoviendo así el uso, en el 

ámbito del inventario forestal, de la técnica aquí descrita, ya que solo el paso del tiempo y la expan-

sión de su empleo acabarán por demostrar realmente su utilidad. Como se ha comentado a lo largo 

del trabajo, ya hay disponible una cobertura LiDAR para la mayor parte del territorio español, por 

lo que está en nuestra mano sacar el mayor provecho posible a estos datos.  
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7. ANEXOS 

Anexo 1: Cartografía. 

Mapa 1: Localización. 

Mapa 2: Orografía. 

Mapa 3: Vegetación. 

Mapa 4: Ruido información LiDAR. 

Mapa 5: Áreas homogéneas. 

Mapa 6: Parcelas inventariadas. 

Mapa 7: Volumen estimado. 

Mapa 8: Área basimétrica estimada. 

Mapa 9: Densidad estimada. 

Mapa 10: Altura media estimada. 

Mapa 11: Áreas fuera del rango muestral. 
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Mapa 4: Ruido Información LiDAR
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Mapa 5: Áreas Homogénas
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±

Área de estudio         Localización parcelas
Dehesa de los Enebrales
Valdá y Carrilanga

Parcela inventariada

500 0 500 1.000250 metros

631.000

632.000

633.000

634.000

635.000

4.5
53

.00
0

4.5
57

.00
0

4.5
56

.00
0

4.5
54

.00
0

4.5
55

.00
0

1 Número de parcela



Elaboración:
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Mapa 7: Volumen estimado
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Elaboración:
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Mapa 8: Área basimétrica estimada
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Elaboración:
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Mapa 9: Densidad estimada
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Elaboración:
Jesús Cabrera Guarinos, Ingeniero Forestal.
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Mapa 10: Altura media estimada
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Elaboración:
Jesús Cabrera Guarinos, Ingeniero Forestal.
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Mapa 11: Áreas fuera del rango muestral
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Anexo 2: Descripción funcional del software FUSION. 

A continuación, se describe el procedimiento seguido para la ejecución de las herramientas del 

software FUSION, empleadas en el tratamiento de datos LiDAR. Para ejecutar cada herramienta es 

necesario crear un archivo de comandos en formato “.bat”. Este archivo debe ubicarse en una sub-

carpeta dentro de la carpeta de instalación del software FUSION. 

Para ejecutar el comando desde esta propia carpeta, sin necesidad de llevarlo al intérprete de 

comandos (cmd.exe) de Windows, es necesario que, como prefijo de cada comando agreguemos 

“../”. Así, bastará con hacer doble “click” en cada uno, para que se ejecute automáticamente en el 

intérprete de comandos. El “../” simplemente hace que el comando se ejecute en la carpeta superior, 

que en este caso será la de instalación de FUSION, donde se debe ejecutar el comando. 

Comandos: 

 GroundFilter: 

La arquitectura del comando es la siguiente: 

GroundFilter [switches] (output file) (cell size) (input file) 

Este es el comando que finalmente se empleó: 

..\GroundFilter /wparam:2 /gparam:-2,5 Ruta\suelo.las 1 Ruta\*.las 

En la siguiente tabla se muestra el significado de cada variable del comando: 

Tabla 27. Variables comando GroundFilter. 

outputfile El nombre del archivo LIDAR de salida con los puntos “suelo”. 

cellsize Tamaño de celda para el modelo de superficie intermedio. 

datafile Archivo LIDAR con los datos en “bruto”, sin clasificar, en formato *.las. 

Indicando “*.las” como archivo de entrada, el comando se ejecuta tomando todos los archivos 

de ese formato presentes en la ruta indicada. 

Los “switches” son posibles variantes que pueden ser aplicadas en la ejecución del comando. 

En este caso los “switches” empleados para el comando Groundfilter fueron los siguientes: 

Tabla 28. “switches” empleados en el comando GroundFilter. 

gparam:# Valor del parámetro g para la ecuación de asignación de pesos. El valor por defecto es -2,0. 

wparam:# Valor del parámetro w para la ecuación de asignación de pesos. El valor por defecto es 2,5. 

