TRABAJO FIN DE MASTER

ESTIMACION DE VARIABLES DASOMETRICAS
A PARTIR DE DATOS LIDAR PNOA EN MASAS
REGULARES DE PINUS HALEPENSIS,
DAROCA (ZARAGOZA)

Autor: Jesus Cabrera Guarinos

Directores: M3 Teresa Lamelas Gracia y
Juan de la Riva Fernandez

Master Universitario en

Tecnologias de la informacion geografica para la ordenacion del te-
rritorio: sistemas de informacion geografica y teledeteccion

Diciembre de 2013

"""" Universidad Departamento de Geografia
y Ordenacion del Territorio

ane

18l Zaragoza

1542




Resumen

Este trabajo pretende evaluar la adecuacion de los datos LiDAR ofrecidos por el Plan Nacional
de Ortofotografia Area (PNOA) para la estimacién de variables dasométricas sobre masas regu-
lares de Pinus halepensis. Para ello, se ha elegido una zona piloto en los montes "Dehesa de
los Enebrales” y “"Valda y Carrilanga”, ubicados en el término municipal de Daroca (Zaragoza).
La metodologia empleada se basa en el establecimiento de modelos de regresion lineal multi-
ple entre las variables dasométricas, obtenidas a partir de una muestra de 61 parcelas toma-
das en campo, y una coleccion de variables LiDAR, obtenidas de la extraccion de estadisticos
de la nube de puntos LiDAR de dichas parcelas. Para el establecimiento y validacién de los mo-
delos de regresidon se empled la técnica de validacion cruzada dejando uno fuera (Leave-one-
out cross-validation LOOCV). Los coeficientes de determinacion corregidos, que indican la va-
riabilidad explicada por cada modelo, han sido 0,867 para la estimacion del volumen, 0,854
para el area basimétrica, 0,858 para la densidad y 0,799 para la altura media. Finalmente, la
espacializacion de los modelos establecidos ha permitido la cartografia de las variables daso-
métricas estimadas.

Palabras Clave: LiDAR, PNOA, inventario forestal, variables dasométricas y regresion lineal
mdultiple.

Abstract

This Master Thesis evaluates the suitability of the LiDAR data provided by the National Plan for
Aerial Orthophotography (PNOA) to estimate dasometric variables of even-aged stands of Pi-
nus halepensis. In order to do so, a pilot area, located in "Dehesa de los Enebrales"” and "Valda
y Carrilanga" woods, in Daroca municipality (Zaragoza), was chosen. The applied methodology
is based on the establishment of multiple linear regression models relating dasometric varia-
bles, obtained from a sample of 61 field plots, with a collection of LiDAR variables, obtained
from the statistics of the LiDAR point cloud in those plots. A leave-one-out cross-validation
(LOOCV) was performed with the objective of selecting and validating the obtained models.
The coefficients of determination corrected, indicating the variability explained by each model,
were 0.867 for volume estimation, 0.854 for basal area, 0.858 for density and 0.799 for aver-
age height. Last but not least, the spatialization of the selected models allowed dasometric
variables mapping.

Key Words: LiDAR, PNOA, forest inventory, dasometric variables and multiple linear regres-
sion.
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1. INTRODUCCION.

1.1. Antecedentes.

El conocimiento de las masas forestales es fundamental para una correcta gestion y ordenacion
de las mismas. En muchos casos, no basta con un inventario cualitativo del monte, sino que es nece-
saria una valoracion cuantitativa, a traves de la estimacion de variables dasométricas. Tradicional-
mente, esta estimacion se ha realizado mediante técnicas de muestreo sistematico por parcelas. Este
tipo de inventario utiliza la informacion recogida en una pequefia parte de la superficie (parcelas
inventariadas) para la estimacion de variables en la totalidad del monte, cometiendo un error aso-
ciado a esa fraccion de muestreo. Para la correcta elaboracion de un inventario de estas caracteristi-
cas, se requiere un muestreo piloto previo, en el que se estima la variabilidad de la masa y, en fun-
cion de esta, se establecen las parcelas de inventario necesarias para alcanzar un error de muestreo
determinado. Teniendo en cuenta los errores de muestreo requeridos habitualmente (Boletin Oficial
de Aragon N° 230 del 26/11/2012), el trabajo de campo demandado para no superarlos es desmesu-
rado. A este hecho hay que sumar la situacion econdémica actual y el cada vez menor valor de nues-
tros montes en términos econdmicos, que hace que en muchas ocasiones su gestion sea inviable,
con el riesgo que ello conlleva para la persistencia de los mismos. Ante esta situacion no deberia-
mos permanecer impasibles, siendo necesario buscar alternativas viables a los inventarios clasicos,
explotando, para ello, las oportunidades que nos ofrecen las nuevas tecnologias.

A este respecto, la teledeteccion ofrece diferentes técnicas que pueden resultar de gran interés,
entre las que destacan las imagenes satelitales dpticas, la tecnologia SAR (Synthetic Aperture Ra-
dar) y la tecnologia LiDAR (Light Detection And Ranging).

Las imé&genes de satélite recogen informacion de la cubierta terrestre en maltiples longitudes de
onda del espectro electromagnético, optimizando el proceso de estratificacion inventarial, debido a
la diferente respuesta espectral que presenta cada tipo de cubierta. Cuanto menor sea la variabilidad
del estrato identificado, menor seré la intensidad de muestreo del mismo y por consiguiente su coste
se vera reducido (Cuevas et al., 2008).

Por su parte, la tecnologia LIDAR aporta una nueva perspectiva a los inventarios forestales, ya
que ofrece de forma directa informacidn tridimensional de toda la superficie a inventariar, desapa-
reciendo la fraccion de muestreo. El tratamiento de esta informacion mediante técnicas de muestreo
en dos fases con estimador de regresion, hace posible la estimacion de variables cuya medicion re-
sulta costosa, gracias a la correlacion que mantienen con la informacién LiDAR. La primera fase de
esta técnica de muestreo consiste en la obtencidn de las variables independientes en toda la superfi-
cie (informacion que ofrece el sensor). En la segunda fase se toman un nimero relativamente pe-
quefio de parcelas, en las que se mide tanto la variable objetivo (dependiente), como las variables
independientes, y se correlacionan en un modelo de regresion (Cochran, 1963). Esta metodologia
supone una notable reduccién de las parcelas de muestreo o, lo que es lo mismo, una reduccion de
los recursos necesarios (Condés et al. 2013).

Por este motivo, este trabajo se centra en el estudio de la aplicabilidad de esta técnica de mues-
treo a las variables independientes obtenidas a partir de los datos LiDAR del Plan Nacional de Orto-
fotografia Aérea (PNOA). Resulta de gran interés estudiar la idoneidad de estos datos para la esti-
macion de parametros dasométricos, en primer lugar, para dar valor a una informacion que ya ha
sido capturada, y, en segundo lugar, para proponer posibles variaciones en cuanto a las caracteristi-
cas de captura de estos datos (periodicidad, densidad de pulsos, nimero de retornos, etc.).

Desde los ultimos afios de la década de los 90, diversos autores han demostrado, en numerosos
articulos, la utilidad de los sensores LIDAR para la estimacién de variables dasométricas. En el nor-
te de Europa, Naesset (1997) demostrd la posibilidad de establecer modelos de estimacion del vo-
lumen sobre masas de pino silvestre (Pinus sylvestris) y abeto rojo (Picea abies), incluyendo como
variable predictora la altura media de los retornos. Posteriormente, Naesset (2002) obtuvo resulta-




dos satisfactorios en la estimacion de diferentes variables dasométricas (altura dominante, altura
media, volumen, densidad de pies/ha, area basimétrica y diametro medio) empleando, en este caso,
diversos estadisticos obtenidos de la nube de puntos LIDAR. En Estados Unidos existen estudios
mas recientes acerca de la aplicabilidad de estos sensores activos en la estimacion de biomasa (Li et
al., 2008) y parametros referentes a combustibilidad de masas arbdreas (Andersen et al., 2005).

Cabe destacar también, otra corriente enfocada a la estimacion de pardmetros dendromeétricos,
tanto en el norte de Europa (Hyyppa et al., 1999), como en Estados Unidos (Popescu, 2007). No
obstante, estos enfoques basados en la individualizacion de cada arbol que compone la masa fores-
tal, requieren de una mayor densidad de pulsos LIDAR, por lo que no son aplicables a los datos
utilizados en el presente trabajo, tal y como veremos con posterioridad en el apartado 1.3.2 Datos
LiDAR.

En los estudios anteriormente citados, se observa que las variables dasométricas que se estiman
con mayor precision son las que tienen una estrecha relacion con la altura del arbol (altura dominan-
te, altura media, volumen, etc.), siendo peores las estimaciones para variables como la densidad de
pies por hectarea o el didmetro medio cuadratico. Sin embargo, estos resultados se deben tomar con
cautela, porque las singulares condiciones de nuestros sistemas forestales (muy diferentes a las ma-
sas monoespecificas y completamente regulares del norte de Europa), asi como las posibles diferen-
cias en los sensores empleados en cada caso, pueden hacer variar la precision de las estimaciones.

En Espafia, las referencias a trabajos de esta tematica no son tan numerosas como en el norte de
Europa, pero encontramos algun estudio orientado a la estimacion de biomasa empleando datos,
tanto de elevacion como de intensidad, de los retornos del escéner laser (Garcia et al., 2010), asi
como estudios que tratan de relacionar, de forma directa, la propagacion de incendios forestales con
la estimacion de la densidad de copas a partir de datos LIiDAR (Riafio et al., 2004). Sin embargo,
los ejemplos de estudios que hayan utilizado los datos LIDAR PNOA en el &mbito forestal son es-
casos (Montealegre et al., 2013).

1.2. Hipotesis y objetivos.

La hipotesis de partida es que es posible estimar distintas variables dasométricas de masas fo-
restales monoespecificas regulares a partir de informacion capturada por sensores activos LiDAR.
Por tanto, el objetivo principal del presente trabajo es evaluar la idoneidad de los datos LiDAR-
PNOA para la estimacion de distintas variables dasométricas de masas regulares de pino carrasco
(Pinus halepensis) mediante el establecimiento de una serie de modelos predictivos.

Los objetivos secundarios se resumen en los siguientes:

= Aproximacion a la zona para un mayor conocimiento de los montes objeto de estudio.

= Pretratamiento de los datos LIDAR PNOA con objeto de normalizar los valores de elevacion
para la extraccion de estadisticos de la nube de puntos.

= Disefio y ejecucion del inventario de campo para la estimacion de la altura individual de cada
arbol y el calculo de variables dasométricas.

= Establecimiento de modelos predictivos que relacionen la informacién de variables obtenidas
en campo con las estadisticas de la nube de puntos LiDAR.

= Cartografia de variables dasométricas a partir de los datos LIDAR PNOA.

1.3. Materiales y métodos.

1.3.1. Area de estudio.

El 4rea objeto de estudio esta constituida por los montes denominados “Dehesa de los Enebra-
les” y “Valda y Carrilanga”. Ambos se encuentran en el término municipal de Daroca, provincia de
Zaragoza (ver Figura 1 y Mapa 1: Localizacion, en Anexo 1), siendo la superficie total de los mis-
mos 964 y 138 ha, respectivamente.
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Figura 1. Localizacion del area de estudio.

Desde el punto de vista geologico, Daroca se sitUa en el sector centro-oriental de la Cordillera
Ibérica, més conocido como Ibérica zaragozana, entre las sierras de Santa Cruz y Herrera, concre-
tamente en la depresion de Calatayud-Daroca.

El monte “Dehesa de los Enebrales”, fue catalogado como de utilidad publica ya en el primer
borrador del Catalogo de Montes de Utilidad Publica de la provincia de Zaragoza, elaborado en
1901 por el Distrito Forestal de Zaragoza, siéndole asignado el n°107 de dicho catalogo. Por su par-
te, el monte “Valda y Carrilanga” es un monte consorciado (n° de elenco Z-3081), consorcio cuyas
bases fueron aprobadas por el Patrimonio Forestal del Estado en 1955.

El monte “Dehesa de los Enebrales” y la zona denominada “Vald4a”, ambos colindantes en
buena parte de sus limites, conforman un monte de origen diluvial que a modo de contrafuerte se
extiende al norte del rio Jiloca y paralelamente al cauce del mismo. Dicho monte, presenta cuatro
vertientes bien diferenciadas, partiendo todas ellas de la divisoria central del monte que va desde los
960 a los 940 metros de altitud, de Sureste a Noroeste (como la mayoria de sierras de la zona). En
general, presenta un relieve erosionado, con numerosos barrancos. La pendiente aumenta conforme
descendemos en cota, oscilando entre el 10% y el 40%, llegando a fuertes escarpes en las zonas
bajas del monte (préximas al camino de Manchones), donde la pendiente supera el 50% Yy, en gene-
ral, el estrato arboreo es ralo (ver Mapa 2: Orografia, en Anexo 1).

Por su parte “Carrilanga”, separado del monte “Dehesa de los Enebrales” por la N-234, con-
forma una ladera de exposicién solana, que parte de un rafe rocoso situado a 980 metros de altitud.
Esta ladera desciende hasta la carretera N-234 y N-330, siendo su cota minima 860 metros. El relie-
ve es marcadamente erosionado y la pendiente oscila entre el 20 y el 40%, siendo mayor en la zona
norte, proxima al rafe rocoso. En general, la elevada pendiente del terreno se ve atenuada por la
presencia de pequefios bancales agricolas abandonados, de unos 5 0 10 metros de anchura, que esca-
lonan regularmente la ladera, permitiendo la evolucion edéafica suficiente para el desarrollo de la
actual masa forestal (ver Mapa 2: Orografia, en Anexo 1).