 

 GridSurfaceCreate: 

La arquitectura del comando es la siguiente: 

GridSurfaceCreate [switches] (surfacefile) (cellsize) (xyunits) (zunits) (coordsys zone) (horizda-

tum) (vertdatum) (inputfile) 

Este es el comando que finalmente se empleó: 

..\GridSurfaceCreate RUTA\Suelo.dtm 1 m m 1 0 0 0 RUTA\Suelo.las 

En la siguiente tabla se muestra el significado de cada variable del comando: 



 

Tabla 29. Variables comando GridSurfaceCreate. 

surfacefile Nombre del archivo de salida (*.dtm). 

cellsize Tamaño de la celda de la malla de la superficie. 

xyunits 
Unidades de los datos LIDAR X e Y: “m” para metros 

“f” para pies. 

zunits 
Unidades de los datos LIDAR X e Y: “m” para metros 

“f” para pies. 

coordsys 

Sistemas de coordenadas: 

0 para desconocido 

1 para UTM 

2 para SPCS 

zone 
Zona del sistema de coordenadas (uso) 

0 para desconocido 

horizdatum 

Datum horizontal de la zona: 

0 para desconocido 

1 para NAD27 

2 para NAD83 

vertdatum 

Datum vertical de la zona: 

0 para desconocido 

1 para NGVD29 

2 para NAVD88 

3 para GRS80 

datafile Archivo de datos LIDAR (LDA, LAS, ASCII LIDARDAT) del que se extraerá el *.dtm 

En este caso no se empleó ningún “switches”. A continuación se muestran los disponibles para 

este comando: 

Tabla 30. “switches” comando GridSurfaceCreate. 

median:# Aplica un filtro basado en la mediana, usando # píxeles vecinos. 

smooth:# Aplica un filtro basado en la media, usando # píxeles vecinos. 

slope:# Filtra áreas de la superficie con pendiente superior a un porcentaje #. 

spike:# 
Filtrado final de la superficie eliminando salientes con una pendiente superior a un 

porcentaje #. 

residuals Cálculo de estadísticas de residuos para todos los puntos. 

minimum Usa el punto de menor elevación de cada celda como la elevación de la superficie. 

 

 ClipData: 

Para ejecutar este comando, primero se deben obtener las coordenadas de los extremos de todas 

las parcelas, para después, incluirlas en un mismo comando. 

La arquitectura del comando es la siguiente: 



 

ClipData [switches] (InputSpecifier) (SampleFile) (MinX) (MinY) (MaxX) (MaxY) 

Este es el comando que finalmente se empleó en la parcela 1: 

..\clipdata /shape:1 /dtm:RUTA\mde.dtm /height RUTA\*.las RUTA\1.las 632651,389 

4555179,272 632681,389 4555209,272 

En la siguiente tabla se muestra el significado de cada variable del comando: 

Tabla 31. Variables comando ClipData. 

InputSpecifier Datos LIDAR de partida. 

SampleFile 
Nombre de salida del archivo que contiene el recorte de los datos 

LIDAR, en nuestro caso serán las parcelas. 

MinX MinY 
Coordenadas X e Y de la esquina inferior izquierda del rectángulo que 

contiene la parcela a extraer. 

MaxX MaxY 
Coordenadas X e Y de la esquina superior derecha del rectángulo que 

contiene la parcela a extraer. 

En este caso los “switches” utilizados para el comando ClipData fueron los siguientes: 

Tabla 32. “switches” comando ClipData. 

shape:# 

Forma de la parcela a extraer: 

0 para rectángulo 

1 para círculo 

dtm:file 

Usa el modelo especificado de superficie para normalizar los datos LI-

DAR. Se puede usar con /zmin para incluir puntos sobre el zmin especifi-

cado o con /zmax para incluir puntos bajo el zmax especificado. 

height 
Convierte elevaciones de puntos en alturas sobre la superficie, usando el 

archivo *.dtm especificado. 