La vegetacion que puebla ambos montes es principalmente una masa pura de pino carrasco
(Pinus halepensis) procedente de repoblacion.

El monte “Dehesa de los Enebrales” fue repoblado entre los anos 1908 y 1920, en base al pro-
yecto de restauracion hidrolégico-forestal que ordend el Estado, con motivo de su inclusion en el
Catalogo de Montes de Utilidad Pablica. Asi, la edad actual de la masa ronda los 100 afios, hacien-
do que la densidad de esta sea muy variable, en funcién de las condiciones particulares que ha so-
portado cada zona (tratamientos de mejora, condicionantes bidticos, abioticos, etc.). En la tabla 1 se
muestra un breve resumen de las principales variables dasométricas del monte “Dehesa de los
Enebrales”, obtenido a partir de las 52 parcelas inventariadas en el mismo.




Tabla 1. Resumen de las principales variables dasométricas del monte “Dehesa de los Enebrales”. Dg: dia-

metro cuadratico medio; Hm: altura media; N: densidad de pies por hectérea; G: Area basimétrica; Vcc: Vo-

lumen maderable con corteza por hectérea.

Caracteristicas Media Méaximo Minimo Desviacion tipica
Dg (cm) 31,4 49,0 23,8 49
Hm (m) 13,0 16,1 9,1 1,2
N (pies/ha) 336,8 806,4 14,1 162,9
G (m?/ha) 23,5 37,3 2,7 7,2
Vee (m*/ha) 119,5 195,6 13,0 38,4

En el monte “Dehesa de los Enebrales”, concretamente en algunos fondos de barranco y en ge-
neral en zonas donde el régimen hidrico edafico lo permite, aparecen formaciones de frondosas co-
mo el quejigo (Quercus faginea) y la encina (Quercus ilex), que, en ocasiones, han colonizado cier-
tos rodales de pino carrasco, creando un sotobosque mas o menos denso. Ademas, incluso en dicho
monte encontramos una masa mixta de pino y quercineas. El origen de dicha masa se remonta a un
antiguo consorcio de repoblacion (n° de elenco Z-3060), cuyas bases fueron aprobadas en 1954 por
el Patrimonio Forestal del Estado, pese a ello, no se llevo a cabo hasta los afios 1975-1979, cuando
se repoblaron con pino las zonas donde la encina no ofrecia una cobertura del suelo suficiente,
creando una masa mixta conformada por un mosaico de, en general, rodales puros de encina y de
pino.

El monte “Valda y Carrilanga”, en base a lo establecido en el consorcio que lo origind (n° de
elenco Z-3081), fue repoblado durante los afios 1956 y 1957, conformando actualmente una masa
de unos 56 afios de edad, y, por ello, mas homogénea que la anterior. El resumen de las principales
variables dasométricas, obtenido a partir de las 9 parcelas inventariadas en dicho monte, se muestra
en latabla 2.

Tabla 2. Resumen de las principales variables dasométricas del monte “Valda y Carrilanga”. Dg: didmetro
cuadratico medio; Hm: altura media; N: densidad de pies por hectarea; G: Area basimétrica; VVcc: Volumen
maderable con corteza por hectarea.

Caracteristicas Media Maéaximo Minimo Desviacion tipica
Dg (cm) 20,8 26,0 17,7 3,0
Hm (m) 9,5 11,9 6,0 1,6
N (pies/ha) 817,4 1471,3 14,1 401,2
G (m’/ha) 25,6 36,6 08 11,4
Ve (m*/ha) 113,7 179,4 2.1 54,0

Del area total descrita, conscientes de la limitacion para estimar variables dasométricas en ma-
sas mixtas y teniendo en cuenta el objetivo del presente trabajo, se seleccionaron las masas puras de
pino carrasco sin importar la presencia de sotobosque, ocupando estas un total de superficie de 750
hectareas (ver Mapa 3: Vegetacion, en Anexo 1).

1.3.2. Datos LiDAR.
Introduccién al LiDAR.

El LIDAR es un sistema activo de deteccion remota basado en un escaner laser. Los sensores
activos, son aquellos que emiten energia sobre el objeto y reciben la sefial reflejada por el mismo.
La base tedrica del funcionamiento de un sensor LiDAR es sencilla: el sensor mide el tiempo que la
luz laser emitida tarda en ir y volver a un objeto en el cual rebota (distanciometro laser). Como las
coordenadas y la direccion exacta de emision de cada pulso laser son conocidas, el sensor calcula el
espacio recorrido por cada pulso de luz y por consiguiente, la tripleta de coordenadas de cada re-
torno del laser en las diferentes superficies (Vosselman y Maas, 2010).




Existen diferentes clasificaciones de la tecnologia LIDAR. Una de las mas comunes diferencia
entre las distintas plataformas empleadas para la captura de los datos: satelital, aeroportado, terrestre
y terrestre movil. El sensor empleado en la toma de datos LIDAR-PNOA es un sensor aeroportado,
en el que la emision de pulsos a una elevada frecuencia, combinado con el desplazamiento de la
aeronave, permite la obtencion de informacion tridimensional de la superficie.

Para conocer con exactitud tanto las coordenadas del sensor, como la orientacion de este, y en
definitiva, para poder ubicar correctamente cada tripleta de coordenadas, se hace necesaria la utili-
zacion de un GPS diferencial y un sistema de medicidon inercial IMU (Inertial Measurement Unit):

= GPS diferencial: es un tipo de receptor que ademas de recibir y procesar la informacion de los
satélites, recibe y procesa, simultdneamente, otra informacién adicional procedente de una esta-
cion terrestre situada en un lugar cercano y reconocido por el receptor. Esta informacion com-
plementaria permite corregir las inexactitudes que se puedan introducir en las sefiales que el re-
ceptor recibe de los satélites. En este caso, la estacion terrestre transmite al receptor GPS los
ajustes que es necesario realizar en todo momento, este los contrasta con su propia informacion
y realiza las correcciones almacenando los datos con una gran exactitud.

= IMU: es un dispositivo electronico que mide e informa acerca de la velocidad, orientacion y
fuerzas gravitacionales de un aparato, usando una combinacion de acelerémetros y giréscopos.

La caracteristica fundamental que hace de la tecnologia LiIDAR una herramienta de gran utili-
dad en el &mbito del inventario forestal, es la capacidad multi-retorno de un mismo pulso. Cuando
el pulso laser llega al terreno, se comporta de forma diferente dependiendo de las caracteristicas de
los objetos que se encuentra:

= Superficie sélida: el pulso se refleja completamente y regresa al avion (1 retorno).

= Superficie de agua: el pulso laser es absorbido, por lo que no se obtiene informacion.

= Vegetacidn: generalmente el pulso emitido por el sensor genera multiples retornos, ya que parte
del pulso se refleja en el arbol (retorno 1) y el resto del pulso sigue incidiendo hasta encontrar
otro obstaculo, que puede ser otra parte del arbol, matorral o el propio suelo (retorno 2, 3 y su-
cesivos), asi hasta que la superficie que encuentre sea completamente sélida y el pulso regrese
completamente al sensor (Figura 2).
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Figura 2. Mdltiples retornos LIiDAR cuando el pulso atraviesa un arbol (Fuente: Vosselman y Maas, 2010).

El nimero méaximo de retornos se ve limitado, ademas de por la superficie objetivo, por las ca-
racteristicas del sensor.

Si el pulso laser rebotara sobre la primera superficie con la que contacta, seria imposible obte-
ner retornos procedentes del suelo en una masa arbérea y por tanto, solo dispondriamos de un mo-
delo digital de superficie de copas, no pudiendo conocer la altura respecto al suelo de cada retorno.




Se debe tener en cuenta que el sensor trabaja con una elevada frecuencia, por lo que es posible ge-
nerar modelos de gran detalle, muy dificiles de obtener con otras tecnologias (Figura 3).
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Figura 3. 1zq. Modelo digital de elevaciones (MDE) del IGN, resolucion 5x5 metros. Drcha. MDE del IGN
elaborado con tecnologia LiDAR, resolucion 5x5 metros.

Descripcion del vuelo y datos LiDAR.

Para el presente trabajo, como ya se ha mencionado anteriormente, se han empleado los datos
LiDAR PNOA. El proyecto PNOA es una iniciativa del Instituto Geografico Nacional (IGN) como
respuesta a la directiva europea INSPIRE (Infrastructure for Spatial Information in the European
Community). El proyecto tiene por objetivo lograr una cobertura completa, homogénea, periddica y
continua de Esparfia, con ortofotografias y modelos digitales del terreno de alta resolucion, para ello
cuenta con el respaldo de la Administracion General del Estado y de ciertas Administraciones Au-
tondmicas. Con objeto de lograr esta cobertura digital y gracias a la colaboracion entre diferentes
Comunidades Auténomas y Ministerios, el IGN puso en marcha en 2009 la toma de datos LiDAR
para buena parte del territorio espafiol (Figura 4).

Cobertura LIDAR. Densidad 0,5p/m2
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Figura 4. Coberturas LIDAR-PNOA (Fuente: http://www.ign.es/PNOA/vuelo_lidar.html).
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En concreto, los datos LiDAR con los que se realizé el presente trabajo fueron tomados durante
los meses de agosto y octubre del afio 2010. Pese a haber cierto desfase temporal con los datos de
campo (2013), este no se considerd importante, ya que, en ese intervalo de tiempo, no se han produ-
cido cambios significativos en la estructura forestal. Las Unicas perturbaciones recientes, que han
afectado a la zona de estudio, fueron ciertos derribos fruto de la ciclogénesis explosiva que sufri6 el
norte peninsular en el afio 2009, luego estas variaciones se encuentran recogidas en la informacion
capturada por el sensor.

El sensor LIDAR empleado fue un Leica ALS 50. Los datos recogidos por dicho sensor, segin
el IGN, deben ajustarse a las siguientes especificaciones:

= Maximo FOV permitido para planificar 50° efectivos.

=  Frecuencia de escaneado minima de 70 Hz, debiendo alcanzar un minimo de 40 Hz con un
FOV de 50°.

= Frecuencia de pulso de 45 kHz.

= Densidad promedio de 0,5 puntos del primer retorno por metro cuadrado (tramos 2 km de pasa-
da).

= Sensor calibrado con una antigiiedad menor de 12 meses.

=  Recubrimiento transversal > 15%.

= Longitud maxima de las pasadas 3 hojas MTN50 (Figura 5).

= Pasadas transversales de ajuste altimétrico.

*  Precision general altimétrica RMSEz < 0,20 m.

= Discrepancia altimétrica entre pasadas < 0,40 m.

= Distancia a estaciones de referencia < 40 km.

Figura 5. Ejemplo de planificacion de vuelo PNOA (Fuente: Ojeda, 2011).

El resultado del vuelo se plasma en un fichero en formato “.las” de 2 x 2 km, en el que apare-
cen todos los retornos captados por el sensor. Estos retornos estan georreferenciados segun el siste-
ma geodésico ETRS89, mediante proyeccion UTM, su atributo de altura se refiere a altura elipsoi-
dal y no se encuentran clasificados. Unicamente son dos las clases que aparecen, clase “7” confor-
mada por los puntos clasificados como ruido y clase “1” conformada por el resto de puntos.

Pretratamiento de datos LiDAR.

Estos ficheros “.las”, tal y como los proporciona el IGN, no pueden ser utilizados para la ex-
traccion de variables estadisticas. Como se ha comentado en el apartado anterior, estos ficheros con-
tienen la totalidad de retornos, que a modo de nube de puntos, han sido recogidos por el sensor. Esta
informacidn presenta errores, ya que pueden interponerse elementos extrafios impropios de la super-
ficie terrestre y su cubierta vegetal o antropica. Estos retornos, de en general altura muy superior a
la del suelo, pueden hacer variar los estadisticos extraidos de la nube de puntos. Por otra parte, la
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nube de puntos no esta clasificada, por lo que no se conoce el origen de los retornos, es decir, si
provienen de la superficie terrestre o de un elemento situado sobre esta. Ademas, la altura de cada
retorno esté referida al elipsoide de referencia y no a la altura sobre el suelo, que es la realmente
determinante a la hora de estimar variables dasométricas.

Asi pues, para corregir estas deficiencias se deben realizar los siguientes procesos:

= Extraccion de retornos clase “7”, debidos a ruido.

= Clasificacion de los puntos en “suelo” y “no suelo” y generacion de un MDE a partir de los
puntos de suelo.

= Normalizacién de la nube de puntos para obtener las alturas sobre el nivel del suelo y extrac-
cion de estadisticos.

Extraccion de retornos clase “7”, debidos a ruido.

Primeramente, utilizando la herramienta “BCAL” del software ENVI 5.0, se seleccionaron los
puntos clasificados como clase “1”, obviando los de clase “7”. Tras este proceso, tedricamente los
retornos deberian ser de la superficie terrestre o de elementos situados sobre la misma.

Sin embargo, posteriormente, se observo la presencia de datos erroneos, por lo que se creyo
conveniente depurarlos. Ocurria que ciertos puntos no clasificados como ruido (clase “7”), presen-
taban una altura sobre el suelo exageradamente elevada, del orden de cien metros. Para su depura-
cién, se genero un raster con la variable estadistica elevacion maxima de cada pixel, para poder ubi-
car los puntos con informacion aberrante (ver Mapa 4: Ruido informacion LIiDAR, en Anexo 1).
Una vez identificados, se clasificaron como clase “7” empleando ArcGIS 10.1, mediante la genera-
cion del perfil de la nube de puntos en ese pixel (Figura 6). Posteriormente se volvieron a seleccio-
nar en ENVI 5.0 solo los puntos de clase “1”.

LAS Dataset~ |/ Darocalasd hd ' B - Filters- | &> @ & E]

Class Code
(el

withheld  Key Synthetic
(©) et (©) et
©cear O clar ©

(@) skip (@) skip (@) skip

Figura 6. Inspeccion visual de retorno con informacion aberrante (circulo azul) y reclasificacion del mismo.

Clasificacion de los puntos en “suelo” y “no suelo” y generacion de MDE a partir de los puntos
de suelo.

El siguiente paso, fue la seleccion de los puntos reflejados por el suelo, empleando el comando
“GroundFilter” del software FUSION LDV v.3.20, desarrollado por el Departamento de Agricultura
y el Servicio Forestal de Estados Unidos para el estudio de los bosques. Este comando aplica un
algoritmo iterativo de clasificacion, adaptado de Kraus y Pfeifer (1998), que, en principio, genera

8



una superficie por minimos cuadrados usando todos los puntos (surface 1). Esta primera superficie,
se situara entre el verdadero suelo y el dosel arb6reo, de manera que los puntos de suelo se encon-
traran bajo la misma y los puntos de vegetacion sobre ella. Asi, el algoritmo calcula los pesos de
todos los puntos, en funcion de la distancia entre el punto y la superficie, segun la siguiente asigna-
cion:

1 visg
P = L <y <g+
Tl T @mogp) T EITY
0 gtw<w

Los parametros “a” y “b” toman el valor por defecto de 1 y 4, respectivamente, ya que asi se
obtienen buenos resultados en la mayoria de los casos.

cc_ 9

Variando los parametros “g” y “w” se modifica la distancia maxima para que los puntos inter-
vengan en el calculo de la superficie siguiente (Figura 7). Este proceso se ejecuta en 5 ocasiones,
aunque el nimero de iteraciones se puede variar aplicando la opcion “iterations” en el comando.

Finalmente, tras realizar el nimero indicado de iteraciones, todos los puntos que cumplan las
dos primeras condiciones son considerados de suelo. También se puede configurar la tolerancia para
definir los puntos de suelo después de la ultima iteracion (opcion “tolerance”).
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Figura 7. Asignacion de pesos a cada retorno en funcion de valores de “g” y “w” (Fuente: Rodriguez y Fer-
nandez, 2013).

Una vez generado el archivo en formato “.Ida” en el que se encuentran los puntos de suelo, se
debe proceder a la generacion del MDE. Para ello, se emple6 el comando “GridSurfaceCreate” del
software FUSION, en el que, introduciendo el archivo en formato “.1da” y un tamafio de celda de
salida, se genera el MDE en formato “.dtm”.

€ _ 9

Para asignar los valores de “g” y “w”, al no disponer de datos reales de campo con los que va-
lidar la precision de la clasificacion generada, se optd por realizar un analisis visual de los resulta-
dos en funcion de la presencia de rugosidades o irregularidades en los modelos de superficie gene-
rados. Para percibir con mayor detalle las irregularidades, se aplicé un sombreado al MDE mediante
la herramienta “Hillshade” de ArcGIS 10.1.

Normalizacion de la nube de puntos para obtener las alturas sobre el nivel del suelo y extraccién
de estadisticos.




Tras la generacion del MDE, se obtuvieron las alturas respecto al suelo de todos los retornos,
proceso conocido como normalizacion (Figura 8). Para ello se emple6 el comando “GridMetrics”,
que genera un archivo “.csv” en el que figuran las variables estadisticas de cada pixel del area de
estudio, es decir, las variables independientes que utilizaremos para extrapolar el modelo a toda la
superficie, lo que equivale a la primera fase del muestreo en dos fases (Cochran, 1963). En este ca-
so, el tamafio del pixel en el que se engloban los resultados fue de 25 metros, lo que equivale a una
superficie de 625 m?, similar a los 706,86 m? que ocupa una parcela de campo. Es importante que el
tamafo del pixel para el que se calculan las estadisticas sea similar al tamafio de la parcela con la
que se trabaja, para que las variables estadisticas calculadas en una y otra sean comparables. Esta
afirmacion es tanto mas importante cuanto mayor sea la heterogeneidad del monte a escala de deta-
lle. Si eligiéramos un tamafio menor de pixel las estadisticas tendrian mayor variabilidad y no se
podrian asociar a la informacion obtenida en la parcela de campo.

.
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Figura 8. Normalizacién de la nube de puntos LIiDAR (Fuente: Rodriguez y Fernandez, 2013).

El fichero “.csv” generado, mediante la herramienta “AddXYData” de ArcGIS 10.1, se trans-
formd en una capa vectorial de puntos y, posteriormente, con la herramienta “Point shapefile to ras-
ter”, se convirtio a formato raster, asignando la variable a representar y el paso de malla determina-
do.

Para obtener los estadisticos LIDAR de cada parcela (segunda fase del muestreo), primero, una
vez inventariadas todas las parcelas, se extrajo la nube de puntos de cada una, mediante el comando
“ClipData” de FUSION, comando que automaticamente normaliza la nube de puntos, incluyendo en
¢l el MDE generado. Asi, se obtiene un archivo “.las” normalizado por cada parcela muestreada.
Finalmente, mediante el comando “CloudMetrics”, también de FUSION, se obtuvieron las variables
independientes, extrayendo en un archivo “.csv” todos los estadisticos de cada parcela, que son los
que se emplearan para el ajuste con las variables obtenidas en campo (variables dependientes).

Tanto para ejecutar el comando “CloudMetrics”, como el comando “GridMetrics”, es necesario
aplicar un umbral de altura minima. Si un determinado retorno presenta una altura normalizada me-
nor a esta altura minima, dicho retorno no serd contabilizado en los estadisticos. En el monte
“Dehesa de los Enebrales”, el umbral se establecid en 6 metros de altura y, en “Valdéa y Carrilanga”,
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en 3 metros. Estos valores responden a la informacion recopilada durante el inventario de campo, en
el que se observd que el sotobosque emergente en algunos rodales del monte “Dehesa de los
Enebrales” presentaba, en general, una altura inferior a 6 metros. También se advirtio de la ejecu-
cion de podas en el monte “Valda y Carrilanga”, podas que en ningun caso superaban los 3 metros.

De no haber actuado asi, los estadisticos hubiesen variado por la presencia o no de podas o so-
tobosque, no influyendo ninguno de estos dos factores en las variables a estimar, lo que hubiese
generado errores en los modelos de estimacion.

En el Anexo 2, se muestra una descripcion detallada de los comando del software FUSION
empleados para el pretratamiento de los datos LIDAR.

1.3.3. Datos de campo

Planificacion del inventario de campo

El inventario de campo forma parte de la segunda fase del muestreo (ver apartado “1.1 Antece-
dentes™). El objetivo de este es cuantificar de forma precisa ciertos parametros dasométricos (varia-
bles dependientes) sobre una pequefia fraccion de la superficie total. Para ello, se inventarian, de
forma precisa, cierto nimero de parcelas de campo, cuya ubicacion debe conocerse con la mayor
precision posible. En base a la informacion obtenida en dichas parcelas, se ajustaran los modelos de
estimacion para toda la superficie, por lo que el inventario debe recoger toda la variabilidad de esta,
para minimizar los errores de extrapolacion. Asi, la planificacion del inventario consta de las si-
guientes fases:

= Estratificacion.

= Eleccion del numero y tamafio de las parcelas.
= Segregacién de rodales no objetivo.

= Clasificacién en areas homogeéneas.

= Asignacién de parcelas por categorias.

= Distribucién de parcelas.

Estratificacion.

Una de las ventajas que presenta el inventario LIDAR, frente al clasico, es la sencilla estratifi-
cacion. En el inventario tradicional, la superficie se debe dividir en estratos lo mas homogéneos
posibles en cuanto a especie y estructura de la masa, lo que conlleva un conocimiento previo ex-
haustivo de la zona, o de lo contrario unos malos resultados. Sin embargo, empleando datos LiDAR
las variaciones de estructura de la masa ya entran en juego en el modelo, mediante determinados
estadisticos, por lo que s6lo es necesario estratificar en funcidn de especie, ya que cada especie,
debido a su diferente arquitectura, presentara una distribucion diferente de los retornos.

En este caso, se va a realizar un solo estrato, ya que son masas con diferente edad y estructura,
pero de la misma especie principal.

Eleccién del nimero, forma y tamafio de las parcelas.

Con el empleo de la técnica del muestreo en dos fases con estimador de regresion, el nimero
de parcelas no depende de la variabilidad del monte ni de su superficie, sino que se determina en
base a la validez estadistica del modelo de estimacion a generar. Universalmente, se establece que
en modelos de regresion lineal, el tamafio adecuado de la muestra depende del nimero de variables
independientes segun la siguiente relacion:

Tamafio muestral = 20 x (N° de variables independientes)

En general, segun estudios previos (Naesset, 2002) son tres o menos las variables predictoras
empleadas, por lo que se establecié 60 como nimero minimo total de parcelas.

Se eligio la forma circular por el facil replanteo de esta, ya que para ello solo se necesita obte-
ner la localizacién de un punto, el centro de la parcela.
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Para la eleccion del tamafio de las parcelas, se tuvo en consideracion la densidad del monte y la
significacion de los estadisticos LIDAR que se obtendria para cada parcela. Observando los valores
de densidad en campo, como primera aproximacion, y consultando la base de datos del Tercer In-
ventario Forestal Nacional (IFN3) disponibles en la pagina web del Ministerio de Agricultura, Ali-
mentacion y Medioambiente (http://www.magrama.gob.es/es/biodiversidad/servicios/banco-datos-
naturaleza/informacion-disponible/ifn3.aspx) para la zona de estudio, se consider6 que con un radio
de 15 metros el nimero de pies por parcela era mayor a 15 en todo caso, considerando este valor
suficiente. Ademas los 706,86 m?de superficie que comprende la parcela, también se consideraron
suficientes para que los estadisticos LIDAR fueran significativos, ya que como minimo incluiria
unos 300 retornos (teniendo en cuenta los 0,5 pulsos/m? de densidad que se indican en las especifi-
caciones técnicas).

Segregacion de rodales no objetivo.

Para no incluir en el inventario zonas pobladas por quercineas, se establecié un proceso de
identificacion y delimitacion cartografica de estas zonas. Como ya se ha comentado, estos pequefios
rodales de quercineas ocupan, en general, el fondo de algunos barrancos del monte “Dehesa de los
Enebrales” y su delimitacion no es sencilla.

Como solucidn a este problema, se planted el uso de los propios datos LIDAR para discriminar
este tipo de masas. Para ello, primero se penso en los estadisticos LIDAR que mas podrian acusar el
diferente tipo de estructura de estos dos tipos de masas (quercineas y pinares). Las masas de querci-
neas en monte bajo, como es el caso del area de estudio, presentan una mayor continuidad vertical
que los pinares, lo que puede traducirse en un menor coeficiente de curtosis, una mayor rango inter-
cuartilico, un mayor coeficiente de variacion, etc. Para determinar el mejor o peor ajuste de cada
variable se utilizd una ortofotografia de alta resolucion, perfiles de la nube de puntos LiDAR (Figu-
ra 9) y el conocimiento previo de la zona de estudio. Asi, se generaron diferentes capas raster de
dichas variables mediante el comando “GridMetrics” (ver apartado 1.3.2 Datos LIDAR) y mediante
un proceso empirico de ensayo/error se estudio la adecuacion de estas y otras variables. Para una
precisa delimitacion, una vez seleccionada la variable mas adecuada y sobre la capa raster de la
misma, se fotointerpretaron estos rodales, utilizando como fondo la ortofotografia, quedando reco-
gidos en una capa vectorial (capa “quercineas”).

Figura 9. Distribucion puntos LiDAR: Izg. Encinar. Drcha. Pinar adulto.

Clasificacion en areas homogéneas.

El pequefio tamafio muestral hace que una distribucion regular que vendria dada por la realiza-
cion de un muestreo sistematico no asegure la representatividad de la muestra. Los modelos de es-
timacion deben recoger toda la variabilidad que potencialmente puede presentar el area de estudio,
por lo que se disefid una categorizacion de la zona, en base a la cual se estableceran el numero de
parcelas de cada clase.

En primer lugar, se establecieron las variables que podrian derivar en un tipo de masa diferente
0 que afectaran a la toma de datos LiDAR, es decir variables que pudieran alterar los resultados del
modelo. Asi, se considerd que algunas variables como la fraccion de cabida cubierta (FCC) o la
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altura dominante, influyen enormemente en las variables dasométricas de una masa, y que variables
como la pendiente o la presencia de sotobosque pueden influir en la precision del MDE. En la figura
10 se observa como en la zona oeste, con elevada pendiente y presencia de sotobosque, las irregula-
ridades son notablemente mayores que en la zona este.

Figura 10. Sombreado del MDE.

Como no se disponia de ninguna cartografia previa de dichas variables se estudio el uso de los
propios datos LIiDAR para esta segmentacion, seleccionando las variables mas adecuadas.

Posteriormente se cred un capa raster con cada una de estas variables y se reclasifico, mediante
“Reclassify” de ArcGIS 10.1, para que cada intervalo fuese representativo de cierta superficie del
monte.

Una vez obtenidas dichas capas raster se realizd una superposicion, sumandolas mediante la
herramienta “Raster Calculator” de ArcGIS 10.1., de manera que cada categoria presentara una nu-
meracion Unica que indicase sus caracteristicas. Es importante que a la hora de realizar este proceso
todos los rasters presenten la misma extension espacial y el mismo tamarfio de celda, para evitar el
solape de celdas que dara lugar a imprecisiones en la capa raster final.

Asignacion de parcelas por categorias.