 

 CloudMetrics: 

La arquitectura del comando es la siguiente: 

CloudMetrics [switches] (InputDataSpecifier) (OutputFileName) 

Este es el comando que finalmente se empleó, se muestran dos ejemplos, uno de cada monte, 

variando la altura mínima. Se den incluir en el comando una línea por cada parcela: 

..\CloudMetrics /above:6 /minht:6 RUTA\1.las RUTA\est_parcelas.csv 

..\CloudMetrics /above:3 /minht:3 RUTA\52.las RUTAest_parcelas.csv 

En la siguiente tabla se muestra el significado de cada variable del comando: 

Tabla 33. Variables comando CloudMetrics. 

InputDataSpecifier Archivo *.las de determinada parcela 

OutputFileName Nombre del archivo que contendrá las estadísticas de cada parcela. 

En este caso los “switches” utilizados para el comando CloudMetrics fueron los siguientes: 



 

Tabla 34. “switches” comando CloudMetrics. 

above:# 
Calcula el porcentaje de primeros retornos sobre la altura # especificada. 

Se usa como una estimación de la fracción de cabida cubierta. 

minht:# 
Solamente utiliza para los cálculos, retornos por encima de la altura # 

indicada. 

 

 GridMetrics: 

La arquitectura del comando es la siguiente: 

GridMetrics [switches] groundfile heightbreak cellsize outputfile datafile 

Este es el comando que finalmente se empleó, uno para cada monte: 

..\gridmetrics /minht:6 RUTA\mde.dtm 6 25 RUTA\estadisticos_6hmin RUTA\*.las 

..\gridmetrics /minht:3 RUTA\mde.dtm 3 25 RUTA\estadisticos_3hmin RUTA\*.las 

En la siguiente tabla se muestra el significado de cada variable del comando: 

Tabla 35. Variables comando GridMetrics. 

groundfile Nombre del MDE *.dtm.  

heightbreak Altura límite para el cálculo de la cobertura. 

cellsize Tamaño de la celda. 

outputfile Nombre del archivo que contendrá las estadísticas de cada celda. 

datafile Archivos LiDAR *.las 

En este caso el “switches” utilizado para el comando GridMetrics fue el siguiente: 

Tabla 36. “switches” comando GridMetrics. 

minht:# 
Solamente utiliza para los cálculos, retornos por encima de la altura # 

indicada. 

 



 

Anexo 3: Correlaciones entre variables de campo y LiDAR. 

A continuación se muestran las correlaciones entre las variables dependientes y las variables 

independientes. Como la mayoría de las variables no se distribuyen de forma normal se ha emplea-

do el coeficiente de correlación de “Spearman”, el cual no se ve afectado por la transformación lo-

garítmica de las variables, luego los coeficientes que se muestran son aplicables también a las va-

riables transformadas. Para el cálculo de dicho coeficiente de correlación se han empleado las 61 

parcelas inventariadas.  

**
: la correlación es significativa al nivel 0,01 (bilateral).  

*
: la correlación es significante al nivel 0,05 (bilateral). 

Tabla 37. Correlación entre Vcc y las variables independientes (LiDAR). 

 Variables 

Vcc 

Correlación de 

“Spearman” 
Sig, (bilateral) 