A las capas raster generadas, una por cada monte, se les extrajo las zonas pobladas por querci-
neas, para asi contar solo con las zonas de pinar. Para este paso, se crearon dos capas vectoriales
con el &rea de interés de cada monte (capas “area de estudio”), eliminando la capa “quercineas” de
las capas vectoriales de cada monte, mediante la herramienta “Erase” de ArcGIS 10.1. Posterior-
mente con estas capas vectoriales se recortaron las capas raster empleando la herramienta “Extract
by Mask™.

Utilizando las capas réaster resultantes se calculd la superficie objeto de inventario de cada ca-
tegoria. EI nimero de parcelas a inventariar en cada categoria se establecié en funcién de la superfi-
cie ocupada por cada una.

Distribucion de las parcelas.

Una vez calculado el nimero de parcelas de cada categoria, se selecciond aleatoriamente la lo-
calizacion de cada una. Con el objeto de evitar el denominado “efecto borde” de las masas foresta-
les, se llevd a cabo un proceso de extraccion de areas colindantes a espacios abiertos y a masas de
quercineas, para asi evitar también que parte de la parcela esté ocupada por especies de este género.

El efecto borde, consecuencia de la colindancia con espacios abiertos o masas de menor altura,
genera que los pies afectados por este efecto presenten un mayor didmetro que los inclusos en la
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masa, debido principalmente a la mayor fraccion de copa viva de los pies afectados, fruto de una
mayor exposicion solar.

Para eliminar este efecto, primero se obtuvieron las capas vectoriales de los elementos que po-
drian ocasionarlo. Asi, las capas empleadas fueron: la de quercineas (obtenida previamente en este
mismo apartado, 1.3.3 Datos de campo), la de caminos y cortafuegos (obtenida del Sistema de In-
formacion Territorial de Aragon) y la de areas ralas o desarboladas. Esta Gltima capa, se genero a
partir de la capa raster creada en base a lo expuesto en este mismo apartado (1.3.3 Datos de campo)
para la clasificacion de la zona de estudio en areas homogéneas, seleccionando las celdas que pre-
sentasen una FCC estimada menor al 20% y transformando esta seleccion en poligonos, utilizando
la herramienta “Raster to Polygon” de ArcGIS 10.1.

Posteriormente, se generaron las areas de influencia de las capas vectoriales empleadas para lo-
calizar el efecto borde, mediante la herramienta “Buffer”, estableciendo una distancia de 50 metros.
Estas capas buffer, que representan las posibles areas de influencia del efecto borde, se unieron me-
diante la herramienta “Union”, para luego extraerlas de la capa “area de estudio” mediante la he-
rramienta “Erase”, obteniendo como resultado la capa vectorial del area a muestrear.

Finalmente, extrayendo dicha capa vectorial, mediante la herramienta “Extract by Mask”, a la
capa raster que representa la clasificacion de la zona de estudio en areas homogeéneas, se obtuvieron
las zonas a muestrear de cada categoria. A continuacion, se crearon diversas capas vectoriales a
partir de la seleccién de los pixeles que componen cada categoria, creando tantas capas como cate-
gorias a muestrear, empleando para ello la herramienta “Raster to Polygon”. Por Gltimo, mediante la
herramienta “Create Random Points” se crearon tantos puntos aleatorios en cada capa como parce-
las correspondian a cada categoria.

Como resultado se obtienen diversas capas de puntos con todas las parcelas a inventariar. El
modelo cartografico empleado para la distribucion de las parcelas de campo se muestra en la figura
11:
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Figura 11. Modelo cartografico empleado para la distribucion de las parcelas de campo.

Adgquisicion de datos de campo.

La ejecucion del trabajo de campo se llevo a cabo durante los meses de junio y julio de 2013.
El personal encargado de su materializacion fue un equipo formado por al menos dos personas, en
el que al menos una de ellas tenia cierta experiencia en el empleo del material de inventario.
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El material empleado fue el siguiente:

= Una cinta métrica de 25 metros de longitud.

= Dos cintas diamétricas (0 métricas en su defecto).
= Dos hipsémetros Suunto.

= Cinco jalones.

= Post-its numerados y agujas.

= Estadillos de campo (Figuras 14 y 15).

= GPS de mano.

= GPS diferencial Leica.

La metodologia seguida en el levantamiento de las parcelas fue la siguiente:

Primero, para realizar una primera aproximacion a las parcelas, se localizaron en la cartografia
generada a tal efecto (ver Mapa 6: Parcelas inventariadas, en Anexo 1), para después, mediante el
GPS de mano localizarla de forma més precisa (aprox. 2-3 metros). Posteriormente, empleando un
GPS-GNSS de precision centimétrica, modelo GS15 de Leica, se tomd el punto preciso del centro
de las parcelas, procurando que la precision de la captura fuese lo mejor posible, para que los esta-
disticos extraidos de la nube de puntos concuerden con la posicion exacta de estas.

Dependiendo de la cobertura mavil, necesaria para la realizacion de la correccion diferencial, y
de la cobertura satelital, la precision varia considerablemente, por lo que primo la obtencién de una
mayor precision frente al replanteo del punto exacto de localizacion teorica de la parcela.

Con respecto al replanteo de la parcela, en primer lugar se fijé un jalén en el centro de la parce-
la, y haciendo uso de la cinta métrica se establecieron cuatro mas en los limites de esta (radio 15
metros), distribuidos adecuadamente con el fin de evitar dudas en la inclusion de los pies mas aleja-
dos.

En relacion a las mediciones realizadas, se obtuvo el diametro normal (a 1,3 metros de altura)
de todos los pies de la parcela, fijando a cada uno un post-it con su nimero. Para facilitar y homo-
geneizar la medicién de los didmetros normales, cada operario midié a que parte de su cuerpo co-
rrespondian esos 1,3 metros y asi siempre medir el diametro a esa altura.

Para la medicion de las alturas, al objeto de obtener una muestra significativa, se eligieron cua-
tro pies de forma aleatoria (arboles tipo), a ser posible un pie de cada clase diamétrica presente con
mayor frecuencia en el monte (22,5-27,4; 27,5-32,4; 32,5-37,4; 37,5-42,4). Este dato previo se ob-
tuvo tras la inspeccion del IFN3 (EI post-it es la forma de conocer visualmente el didmetro del pie
en cuestion, para facilitar la seleccion). A estos cuatro pies seleccionados se les midio la altura total
y la altura hasta la primera rama viva, empleando para ello el hipsémetro. También se les asigné un
pardmetro de forma para estimar su volumen (Figura 12).

El procedimiento para obtener su altura es sencillo (Figura 13):

1. El operario, se debe colocar a la distancia que a priori mas se asemeje a la altura del arbol,
15 0 20 metros en este caso (depende del hipsémetro). Se debe intentar que desde esta po-
sicion se observe tanto la copa como la base del fuste y, a ser posible, se esté en curva de
nivel con el arbol.

2. Se lanza una visual al apice del arbol y se toma la lectura que marca la interseccién de la
linea horizontal del hipsémetro con la escala correspondiente a la distancia elegida.

3. Se lanza otra visual a la base del arbol y se toma de la misma forma la lectura correspon-
diente en la escala.

4. La altura se obtendré restando las dos medidas tomadas en la escala si las lecturas son una
positiva y otra negativa, y sumandolas si son las dos positivas 0 negativas.

Finalmente, tomando como radio 5 metros, se contabilizaron los pies de regenerado, que, aun-
que no se emplearon en las estimaciones con datos LiDAR, resultan de interés para la planificacion
de los tratamientos forestales. Asi mismo, mientras se realizaba la medicion o al finalizar la misma,
dependiendo del nimero de componentes del equipo, se recopil6 informacion general de la parcela
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como altura de poda, cubierta de sotobosque y su altura, cubierta de regenerado y sus caracteristi-
cas, presencia de dafios y agentes causantes, pedregosidad y superficie erosionada y tipo de esta.
Para evitar cierta subjetividad y facilitar la estimacion de la cobertura de sotobosque se insertd un
croquis en el estadillo.

En las figuras 14 y 15 se muestran los estadillos empleados para la recopilacion de los datos de
campo.

Obtencion de variables dasométricas.

En base a los datos de campo obtenidos se calcularon los parametros dasométricos de cada par-
cela. Los parametros obtenidos han sido los siguientes: volumen con corteza, area basimétrica, den-
sidad y altura media.

1. Arboles fusiformes practicamente en todo su fuste, con //— -\\
troncos maderables, limpios ¥ derechos de mas de 6 m,

flecha inferior al 1% de =u longitud, veta no torcida ¥ —ar

diametro normal mayor de 20 cm.

N

2 Arboles gue cumplan lac cuatro condiciones sipuientes:
ser fusiformes, tener tromcos madersbles de 4 o mas
metros, ramificarse por la parte superior ¥ no pertenecer a

la forma 1.

- u\
3. Arboles fusiformes pequetics, en los que el diametro de ( |

fuste de 75 mm gueda por debajo de los 4 m de altura.

=
V& =m I 4m

4. Arkel cuyoe tronco principal se ramifica antes de los 4 m de

altura ¥ gque pertenezcan & alpuna de las especies mas

adelante citadsas en las normas de este parametro.

5. Arboles cuyo fronco principal es tortuose, esti dafiado o es )J/\Jé%
muy ramoso, por lo gue no admite la clasificacion en formas 1, |
2 & 3; también pies de altura de fuste menor de 4 m si son de

especies diferentes a las de los codizgos 4 ¥ 6.

T /V/’

/

—"
\ .
A .
o 6. Arbolec descabezados o tracmochos a los gque se les ha
cortado la parte superior del tronco y las ramas en puntos
proximeos a su insercion en el tronco.

Figura 12. Parametro de forma (Fuente: IFN3).
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Figura 13. Calculo de la altura del arbol (Fuente: FAO, 2004).

El volumen con corteza (m*/ha) se refiere al volumen maderable del fuste principal, desde la
base hasta el diametro minimo de 7,5 cm, excluidas las ramas. Para la estimacion de esta variable,
se ha empleado la tarifa de cubicacion del IFN3 en la provincia de Zaragoza para pino carrasco.
Pese a haber inventariado arboles tipo con parametro de forma “1”, no se dispone para la especie y
provincia tarifa de cubicacion para estos, por lo que se aplica la generada para los de forma “2”’:

Vee (dm3) = 0,00094 * (dn)19209 x (h)07264
Donde:
dn: diametro normal del arbol (mm).

h: altura del arbol (m).

Una vez obtenido el volumen de cada pie se realiza el sumatorio de todos ellos y se refiere a la
hectarea, segun la siguiente expresion:

3 Vee: 3
m >=M*10_000

Volumen <E

Sparcela

Donde:
Vcci: volumen con corteza de cada pie (m°).

Sparcela: area de las parcelas inventariadas en (m2).

Del procedimiento presentado para el calculo del volumen, se deduce la necesidad de obtener
la altura de cada arbol de la parcela, pero, tal y como se ha comentado anteriormente, este valor
unicamente se midio en cuatro arboles de cada parcela, por lo que para la estimacion de la altura de
los arboles no medidos en campo, se ha generado un modelo predictivo generalizado, es decir in-
cluyendo en él todos los arboles tipo inventariados (239 arboles). Este modelo trata de establecer
una relacion entre la altura de cada arbol (variable dependiente) y otros parametros medidos en
campo (variables independientes), como el didmetro normal o el area basimétrica. Con excepcion de
la variable dependiente y de las independientes, la metodologia seguida para la generacion del mo-
delo predictivo es similar a la que se presenta en el siguiente apartado para la generacion de mode-
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los de estimacion de variables dasométricas (1.3.4 Modelos predictivos) por lo que se explicara en
el citado apartado.

ME Parcela Autares: Dia
Coard. b ¥ Hara camienza
Hara fin
Satobasque f Pasto Ioanas Miwel AaEmEe
Ecpecie FCC wlamz |Altura

0,500 dafes, 1. <255 ok, L, 25-300% oks, 3. S0-TE5 ok, 4. >T55 oks

wiemo, ongos oedoradanes dedo ldones, mooendago ...

Rezeneracian [Tatal parcela, en FCC)
,3=h= h=13vyd< |h= 13y 25<
13m 2.5Lm d<75tm

Ecpecie h<0,%m

Huke, ¥, R o, 1-2%, Esaass . < 100 Hormal 10-25% Apued, 25- TS5, Wy doun, =TSR

Erasian Tipa Superfizie Altura de poda [m):
Pedregasidad [%):

W mlnd v, Sge s damnds

Cheervaciones:

Figura 14. Cara A del estadillo de campo.
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Parcela:

Ne Pies mayores N2 Pies mayores
Especie Dncm Especie Dn ¢m
1 26
2 27
3 28
4 29
5 30
6 31
7 32
8 33
9 34
10 35
11 36
12 37
13 38
14 39
15 40
16 41
17 42
18 43
19 44
20 45
21 46
22 47
23 48
24 49
25 50
Arboles Tipo
Especie Dn {cm) H {m) H12ramav. Forma
1 22,5-27.4
2 27,5 32,4
3 32,5-37.4
4 37,5-42,4
Regeneracion (R=5m)
Especie h<0,3m O‘i’ ;:< h>13yd<25cm | h>13y25<d<75cm

Figura 15. Cara B del estadillo de campo.

El area basimétrica se obtiene sumando las secciones normales (a 1,3 metros de altura) de to-
dos los pies de la parcela y dividiendo entre la superficie de la misma, para finalmente, extrapolarlo
a una superficie de una hectarea.

Donde:

)

T
4

Sparcela

2 dn;

*10.000

dn;: didametro normal de cada pie inventariado en (m).
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Sparcela: Area de las parcelas inventariadas en (m?).

La densidad, expresada en numero de pies por hectarea, se calcula refiriendo a la hectarea los
pies contabilizados en la parcela:

Pies N;
N (—) = *10.000
ha Sparcela

Donde:
N;: namero de pies en la parcela i.

Sparcela: area de las parcelas inventariadas en (m?).

La altura media de cada parcela, se ha obtenido realizando el promedio de las alturas individua-
les de cada arbol, obtenidas segun el modelo de estimacion de las alturas de los arboles citado en la
descripcion del célculo del volumen.

1.3.4. Modelos predictivos para la estimacion de variables.

Una vez obtenidas las variables dependientes, a partir de los datos de campo, y las variables in-
dependientes, en el caso de la estimacion de la altura de los arboles mediante trabajo de campo, y en
el caso de variables dasométricas mediante el tratamiento de los datos capturados por el sensor Li-
DAR, se relacionaron mediante un modelo de regresion lineal.

Para la generacion de los modelos de regresion, primero se preseleccionaron las variables inde-
pendientes que mejor se correlacionaban con la variable a estimar (coeficiente de correlacion de
“Spearman” y significacion estadistica). Posteriormente, estas variables se incluyeron en un proceso
de seleccion, en el que, finalmente, se eligieron el menor nimero de las que aportasen méas informa-
cion, empleando para ello el método de seleccion “paso a paso” del paquete “R-Commander” del
software estadistico “R”. Una vez seleccionadas las variables independientes se ajusté un modelo de
regresion lineal por el método de minimos cuadrados, empleando también el software “R”. EI mo-
delo resultante debe ser significativo, al igual que las variables independientes seleccionadas (nive-
les de significacion del 0,05). Si alguna variable no resultase significativa al nivel establecido, o
presentase cierta correlacion con otra de mayor significancia, seria excluida del modelo.

Tras establecer el modelo se comprob6 el cumplimiento de las hipétesis basicas que debe cum-
plir un modelo de regresion lineal, empleando para ello las graficas basicas de diagnostico del soft-
ware “R”. En la figura 16 se muestran las graficas basicas de diagnéstico, conformadas por la grafi-
ca “Residuals vs Fitted”, que representa los residuos frente a los valores predichos; la grafica
“Normal Q-Q”, que muestra los residuos tipificados frente a los cuantiles tedricos de una distribu-
cion gausiana; la grafica “Scale-Location”, que representa la raiz del valor absoluto del residuo
frente al valor predicho, y la grafica “Residuals vs Leverage”, que muestra los residuos tipificados
frente a “leverage” (que da idea de la influencia del dato en el modelo) y la distancia de “cook” de
cada dato (mostrada mediante lineas rojas discontinuas).

Cuando el diagnostico grafico resulté ambiguo, se recurrio a otras pruebas analiticas realizadas
mediante el software estadistico “R”.

A continuacion se listan las hipdtesis basicas de un modelo de regresion lineal (Garcia, 1992),
asi como las caracteristicas graficas y pruebas analiticas empleadas para evaluar su cumplimiento:

= Ausencia de errores de especificacion: dichos erros hacen que el modelo de regresion no pro-
porcione un buen ajuste, haciendo que las predicciones sean malas sobre todo fuera del rango
de valores observados. Esto puede ser por falta de linealidad o porque existen variables explica-
tivas relevantes que no han sido incluidas en el modelo. Este error se da cuando los parametros
que indican la bondad del ajuste (R* corregido, RMSE y sesgo) no son aceptables o cuando las
variables predictoras carecen de significancia en el modelo. También podemos validar la rela-
cion lineal de las variables realizando el test reset de “no linealidad” o de “Ramsey”, en el que
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si el p-valor es menor de 0,05, se rechaza la hipétesis nula, luego el modelo adolece de errores
de especificacion, siendo mas acertado establecer un modelo cuadratico o cubico.

= Normalidad: los residuos obtenidos deben presentar una distribucion normal. EI cumplimiento
de esta hipdtesis se puede evaluar en el grafico “Normal Q-Q”, observando si los puntos no se
desvian de la recta diagonal. También podemos aplicar a los residuos el test de “Shapiro—
Wilk”, en el que para aceptar la hipotesis nula, es decir, la normalidad de los residuos, el p-
valor debe ser mayor que 0,05.

= Homocedasticidad: los errores presentan una varianza constante. El grafico “Escale-Location”
facilita la diagnosis de la homocedasticidad, que se cumple cuando la linea representada es ho-
rizontal y los puntos presentan una distribucién homogénea, sin grandes agrupaciones. Como
prueba cuantitativa se aplica el test de “Breush-Pagan”, en el que si el p-valor es inferior a 0.05,
se rechaza la hipotesis nula, existiendo heterocedasticidad en el modelo.

= Independencia: los errores en la medicion de las variables explicativas son independientes entre
si. Esta hipotesis se puede verificar observando que la linea que describen los puntos en el gra-
fico “Residuals vs Fitted” sea horizontal. Aplicando el test de “Durbin-Watson” podemos veri-
ficarlo cuantitativamente, cumpliendo la hipdtesis si el resultado esta entre 1 y 3, siendo 2 el
valor 6ptimo.

= No colinealidad: las variables regresoras son muy dependientes entre si, y es dificil separar su
contribucion individual al modelo. En este caso, si una variable es dependiente de otra no ten-
dré significacion en el modelo. Si se da este caso, los pardmetros del modelo se muestran muy
inestables, presentado varianzas muy grandes. Aplicando el “factor de inflacion de varianza”
puede percibirse dicha colinealidad, cuando este factor supera el valor 4.

= Ausencia de valores atipicos 0 heterogéneos: existen datos atipicos que se separan de la nube de
datos muestrales que pueden influir en la estimacién del modelo de regresion o que no se ajus-
tan al modelo. Realizando el test “Bonferroni”, se pueden detectar dichos valores atipicos, y
observando el grafico “Residuals vs Leverage” se puede apreciar Si estos puntos presentan una
distancia de “Cook” inferior a 1, lo que significara que ninguno de ellos resulta influyente en la
estimacion del modelo.

Residuals vs Fitted Normal Q-Q
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I 1

Residuals

Standardized residuals
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Figura 16. Graficas bésicas de diagnostico.

Se estudié la idoneidad tanto de las variables originales como de nuevas variables generadas
mediante la transformacion logaritmica de estas. En ocasiones, esta transformacion de variables
resulta util para el cumplimiento de las hipdtesis basicas de los modelos lineales. Ademas, en cier-
tos casos, las relaciones que se establecen entre la variable dependiente y las independientes no son
lineales, pero realizando este tipo de transformaciones podemos ajustarlas adecuadamente mediante
regresion lineal (Naesset, 2002):

= Si la relacion entre variables es exponencial, se puede solucionar mediante regresion lineal
aplicando el logaritmo natural a la variable dependiente. EI modelo lineal generado, aplicando
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la transformacion logaritmica inversa (conversion exponencial), serd equivalente a un modelo
exponencial, en el que intervienen las variables originales:

In(Y) =Ln(a) + bX & Y = a * e?X

= Si la relacién entre variables es potencial, se puede solucionar mediante regresion lineal apli-
cando el logaritmo natural a todas las variables. EI modelo lineal generado, aplicando la trans-
formacion logaritmica inversa, sera equivalente a un modelo potencial, en el que intervienen las
variables originales:

In(Y)=ILn(a)+bIn(X) oY =axX>

En ambos casos, la transformacion logaritmica inversa introduce un sesgo (subestimacion) en
el modelo, ya que el error aditivo, generado en el modelo lineal, se convierte en multiplicativo al
aplicar dicha transformacion (Baskerville, 1972). Para la eliminacion de este sesgo, el resultado
final debe ser multiplicado por un factor de correccion (FC), calculado a partir del error estandar de
estimacion (SEE), segun la siguiente expresion (Sprugel, 1983):

SEE?
FC=¢e 2

Donde:

5 (LnY, — Inv;)"

EE =
5 N—-K-1

Siendo “N” el tamafio de la muestra, K el numero de parametros del modelo, LnY; el valor ob-
servado y LnY el valor predicho por el modelo.

De entre los modelos establecidos que cumplen las citadas hipétesis basicas, se selecciond el
modelo 6ptimo, comparando para ello los estadisticos que indican la bondad del ajuste: el coeficien-
te de determinacion ajustado (R? corregido) y la media (sesgo) vy la raiz de la media cuadratica de
los errores (RMSE). El sesgo evalda la desviacion del modelo respecto a los valores observados, el
RMSE analiza la precision de las estimaciones y el R? corregido determina la variabilidad total que
es explicada por el modelo, teniendo en cuenta el nimero de variables. Se debe tener en cuenta que,
en modelos cuyas variables han sido transformadas logaritmicamente tanto el sesgo, como el
RMSE, no estan en las mismas unidades que la variable a estimar, por lo que para hacer compara-
bles estos valores se deben recalcular una vez aplicada la transformacion logaritmica inversa al mo-
delo.

Finalmente, debido a que la bondad del ajuste no refleja necesariamente la bondad de una pre-
diccion futura (Myers, 1990), es recomendable, para analizar la capacidad predictiva del modelo,
realizar una validacion del mismo con un conjunto independiente de datos (Kozak y Kozak, 2003).
En este caso so6lo se dispone de los datos de campo empleados para el ajuste, por lo que se ha reali-
zado para ello un proceso de validacion cruzada dejando uno fuera (Leave-one-out cross-validation
LOOCV), mediante el software estadistico “R”. Este procedimiento consiste en extraer en cada ite-
racion una parcela del conjunto muestral, ajustar el modelo (con las mismas variables independien-
tes) y evaluar la estimacion en la parcela extraida. Este proceso iterativo se repite tantas veces como
parcelas se han tomado, comparando el valor estimado con el valor real, obteniendo asi el error co-
metido en cada una, comparando el sesgo, la RMSE y la media de los R? corregidos, con los obte-
nidos empleando la totalidad de la muestra, se puede validar la capacidad predictiva del modelo. Si
dichos parametros son similares, se descarta el sobreajuste del modelo a los datos de entrenamiento,
siendo este util para fines predictivos. En el caso de modelos con variables transformadas, su vali-
dacion se realizd manteniendo su forma lineal, sin realizar la transformacion logaritmica inversa
descrita anteriormente. Una vez validado el modelo, se obtuvieron los coeficientes aplicables a cada
variable, realizando para ello la media aritmetica de los resultantes en cada iteracion.
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1.3.5. Representacion cartogréafica de variables modeladas.

Con los modelos de estimacion de variables dasométricas calculados, es posible representar
graficamente sus estimaciones. EI método mas sencillo, y que menos resultados intermedios genera,
consiste en crear un fichero “.csv” con los estadisticos que intervienen en los modelos, empleando
para ello el comando “GridMetrics” del software FUSION, para posteriormente convertir este fiche-
ro en una capa vectorial de puntos, mediante la herramienta “AddXYData” de ArcGIS 10.1 (ver
apartado 1.3.2 Datos LIiDAR), y, mediante la calculadora de campos “Field calculator”, aplicar, en
un nuevo campo, la ecuacién que establece el modelo. Finalmente, empleando la herramienta “Point
to raster” generaremos la capa continua que representa la variable dasométrica estimada.

2. DESARROLLO ANALITICO: RESULTADOS.
2.1. Pretratamientos y extraccion de estadisticos LiDAR.

Los valores de “g” y “w”, empleados en la fase de seleccion de los puntos de “suelo”, que me-
jor resultado ofrecen para el rea de estudio son -2,5 y 2 respectivamente. En la figura 17 se puede
observar el MDE generado con estos parametros y compararlo con otro MDE generado en el proce-
so de ensayo/error.

S Ll G 5 ke

Figura 17. Detalle de algunos sombreados de los MDE generados: Izq. “g”=-2,5 y “w”=2. Dch. “g’=-2y
“w’=2,5.

En general, aumentado el valor de “w”, se incrementaban las irregularidades, y disminuyendo
el valor de “g”, el nimero de puntos clasificados como suelo se veia notablemente disminuido.

Para la generacion del MDE, necesario para la normalizacién de la nube de puntos, se empled
un tamafio de celda de 1 metro, ya que, pese a no disponer de informacién en todas las celdas, em-
pleando un tamafio mayor (2 o 3 metros) las irregularidades del modelo debidas a una errénea clasi-
ficacion eran mayores. Esta situacion se daba en zonas donde la gran espesura arborea y arbustiva
hace que los retornos de suelo captados por el sensor sean escasos. Ademas, el problema de no dis-
poner de informacién en algunas celdas (densidad media de 0,5 pulsos por m?) se ve corregido por
la interpolacién con celdas vecinas que realiza el algoritmo en estos casos.

En la tabla 3, se muestra el resumen de los estadisticos LIDAR extraidos para el total de las
parcelas inventariadas. De los estadisticos que ofrece el software FUSION se han obviado los no
normalizados, como el namero total de retornos, el nimero de primeros retornos, el nimero de re-
tornos por encima de cierta altura, etc. El solape que se produce entre dos vuelos genera zonas con
una mayor densidad de datos, por lo que no es adecuado comparar variables no normalizadas. Se
puede observar que los estadisticos cubren un amplio rango de valores, lo que da idea del correcto
disefio del inventario de campo, ya que en €l se recoge gran parte de la variabilidad presente en la
zona de estudio.
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Tabla 3. Resumen de los estadisticos LIDAR en las parcelas inventariadas.