Mínimo ,316
*
 ,013 

Máximo ,255
*
 ,047 

Media ,284
*
 ,027 

Moda ,362
**

 ,004 

Desviación estándar -,101 ,438 

Varianza -,101 ,438 

Coef, variación -,417
**

 ,001 

Rango intercuartílico -,189 ,146 

Asimetría -,175 ,178 

kurtosis ,332
**

 ,009 

AAD -,146 ,261 

Percentil 01 ,500
**

 ,000 

Percentil 05 ,422
**

 ,001 

Percentil 10 ,397
**

 ,002 

Percentil 20 ,363
**

 ,004 

Percentil 25 ,339
**

 ,008 

Percentil 30 ,327
*
 ,010 

Percentil 40 ,298
*
 ,020 

Percentil 50 ,274
*
 ,032 

Percentil 60 ,268
*
 ,037 

Percentil 70 ,258
*
 ,044 

Percentil 75 ,249 ,053 

Percentil 80 ,240 ,063 

Percentil 90 ,250 ,052 

Percentil 95 ,242 ,061 

Percentil 99 ,230 ,074 

Porcentaje de primeros retornos por encima de 3 ó 6 metros ,803
**

 ,000 

Porcentaje de retornos por encima de 3 ó 6 metros ,755
**

 ,000 

Porcentaje de retornos por encima de 3 ó 6 metros respecto del total 

de primeros retornos 
,808

**
 ,000 

Porcentaje de primeros retornos por encima de la media ,786
**

 ,000 

Porcentaje de primeros retornos por encima de la moda ,446
**

 ,000 

Porcentaje de retornos por encima de la media ,710
**

 ,000 

Porcentaje de retornos por encima de la moda ,294
*
 ,021 



 

 Variables 

Vcc 

Correlación de 

“Spearman” 
Sig, (bilateral) 

Porcentaje de retornos por encima de la media respecto del total de 

primeros retornos 
,786

**
 ,000 

Porcentaje de retornos por encima de la moda respecto del total de 

primeros retornos 
,446

**
 ,000 

Tabla 38. Correlación entre G y las variables independientes (LiDAR), 

 Variables 

G 

Correlación de 

“Spearman” 
Sig, (bilateral) 

Mínimo ,218 ,092 

Máximo ,088 ,500 

Media ,109 ,402 

Moda ,225 ,081 

Desviación estándar -,238 ,065 

Varianza -,238 ,065 

Coef, variación -,397
**

 ,002 

Rango intercuartílico -,294
*
 ,021 

Asimetría -,128 ,327 

kurtosis ,288
*
 ,024 

AAD -,279
*
 ,029 

Percentil 01 ,368
**

 ,004 

Percentil 05 ,276
*
 ,031 

Percentil 10 ,237 ,066 

Percentil 20 ,198 ,126 

Percentil 25 ,169 ,192 

Percentil 30 ,157 ,227 

Percentil 40 ,126 ,334 

Percentil 50 ,100 ,444 

Percentil 60 ,095 ,468 

Percentil 70 ,084 ,520 

Percentil 75 ,075 ,565 

Percentil 80 ,065 ,618 

Percentil 90 ,075 ,567 

Percentil 95 ,065 ,619 

Percentil 99 ,059 ,652 

Porcentaje de primeros retornos por encima de 3 ó 6 metros ,889
**

 ,000 

Porcentaje de retornos por encima de 3 ó 6 metros ,824
**

 ,000 

Porcentaje de retornos por encima de 3 ó 6 metros respecto del total 

de primeros retornos 
,888

**
 ,000 

Porcentaje de primeros retornos por encima de la media ,850
**

 ,000 

Porcentaje de primeros retornos por encima de la moda ,416
**

 ,001 

Porcentaje de retornos por encima de la media ,755
**

 ,000 

Porcentaje de retornos por encima de la moda ,248 ,054 

Porcentaje de retornos por encima de la media respecto del total de 

primeros retornos 
,851

**
 ,000 

Porcentaje de retornos por encima de la moda respecto del total de 

primeros retornos 
,415

**
 ,001 

 

 



 

Tabla 39. Correlación entre N y las variables independientes (LiDAR), 

 Variables 

N 

Correlación de 

“Spearman” 
Sig, (bilateral) 