Estadisticos Media Méximo | Minimo Desy acion

tipica

Minimo 5,87 8,25 3,03 1,21

Maximo 14,49 20,07 5,09 2,66

Media 10,43 13,51 3,66 2,03

Moda 10,43 13,72 3,03 2,25

Desviacion estandar 1,79 2,70 0,70 0,40

Varianza 3,37 7,30 0,49 1,44

Coef. variacion 0,17 0,27 0,11 0,03

Rango intercuartilico 2,45 3,63 0,88 0,59

Asimetria -0,22 0,99 -0,92 0,35

kurtosis 2,74 3,81 1,82 0,43

AAD 1,44 2,21 0,55 0,32

Percentil 01 6,35 9,99 3,03 1,33

Percentil 05 7,31 11,18 3,04 1,55

Percentil 10 7,98 11,69 3,05 1,71

Percentil 20 8,90 12,21 3,07 1,89

Percentil 25 9,25 12,47 3,09 1,94

Percentil 30 9,56 12,68 3,11 1,98

Percentil 40 10,07 13,15 3,22 2,02

Percentil 50 10,54 13,66 3,42 2,09

Percentil 60 11,01 14,21 3,68 2,15

Percentil 70 11,46 14,75 3,90 2,21

Percentil 75 11,70 15,09 3,98 2,24

Percentil 80 11,98 15,49 4,05 2,29

Percentil 90 12,65 16,13 4,77 2,34

Percentil 95 13,19 17,38 5,07 2,48

Percentil 99 13,98 19,44 5,08 2,63

Porcentaje de primeros retornos por encima de 3 6 6 metros 64,04 93,63 4,34 19,45

Porcentaje de retornos por encima de 3 ¢ 6 metros 48,55 70,58 4,33 13,03
Porcentaje de retornos por encima de 3 6 6 metros respecto

J del totalpde primeros retornos i 64,80 9,75 434 19,74

Porcentaje de primeros retornos por encima de la media 33,99 52,17 1,86 10,56

Porcentaje de primeros retornos por encima de la moda 32,49 62,44 4,03 11,90

Porcentaje de retornos por encima de la media 25,48 39,81 1,85 7,04

Porcentaje de retornos por encima de la moda 24,51 43,04 4,02 8,41
Porcentaje de retornos por encima de la media respecto del

J total dg primeros retornos i 34,00 52,17 186 10,56

Porcentaje de retornos por encima de la moda respecto del 32,51 62,56 4,03 11,01

total de primeros retornos

2.2. Datos de campo.

2.2.1. Panificacion del inventario de campo.

Para la identificacion de los rodales de quercineas se optd por la utilizacion del Percentil 95 de
la altura (P95). La adecuacion de esta variable es debida a que estas masas de quercineas presentan
una menor altura que los pinares (pinares adultos de unos 100 afios de edad), por lo que estable-
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ciendo un limite de 9,5 metros en la variable P95 se discriminaban perfectamente estos dos tipos de
masa.

Las variables empleadas para la clasificacion en areas homogéneas de la zona de estudio fueron
las siguientes:

= Porcentaje de primeros retornos por encima de una determinada altura respecto del total de
primeros retornos: como estimacion de la FCC a cierta altura (Hopkinson y Chasmer, 2009).
= Para el monte “Dehesa de los Enebrales” se considerd una altura de 6 metros para el calculo
de este porcentaje, para asi no considerar la posible presencia de sotobosque
= Para el monte “Valda y Carrilanga” se consider6 una altura de 3 metros para el calculo de
este porcentaje, para que asi no influya la ejecucion de podas.
= P95: como estimacion de determinada altura de la masa, que da idea de la calidad de estacion a
igualdad de edad.
= Pendiente: obtenida del MDE generado con los propios datos LiDAR.
= Porcentaje de retornos entre 1,5 y 6 metros respecto del total: para estimar la presencia de soto-
bosque.

Estas variables, una vez convertidas en capas raster, y para lograr que cada intervalo fuese re-
presentativo de cierta superficie del monte, se reclasificaron del siguiente modo:

Porcentaje de primeros retornos por encima de 6 0 3 metros (en funcién del monte) respecto del
total de primeros retornos:
= Clase 1.000: <= 20% (arbolado ralo o desarbolado).
= Clase 2.000: 20% < x <= 40% (densidad baja).
= Clase 3.000: 40% < x < =70% (densidad media).
= Clase 4.000: >70% (densidad alta).
« P95
=  “Dechesa de los Encbrales™:
= Clase 100: <= 15 metros.
= Clase 200: >15 metros.
=  “Valday Carrilanga™:
= Clase 100: <= 9,5 metros.
= Clase 200: >9,5 metros.
Pendiente:
= Clase 10: <= 20%.
= Clase 20: 20% < x <= 40%.
= Clase 30: > 40%.
Porcentaje de retornos entre 1,5y 6 metros respecto al total
= Clase 1: <=15% (ausencia de sotobosque).
= Clase 2: >15% (presencia de sotobosque).

“La reclasificacion del P95 es diferente dependiendo del monte, ya que son de edad marcada-
mente diferenciada y por ello también de altura diferente.

“Este Gltimo parametro s6lo se tiene en cuenta en el monte “Dehesa de los Enebrales”, ya que
en “Valda y Carrilanga” no hay sotobosque (ver apartado 1.3.1 Area de estudio). La determinacion
del nivel critico de 15% se ha establecido, al igual que la seleccion y reclasificacion de las variables
empleadas para la segregacion en areas homogéneas, mediante un proceso empirico de ensayo/error
empleando el conocimiento previo de la zona y los perfiles de la nube de puntos LIiDAR (Figuras 18
y 19). Obviamente, esta cifra critica solo es aplicable al area de estudio en cuestion, igual que la
establecida para delimitar rodales de quercineas.

El resultado de la suma de las capas reclasificadas son dos capas raster (una por cada monte) en
las que el valor de cada celda indica las caracteristicas de esta: las unidades revelan la presencia o
no de sotobosque, las decenas la pendiente media, las centenas la calidad de estacién y las unidades
de millar la FCC. En el Mapa 5: Areas homogéneas del Anexo 1, se presenta la localizacion de las
categorias, para ilustrar la gran variedad y heterogeneidad existente en la zona respecto a las varia-
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bles de categorizacion utilizadas. Aunque la calidad de representacion no es buena y la interpreta-
cién de este mapa es realmente dificil, debido al excesivo nimero de categorias resultantes, se debe
tener en cuenta, que la utilidad de estas capas raster de categorias no reside en la visualizacion y
ubicacion de cada categoria, sino en la obtencion de la superficie de cada una, a fin de lograr un
muestreo del &rea de estudio lo mas representativo posible.
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Figura 18. Perfil de la nube de puntos en rodal con sotobosque.

Figura 19. Perfil de la nube de puntos en rodal sin sotobosque.

Finalmente, tras obtener el area de cada categoria, se asigné el nimero de parcelas a inventariar
en cada una (Tabla 4 y Tabla 5). A las categorias “arbolado ralo o desarbolado” (unidades de millar
1) solo se les asignaron dos parcelas, una en cada monte, debido a su escasa aportacion en cuanto a
recursos forestales.

En el Mapa 6: Parcelas inventariadas del Anexo 1, se muestra la ubicacion final de las parcelas
de campo, en el que se puede observar su distribucion aleatoria, no mostrando ningun patrén especi-
fico. También se observa como en el tercio sur del area de estudio, donde la pendiente es elevada y
el estrato arboreo es ralo, encontramos un menor nimero de parcelas, ya que como se ha comenta-
do, a estas tipologias de masa solo se les han asignado dos parcelas.
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Tabla 4. Superficie y nimero de parcelas por categoria, “Dehesa de los Enebrales”.

Categoria Superficie (ha) N° parcelas
1.XxX 83,3 1
3.121 70,9 7
3.122 43,8 4
3.132 40,3 4
3.131 31,2 3
3.111 30,8 3
3.221 30,1 3
4121 29,6 3
2.132 28,3 3
3.231 27,4 3
2.122 21,4 2
3.112 18,3 2
2.121 16,6 2
4111 15,0 1
3.232 12,3 1
4.221 12,1 1
2.111 11,6 1
2.131 10,3 1
2.112 10,1 1
3.222 10,0 1
4122 9,8 1
4.131 7,5 1
4.132 6,9 1
4.231 6,6 1
3.211 6,6 1
3.212 5,2 0
4112 4,0 0
2.231 3,9 0
4.232 3,7 0
2.221 3,6 0
2.232 3,6 0
4.211 3,1 0
4.222 2,9 0
2.222 2,8 0
2.211 1,3 0
2.212 1,1 0
4.212 0,6 0
Total 626,3 52

Tabla 5. Superficie y nimero de parcelas por categoria, “Valda y Carrilanga”.

Categoria Superficie (ha) N° parcelas
1.xx0 42,9 1
3.220 11,8 1
4.220 8,9 1
2.120 8,3 1
3.120 7,8 1
3.230 7,1 1
2.130 4,9 1
4.210 4,7 1




Categoria Superficie (ha) N° parcelas
3.210 4,7 1
2.220 3,9 0
2.110 3,8 0
2.230 3,8 0
3.110 3,6 0
3.130 2,8 0
2.210 18 0
4.230 1,7 0
4.120 0,6 0
4.110 0,2 0
4.130 0,1 0
Total 123,1 9

2.2.2. Adquisicion de datos de campo.

El nimero total de parcelas inventariadas fue 61, lo que equivale a una fraccion de muestreo de
0,58%. La precision obtenida en la ubicacién de las parcelas se muestra en la tabla 6, en la que se
observa que el 95% de los puntos presenta una precision submeétrica.

Tabla 6. Precision planimetria obtenida en la ubicacion de las parcelas.

Parcela | Precision planimetria (m) | Parcela | Precision planimetria (m)
1 1,004 32 0,157
2 0,093 33 0,109
3 0,444 34 0,116
4 0,487 35 0,276
5 4,053 36 0,091
6 0,630 37 0,021
7 0,587 38 0,178
8 0,128 39 0,583
9 0,137 40 0,150
10 0,396 41 0,101
11 0,108 42 0,100
12 0,207 43 0,120
13 0,129 44 0,103
14 0,597 45 0,108
15 0,506 46 0,124
16 0,427 47 0,008
17 0,168 48 0,030
18 0,190 49 0,223
19 0,454 50 0,002
20 0,115 51 0,117
21 0,082 52 0,102
22 1,107 53 0,031
23 0,152 54 0,009
24 0,693 55 0,116
25 0,204 56 0,014
26 0,029 57 0,084
27 0,019 58 0,108
28 0,033 59 0,128
29 0,623 60 0,364
30 0,142 61 0,428
31 0,032
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La informacion recopilada en este apartado se empled para el calculo de las variables dasome-
tricas: volumen con corteza, area basimétrica, densidad y altura media (ver apartado siguiente 2.2.3.
Obtencidn de variables dasométricas).

2.2.3. Obtencién de variables dasométricas.

Para construir el modelo de estimacion de la altura de cada arbol, en primer lugar se incluyo
Unicamente el diametro normal (dn) medido en campo, estableciéndose dos modelos (modelo 1y
2). Posteriormente, debido a los bajos coeficientes de correlacion obtenidos, se probo a introducir
variables de masa, ya que segun la literatura consultada, en general mejoran los resultados del mo-
delo (Diéguez-Aranda et al., 2005). Disponiamos pues del area basimétrica de cada parcela (G),
variable que se introdujo en los nuevos modelos (modelos 3, 4 y 5). Finalmente, se comprobo que el
modelo se ajustaba mejor a los datos utilizando como variables los logaritmos naturales de estas, ya
que el pardmetro R? corregido pasaba de 0,555 a 0,628. En la tabla 7 se muestran las caracteristicas
tenidas en cuenta para la eleccion del modelo:

Tabla 7. Resumen de los modelos analizados para la estimacion de la altura.

N° V;erﬁibileen?ee_ Vanat;lizsnlzgepen— Hipotesis basicas R* corregido | RMSE | Sesgo
1 H Dn Si 0,482 1,932 | 0,00
2 Ln(H) Dn No (normalidad) - - -
3 H Dn, G Si 0,555 1,786 | 0,00
4 Ln(H) Dn, G No (homocedasticidad) - - -
5 Ln(H) Ln(Dn), Ln(G) Si 0,628 1,736" | -0,01

“Calculados tras aplicar la trasformacion logaritmica inversa.

En la figura 20 se muestra el resumen del modelo seleccionado (modelo “5”), obtenido del
programa estadistico “R”. Se puede observar que tanto el modelo como las variables explicativas,
son significativas.

Residuals:
Min 1Q Median 3Q Max
-0.37359 -0.08563 ©0.00734 ©0.09354 0.40524

Coefficients:
Estimate 5td. Error t wvalue Pr(>|t])

{Intercept) -0.25377 0.14474 -1.753 0.0809 .

LN Dn 0.65986 0.03387 195.483 <« Z2e-16 ***

LN G 0.17894 0.02159 B.288 8.73e-15 ##=*

Signif. codes: O "%***' Q0,001 ***' Q.01 "*" Q.05 '." ©0.1 " " 1

Besidual =standard error: 0.135 on 236 degrees of freedom
Multiple R-squared: 0.6308, Adjusted R-sguared: 0.6277
F-statistic: 201.6 on 2 and 236 DF, p-value: < 2.2e-16

Figura 20. Modelo seleccionado para la estimacion de la altura individual.

Para comprobar el cumplimiento de las hipdtesis basicas se representaron las graficas basicas
de diagnostico (Figura 21), en las que se puede observar que el modelo se comporta correctamente.

Una vez seleccionado el modelo, se valido. En la tabla 8, se observa que los estadisticos sesgo,
RMSE y R? corregido obtenidos mediante la validacién cruzada son similares a los generados em-
pleando la totalidad de la muestra, lo que indica que el modelo es valido para la estimacién.
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Im(LN_H ~ LN_Dn + LN_G)

Residuals vs Fitted Normal Q-Q
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Figura 21. Graficas basicas de diagndstico del modelo de estimacién de la altura individual.

Tabla 8. Validacion del modelo lineal de estimacion de la altura individual.

Estadisticos | Modelo original Validacion cruzada

Sesgo -0,01 0,00
RMSE 0,135 0,136
R? corregido 0,628 0,628

Finalmente, una vez validado el modelo, se recalcularon sus coeficientes empleando los resul-
tados de la validacién cruzada y se transformé a un modelo potencial, realizando la transformacion
logaritmica inversa, todo segun lo explicado en el apartado 1.3.4 Modelos predictivos. Siendo este
el resultado obtenido:

h; = 0,776 * G179 « dn.9%%0 « CF

L

Donde:
h: altura del arbol (m).
dn;: didmetro normal del arbol (cm).
G: area basimétrica de la parcela (m°/ha)

CF: coeficiente de correccidon del sesgo del modelo, 1,009.

En el modelo obtenido la variable més significativa es el didmetro normal (variable que mas in-
formacién aporta al modelo), presentando una relacion directa con la variable a estimar. El area
basimétrica de la parcela, siendo menos significativa, también tiene una relacion directa con la altu-
ra del arbol. Estos resultados son completamente légicos, ya que el didmetro normal es la Gnica va-
riable individual del modelo, luego debe ser la mas significativa. Ademas, la relacion directa, entre
didmetro y altura, es obvia, ya que el diametro aumenta con el paso del tiempo, igual que la altura.
La relacion directa entre el rea basimétrica y la altura, hace que se compense el menor crecimiento
diametral de los pies desarrollados en rodales de mayor espesura, haciendo que, a igualdad de dia-
metro, un arbol presente mayor altura si ha sufrido una mayor competencia. El crecimiento en altura
de un arbol no esté influenciado por la espesura de la masa (a no ser que este se encuentre comple-
tamente dominado o sumergido), sin embargo, su crecimiento diametral si que se ve drasticamente
reducido por la espesura y, en definitiva, por la competencia a la que ha sido sometido.
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Tras estimar la altura de cada arbol se procedio a calcular las variables dasométricas de cada
parcela, variables que se muestran en la tabla 9. En ella se puede observar el amplio rango de los
valores calculados, lo que concuerda con la variabilidad observada en la extraccion de los estadisti-
cos LIDAR de cada parcela. Este amplio rango también constata la correcta planificacion del inven-
tario de campo, que hace que la variabilidad de la zona de estudio esté bien representada en la
muestra inventariada. En las tablas 1y 2, del apartado 1.3.1 Area de estudio, se muestra un resumen
de estas variables, para el monte “Dehesa de los Enebrales” y para el monte “Valda y Carrilanga”,
respectivamente.

Tabla 9. Resumen de las principales variables dasomeétricas por parcela. Dg: diametro cuadratico medio;
Hm: altura media; N: densidad de pies por hectéarea; G: Area basimétrica; VVcc: Volumen maderable con cor-
teza por hectarea.

Parcela Dg (cm) Hm (m) N (pies/ha) G (m%ha) Vce (m/ha)
1 30,1 13,4 424.4 30,2 156,4
2 29,6 12,8 367,8 25,3 125,6
3 26,3 12,3 608,3 33,0 164,3
4 27,0 11,9 438,6 25,2 120,3
5 29,4 12,3 282,9 19,3 96,7
6 26,7 12,4 551,7 30,9 154,5
7 28,7 12,8 367,8 23,9 118,6
8 30,7 12,8 212,2 15,7 77,8
9 34,3 14,1 254,6 23,5 127,3
10 30,1 13,1 410,3 29,1 150,4
11 28,7 12,4 424.4 27,5 134,3
12 38,3 154 254.,6 29,4 170,8
13 30,7 13,0 254,6 18,8 94,7
14 25,0 11,1 481,0 23,7 108,5
15 27,8 11,2 339,5 20,6 97,2
16 24,9 11,8 650,8 31,7 154,3
17 31,7 12,4 212,2 16,8 80,2
18 33,3 13,5 254,6 22,1 112,4
19 36,4 13,8 183,9 19,2 100,8
20 43,5 16,1 127,3 18,9 106,6
21 36,2 13,5 155,6 16,0 82,7
22 35,4 13,3 155,6 15,3 78,8
23 28,9 12,7 396,1 25,9 129,3
24 36,0 14,0 226,4 23,0 1240
25 28,4 12,1 282,9 17,9 89,0
26 36,2 12,9 99,0 10,2 50,4
27 33,3 14,4 382,0 33,3 179,9
28 31,2 11,2 1415 10,8 51,5
29 26,9 12,4 509,3 28,9 1444
30 32,3 13,6 282,9 23,2 123,3
31 35,0 14,6 282,9 27,3 147,0
32 35,8 14,2 212,2 21,3 113,1
33 27,8 12,6 438,6 26,6 131,5
34 35,3 14,5 254,6 25,0 134,8
35 30,3 12,2 282,9 20,4 96,8
36 30,6 12,8 339,5 25,0 126,3
37 33,6 12,5 141,5 12,5 60,8
38 29,0 12,1 339,5 22,4 105,3
39 43,3 15,9 169,8 25,0 140,5
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Parcela Dg (cm) Hm (m) N (pies/ha) G (m%ha) Vee (m/ha)
40 32,2 13,2 254,6 20,7 104,2
41 27,7 12,3 452,7 27,3 133,8
42 29,8 13,4 466,9 32,6 172,7
43 25,2 12,1 636,6 31,8 152,5
44 30,0 13,6 452,7 32,0 169,2
45 31,0 12,7 254,6 19,2 95,2
46 29,0 12,8 438,6 28,9 145,0
47 49,0 13,5 14,1 2,7 13,0
48 28,5 9,1 127,3 8,1 31,7
49 17,7 9,6 1471,3 36,4 155,5
50 17,8 8,9 1061,0 26,5 109,7
51 24,5 11,9 778,1 36,6 179,4
52 19,8 10,1 1032,7 31,7 1415
53 19,2 9,2 834,7 24,1 104,7
54 21,6 10,7 933,7 34,3 159,9
55 18,4 8,6 693,2 18,5 75,0
56 22,6 10,2 537,6 21,6 95,2
57 26,0 6,0 14,1 0,8 2,1
58 28,3 13,5 594,2 37,3 195,6
59 25,8 11,9 537,6 28,2 132,8
60 23,8 11,7 806,4 36,0 175,8
61 33,6 13,9 282,9 25,1 132,7

2.3. Modelo de estimacion del volumen.

En la tabla 10 se muestran las variables preseleccionadas para la generacién de cada modelo.
Los coeficientes de correlacién empleados para la preseleccion de variables se pueden consultar en
el Anexo 3.

Tabla 10. Variables preseleccionadas para cada modelo.

Variables
NO
Dependiente Independientes
Percentil 10, Porcentaje de primeros retornos por encima de 3 6 6 metros, Porcentaje de
1 Vcce retornos por encima de 3 6 6 metros respecto del total de primeros retornos, Moda y

Percentil 75.

Percentil 10, Percentil 80, Porcentaje de primeros retornos por encima de 3 6 6 metros,
2 Ln(Vcc) Porcentaje de retornos por encima de 3 6 6 metros respecto del total de primeros retor-
nos y Moda
Ln(Percentil 40), Ln(Porcentaje de retornos por encima de la media), Ln(Porcentaje de
3 Ln(Vcc) | primeros retornos por encima de 3 6 6 metros), Ln(Porcentaje de retornos por encima de

la media respecto del total de primeros retornos), Ln(Percentil 99), Ln(Percentil 80)

En la siguiente tabla se muestran las caracteristicas generales de los modelos generados para la
estimacion del volumen, una vez seleccionadas las variables que mejor resultado ofrecen.

Como se puede observar, Unicamente el modelo “1”, cuyas variables no estan transformadas
logaritmicamente, cumple las hipétesis basicas de los modelos de regresion lineal. En la figura 22 se
muestra el resumen de dicho modelo, obtenido del programa estadistico “R”. Se puede observar el
error estandar de estimacion (Residual standard error), el R? corregido y los coeficientes del mode-

32



lo. También podemos observar, que tanto el modelo como las variables explicativas, son significati-
vas.

Tabla 11. Resumen de los modelos analizados para la estimacion del volumen.

Variables
N° Hip6tesis bésicas | R? corregido | RMSE | Sesgo
Dependiente Independientes

Percentil 10, Porcentaje de retor-
nos por encima de 3 6 6 metros
respecto del total de primeros re-
tornos.

1 Vce Si 0,867 14,45 0,00

Percentil 80, Porcentaje de prime-
2 Ln(Vcc) ros retornos por encimade 36 6 | No (normalidad) - - -
metros.

Ln(Percentil 40), Ln(Porcentaje de

3 Ln(Vee) retornos por encima de la media)

No (normalidad) - - -

Residuals:

Min 1@ Median 3Q Max
-30.406 -8.923 -0.971 9.305 46.897
Coefficients:

Estimate 5td. Error t walue Pr(>|t])

(Intercept) -53.25388 10.33730 -5.152 3.24e-06 ##w
ElevP1l0 7.85423 1.13300 6.932 3.8le-09 ##%
Precent All returns aboveé Total first returns 1.68545 0.09823 17.159 <« Z2e-16 ***
Signif. codes: 0 "**%'" Q0,001 "**' Q.01 "*" 0.05 "." 0.1 " " 1

Residual standard error: 14.82 on 58 degrees of freedom
Multiple R-aquared: 0.8713, Adjusted R-=squared: 0.8669
F—statistic: 196.3 on 2 and 58 DF, p-value: < 2.2e-16

Figura 22. Modelo seleccionado para la estimacion del volumen.

Para comprobar el cumplimiento de las hipotesis basicas se representaron las graficas basicas
de diagnostico (Figura 23). Como dichas graficas generan ciertas dudas, se ejecutaron los analisis
cuantitativos descritos en el apartado 1.3.4 Modelos predictivos, obteniendo un resultado aceptable
en todos ellos (Tabla 12).

Im(Vee ~ ElevP10 + Precent_All_returns_above6_Total_first_returns)
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Figura 23. Graficas béasicas de diagndstico del modelo de estimacién del volumen.
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Tabla 12. Diagnostico analitico del modelo de estimacion del volumen.

T‘est r.e set c_Je Test de Sha- Test de Test de Dur- | . Fact(_),r de Test de Bon-
no lineali- . - . inflacion de .
) piro-Wilk | Breush-Pagan | bin-Watson . ferroni
dad varianza
Estadistico 2,276 0,984 0,216 1,954 1,028 Sin atipicos
P-valor 0,073 0,589 0,642

Tras seleccionar el modelo, se procedié a su validacion. En la tabla 13, se muestra que los esta-
disticos sesgo, RMSE y R? corregido obtenidos mediante la validacién cruzada son similares a los
generados empleando la totalidad de la muestra, lo que indica que el modelo es valido para la esti-
macion.

Tabla 13. Validacion del modelo de estimacion del volumen.

Estadisticos | Modelo original Validacion cruzada

Sesgo 0,00 0,16
RMSE 14,45 15,42
R? corregido 0,867 0,867

Finalmente, el modelo, una vez recalculados los coeficientes con los obtenidos en el proceso de
validacion, es el siguiente:

Vee = —53,300 + 7,857 * ElevP10 + 1,686 * %retornos,
Donde:
Vce: volumen con corteza por hectérea (m*/ha).
Percentil 10: percentil 10 de la altura de los puntos LiDAR (m).

%retornos;: porcentaje de retornos por encima de 3 6 6 metros (depende del monte) respecto del
total de primeros retornos (%).

La variable que mayor informacion aporta al modelo es el porcentaje de retornos por encima de
3 6 6 metros respecto del total de primeros retornos, presentando una relacion directa con el volu-
men. El percentil 10 de la altura de la nube de puntos LiDAR, siendo su significacién menor, tam-
bién presenta una relacion directa. EI modelo opera de forma ldgica, ya que, a mayor porcentaje de
retornos por encima de 3 6 6 metros respecto del total de primeros retornos, mayor sera la superficie
del suelo cubierta por el estrato arbdreo y por consiguiente mayor sera el volumen maderable por
hectarea, y a mayor altura del percentil 10, mayor sera el desarrollo de los pies que componen la
masa y por tanto también sera mayor el volumen que aportan. El percentil 10, puede parecer un per-
centil excesivamente bajo para la estimacion de una variable como el volumen, pero se debe tener
en cuenta, que solo se han computado los retornos LIDAR del dosel de copas (con altura minima de
3 6 6 metros, dependiendo del monte).

2.4. Modelo de estimacion del area basimétrica.

En la tabla 14 se muestran las variables preseleccionadas para la generacion de cada modelo.
Los coeficientes de correlacion empleados para la preseleccion de variables se pueden consultar en
el Anexo 3.

En la tabla 15 se muestran las caracteristicas generales de los modelos generados para la esti-
macion del area basimétrica, tras la seleccion de las variables que mejor resultado ofrecen.

Como se puede observar en la tabla 15, solo un modelo cumple las hipétesis béasicas de los mo-
delos de regresion lineal. El modelo “1”, solo incumple el requisito de linealidad, pero al presentar
el modelo “2” estadisticos de bondad similares, empleando tan solo una variable, se decidi6 selec-
cionar este modelo. La inclusién de una segunda variable solo aumenta en un 3,6% la variabilidad

34



explicada por el modelo. En la figura 24 se muestra el resumen del modelo “2”, obtenido del pro-
grama estadistico “R”. Se puede observar el error estandar de estimacion (Residual standard error),
el R? corregido y los coeficientes del modelo. También podemos observar, que tanto el modelo co-
mo las variables explicativas, son significativas. En este caso, el término constante (Intercept) no
resulta significativo, sin embargo el modelo es igualmente valido, ya que, simplemente, se debe a
que su valor es proximo a cero.