Mínimo -,058 ,659 

Máximo -,248 ,054 

Media -,253
*
 ,049 

Moda -,113 ,388 

Desviación estándar -,398
**

 ,001 

Varianza -,398
**

 ,001 

Coef, variación -,191 ,140 

Rango intercuartílico -,371
**

 ,003 

Asimetría -,029 ,826 

kurtosis ,142 ,275 

AAD -,426
**

 ,001 

Percentil 01 -,010 ,942 

Percentil 05 -,089 ,495 

Percentil 10 -,124 ,342 

Percentil 20 -,159 ,221 

Percentil 25 -,191 ,140 

Percentil 30 -,205 ,113 

Percentil 40 -,234 ,070 

Percentil 50 -,261
*
 ,042 

Percentil 60 -,261
*
 ,042 

Percentil 70 -,271
*
 ,035 

Percentil 75 -,274
*
 ,032 

Percentil 80 -,281
*
 ,028 

Percentil 90 -,280
*
 ,029 

Percentil 95 -,289
*
 ,024 

Percentil 99 -,282
*
 ,028 

Porcentaje de primeros retornos por encima de 3 ó 6 metros ,837
**

 ,000 

Porcentaje de retornos por encima de 3 ó 6 metros ,776
**

 ,000 

Porcentaje de retornos por encima de 3 ó 6 metros respecto del total 

de primeros retornos 
,826

**
 ,000 

Porcentaje de primeros retornos por encima de la media ,764
**

 ,000 

Porcentaje de primeros retornos por encima de la moda ,366
**

 ,004 

Porcentaje de retornos por encima de la media ,675
**

 ,000 

Porcentaje de retornos por encima de la moda ,226 ,080 

Porcentaje de retornos por encima de la media respecto del total de 

primeros retornos 
,764

**
 ,000 

Porcentaje de retornos por encima de la moda respecto del total de 

primeros retornos 
,366

**
 ,004 

Tabla 40. Correlación entre Hm y las variables independientes (LiDAR), 

 Variables 

Hm 

Correlación de 

“Spearman” 
Sig, (bilateral) 

Mínimo ,480
**

 ,000 

Máximo ,719
**

 ,000 

Media ,757
**

 ,000 

Moda ,649
**

 ,000 



 

 Variables 

Hm 

Correlación de 

“Spearman” 
Sig, (bilateral) 

Desviación estándar ,563
**

 ,000 

Varianza ,563
**

 ,000 

Coef, variación -,094 ,469 

Rango intercuartílico ,402
**

 ,001 

Asimetría -,260
*
 ,043 

kurtosis ,135 ,300 

AAD ,537
**

 ,000 

Percentil 01 ,618
**

 ,000 

Percentil 05 ,656
**

 ,000 

Percentil 10 ,684
**

 ,000 

Percentil 20 ,708
**

 ,000 

Percentil 25 ,724
**

 ,000 

Percentil 30 ,731
**

 ,000 

Percentil 40 ,741
**

 ,000 

Percentil 50 ,757
**

 ,000 

Percentil 60 ,754
**

 ,000 

Percentil 70 ,762
**

 ,000 

Percentil 75 ,754
**

 ,000 

Percentil 80 ,749
**

 ,000 

Percentil 90 ,753
**

 ,000 

Percentil 95 ,755
**

 ,000 

Percentil 99 ,727
**

 ,000 

Porcentaje de primeros retornos por encima de 3 ó 6 metros -,212 ,102 

Porcentaje de retornos por encima de 3 ó 6 metros -,150 ,247 

Porcentaje de retornos por encima de 3 ó 6 metros respecto del total 

de primeros retornos 
-,192 ,137 

Porcentaje de primeros retornos por encima de la media -,138 ,289 

Porcentaje de primeros retornos por encima de la moda ,081 ,536 

Porcentaje de retornos por encima de la media -,078 ,552 

Porcentaje de retornos por encima de la moda ,123 ,344 

Porcentaje de retornos por encima de la media respecto del total de 

primeros retornos 
-,138 ,289 

Porcentaje de retornos por encima de la moda respecto del total de 

primeros retornos 
,082 ,531 
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