Tabla 14. Variables preseleccionadas para cada modelo.

Variables
NO
Dependiente Independientes
1 G Percentil 05, Moda, Porcentaje de primeros retornos por encima de 3 0 6 metros y Por-

centaje de retornos por encima de 3 6 6 metros respecto del total de primeros retornos.
2 G Percentil 05 y Porcentaje de primeros retornos por encima de 3 0 6 metros.
Percentil 10, Percentil 80, Percentil 99, Maximo, Moda, Porcentaje de primeros retornos

3 Ln(G) por encima de 3 0 6 metros, Porcentaje de retornos por encima de 3 6 6 metros,
Ln(Percentil 40), Ln(Percentil 80), Ln(Maximo), Ln(Moda), Ln(Porcentaje de prime-
4 Ln(G) ros retornos por encima de 3 o 6 metros), Ln(Porcentaje de retornos por encima de 3 6 6

metros respecto del total de primeros retornos) y Ln(Porcentaje de retornos por encima
de la media respecto del total de primeros retornos).

Tabla 15. Resumen de los modelos analizados para la estimacion del area basimétrica.

Variables
N° Hip6tesis bésicas | R? corregido | RMSE | Sesgo
Dependiente Independientes

Percentil 05, Porcentaje de prime-
1 G ros retornos por encima de 3 0 6 No (linealidad) 0,890 2,55 0,00
metros.

Porcentaje de primeros retornos

por encima de 3 0 6 metros. S| 0,854 2,96 0,00

Percentil 80, Porcentaje de prime-
3 Ln(G) ros retornos por encima de 306 | No (normalidad) - - -
metros.

Ln(Percentil 40), Ln(Porcentaje de
4 Ln(G) primeros retornos por encima de 3 | No (normalidad) - - -
0 6 metros)

Para comprobar el cumplimiento de las hipotesis basicas se representaron las graficas basicas
de diagnostico (Figura 25), en las que se puede observar que el modelo se comporta de forma nor-
mal. Sin embargo, para cerciorarnos se realizaron los analisis cuantitativos descritos en el apartado
1.3.4 Modelos predictivos (Tabla 16), obteniendo un resultado satisfactorio en todos ellos.

Una vez seleccionado el modelo, se valido. En la tabla 17, se observa que los estadisticos ses-
go, RMSE y R? corregido obtenidos mediante la validacién cruzada son similares a los generados
empleando la totalidad de la muestra, lo que indica que el modelo es valido para la estimacion.

Finalmente, el modelo, una vez recalculados los coeficientes con los obtenidos en el proceso de
validacion, es el siguiente:

G = —0,192 + 0,375 * %retornos,
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Donde:

G: area basimétrica (m?/ha).

%retornos,: porcentaje de primeros retornos por encima de 3 0 6 metros (en funcion del monte)

(%).

Residuals:

Min 1) Median 3Q Max
-7.3954 -2.2137 -0.1813 2.1354 7.8701
Coefficiencts:

Estimate S5ctd. Error t wvalue Pr(>|t]|)

(Intercept) -0.18884 1.33723 -0.141 . 888
FPercent first returns above 6 0.37535 0.01%%% 18.774 <2e=16 ***
Signif. codes: O "4ddr 0 001 "e%*' §_Q01 '%' .05 "." 0.1 " ' 1
Residual standard error: 3.013 on 59 degrees of freedom
Multiple R-squared: 0.8566, Adjusted R-sguared: 0.8542
F-statistiec: 352.5 on 1 and 59 DF, p-value: < 2.2e-16

Figura 24. Modelo de estimacion del area basimétrica.
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Figura 25. Graficas basicas de diagnostico del modelo de estimacion del area basimétrica.

Tabla 16. Diagnostico analitico del modelo de estimacion del area basimétrica.

'I"‘est rgset (.je Test de Sha- Test de Testde Dur- | . Fact(_),r de Test de Bon-
no lineali- ) . ) inflacion de .
” piro-Wilk | Breush-Pagan | bin-Watson . ferroni
dad varianza
Estadistico 1,222 0,087 2,459 1,864 Modelouni- | o ihicos
variable
P-valor 0,274 0,782 0,117

Tabla 17. Validacion del modelo lineal de estimacién del area basimétrica.

Estadisticos

Modelo original

Validacion cruzada

Sesgo 0,00 0,01
RMSE 2,96 3,05
R? corregido 0,854 0,854
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La Unica variable independiente que conforma el modelo es el porcentaje de primeros retornos
por encima de 3 0 6 metros, presentando una relacién directa con la variable a estimar. Asi, el mo-
delo es coherente, ya que a mayor porcentaje de primeros retornos por encima de 3 0 6 metros, ma-
yor seré la superficie ocupada por el estrato arbdreo y mayor sera el area basimetrica del rodal.

El modelo no incluye ninguna variable referida a la altura de la masa. Se podria pensar que este
tipo de variables debieran estar incluidas en el modelo, ya que la altura de la masa, guarda relacion
con el didmetro medio, y este, junto con la densidad, determina el area basimétrica de un rodal. Sin
embargo, en general, a mayor altura y mayor desarrollo de los pies, la densidad de estos es menor,
por lo que se compensa el mayor diametro medio de las masas méas adultas (mayor altura), con la
mayor densidad de las masas mas jovenes (menor altura), haciendo que el area basimétrica sea simi-
lar, no siendo muy influyentes en el modelo las variables relacionadas con la altura de la masa.

2.5. Modelo de estimacion de la densidad.

En la tabla 18 se muestran las variables preseleccionadas para la generacién de cada modelo.
Los coeficientes de correlacién empleados para la preseleccion de variables se pueden consultar en
el Anexo 3.

Tabla 18. Variables preseleccionadas para cada modelo.

Variables
NO
Dependiente Independientes
Minimo, Percentil 90, Porcentaje de primeros retornos por encima de 3 0 6 metros y
1 N Porcentaje de retornos por encima de 3 6 6 metros respecto del total de primeros retor-
nos.
Porcentaje de primeros retornos por encima de 3 0 6 metros y Porcentaje de retornos por
2 Ln(N) . ) .
encima de 3 6 6 metros respecto del total de primeros retornos
Ln(N) Ln(Porcentaje de primeros retornos por encima de 3 0 6 metros).
Ln(N) Ln(Percentil 95), Ln(Porcentaje de primeros retornos por encima de 3 0 6 metros).

En la tabla 19 se muestran las caracteristicas generales de los modelos generados, una vez se-
leccionadas las variables que mejor resultado ofrecen.

Tabla 19. Resumen de los modelos analizados para la estimacién de la densidad.

Variables
N° Hipétesis basicas | R? corregido | RMSE | Sesgo
Dependiente Independientes
Percentil 90, Porcentaje de prime-
1 N ros retornos por encima de 306 | No (normalidad) - - -
metros.

Porcentaje de primeros retornos

2 Ln(N) por encima de 3 0 6 metros. No (normalidad) i i )
3 Ln(N) Ln(Porcentff\Je de primeros retor- No (linealidad) 0,760 i )
nos por encima de 3 0 6 metros).
Ln(Percentil 95), Ln(Porcentaje de
4 Ln(N) primeros retornos por encima de 3 Si 0,858 113,93" | 1,92

0 6 metros).

“Calculados tras aplicar la trasformacion logaritmica inversa.

Como se puede observar en la tabla 19, solo un modelo (modelo “4”) cumple las hipotesis ba-
sicas de los modelos de regresion lineal, ademas es este el que mejores estadisticos de bondad del
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ajuste presenta. EI RMSE puede parecer elevado, pero se debe tener en cuenta que el nimero de
pies por hectérea presenta una gran variabilidad en la zona de estudio (desviacion tipica en las 61
parcelas, 271,22 pies/ha), por lo que un RMSE de 113,93 pies/ha es aceptable.

Se incluyé la variable percentil 95 de la altura, pese a su baja correlacion, por el siguiente razo-
namiento légico. Existen masas, que presentando una densidad notablemente menor a otras, poseen
una superficie ocupada por el dosel arboreo similar, es decir, un similar porcentaje de primeros re-
tornos por encima de una altura determinada, debido al mayor desarrollo de las copas en estas ma-
sas. Por ello, incluyendo el percentil 95 de la altura, que da idea de la altura de la masa y por tanto,
indirectamente, del desarrollo de los pies, es posible discernir entre masas, que teniendo el mismo
porcentaje de primeros retornos sobre una altura determinada, presentan un numero de pies por hec-
tarea sensiblemente diferente. En este caso, el razonamiento anterior es corroborado con unos bue-
nos estadisticos de ajuste.

En la figura 26 se muestra el resumen del modelo “4”, obtenido del programa estadistico “R”.
Se puede observar el error estandar de estimacion (Residual standard error), el R? corregido y los
coeficientes del modelo. También podemos observar, que tanto el modelo como las variables expli-
cativas, son significativas.

Residuals:
Min 1Q Median 3Q Max
-0.63167 -0.17480 -0.03574 0.20109 0.95964

Coefficients:
Estimate 5td. Error t wvalue Pr(>|t])

(Intercept) 3.00183 0.47942 6.261 5.03e-08 *w%%
LN Percent first returns above & 1.47047 0.07726 19.033 <« 2e-1§ #*#%
LN ElevP95 -1.25567 0.19558 -6.420 2.T74e-08 #*##*
Signif. codes: O '"#%%' Q_Q01 "#*%' Q.01 '#' 0.05 "." 0.1 " " 1

Residual sctandard error: 0.3088 on 58 degrees of freedom

Multiple R-sgquared: 0.8623, Adjusted R-squared: 0.8575

F-statistic: 181.6 on 2 and 58 DF, p-value: < 2.2e-16

Figura 26. Modelo de estimacion de la densidad.

Para comprobar el cumplimiento de las hipdtesis basicas se representaron las graficas basicas
de diagndstico (Figura 27). En la grafica “Residuals vs Leverage”, se puede observar que la parcela
“57” hace desviarse visiblemente el trazo rojo, por lo que se realizaron las pruebas analiticas descri-
tas en el apartado 1.3.4 Modelos predictivos (Tabla 20). Tras aplicar el test de “Bonferroni” la par-
cela “57” no se consider6 como valor atipico. Dicho test destaco la parcela “48” como atipica, pero
se puede observar que su distancia de “cook” es inferior a uno, por lo que su influencia en la esti-
macion del modelo no es considerable. El resultado del resto de pruebas analiticas fue aceptable.

Tras seleccionar el modelo, se procedié a su validacién. En la tabla 21, se muestra que los esta-
disticos sesgo, RMSE y R? corregido obtenidos mediante la validacién cruzada son similares a los
generados empleando la totalidad de la muestra, lo que indica que el modelo es valido para la esti-
macion.

Finalmente, el modelo, una vez recalculados los coeficientes y realizada la transformacion lo-
garitmica inversa, es el siguiente:

N = 20,247 * %retornos,>*’° « ElevP95~ 125 x CF
Donde:
N: densidad (pies/ha).
%retornos,: porcentaje de primeros retornos por encima de 3 0 6 metros (%).

Percentil 95: percentil 95 de la altura de los puntos LiDAR (m).
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CF: coeficiente de correccién del sesgo del modelo, 1,045.

Im(LN_N ~ LN_Percent_first_returns_above_6 + LN_ElevP95)
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Figura 27. Graficas basicas de diagnostico del modelo de estimacion de la densidad.

Tabla 20. Diagnostico analitico del modelo de estimacion de la densidad.

Test r.e set (.je Test de Sha- Test de Test de Dur- | . Fact(_),r de Test de Bon-
“no lineali- . . . inflacion de .
” piro-Wilk | Breush-Pagan | bin-Watson . ferroni
dad varianza
Estadistico 0,931 0,983 6,025 1,462 1,173 Parcela 48
P-valor 0,400 0,579 0,052 No influyente

Tabla 21. Validacion del modelo de estimacion de la densidad.

Estadisticos | Modelo original Validacion cruzada

Sesgo 0,00 0,00
RMSE 0,30 0,34
R? corregido 0,858 0,857

La variable que méas informacién aporta al modelo es el porcentaje de primeros retornos por
encima de 3 0 6 metros, presentando una relacion directa con la densidad. Por el contrario, el per-
centil 95 de la altura de la nube de puntos LIDAR presenta una relacién inversa. Asi, el modelo es-
tablecido se comporta de manera natural, ya que al aumentar el porcentaje de primeros retornos por
encima de 3 0 6 metros, aumentara la superficie cubierta por el estrato arb6reo y por consiguiente el
namero de pies por hectarea, y al aumentar el percentil 95 de la altura, aumentara la altura general
del rodal y por tanto el desarrollo de los arboles, haciendo que el nimero de estos por hectéarea dis-
minuya.

2.6. Modelo de estimacion de la altura media.

En la tabla 22 se muestran las variables preseleccionadas para la generacién de cada modelo.
Los coeficientes de correlacion empleados para la preseleccion de variables se pueden consultar en
el Anexo 3.

En la tabla 23 se muestran las caracteristicas generales de los modelos generados, tras seleccio-
nar las variables que mejor resultado ofrecen.
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Tabla 22. Variables preseleccionadas para cada modelo.

Variables
NO
Dependiente Independientes
Hm Percentil 70 y Percentil 90
Ln(HmM) Percentil 70 y Percentil 90
Ln(Hm) Ln(Percentil 50), Ln(Media)
Tabla 23. Resumen de los modelos analizados para la estimacion de la altura media.
Variables
Ne Hip6tesis bésicas | R? corregido | RMSE | Sesgo
Dependiente Independientes
1 Hm Percentil 70 No (Linealidad) 0,720 - -
2 Ln(Hm) Percentil 70 No (normalidad) - - -
3 | Ln(Hm) Ln(Percentil 50) Si 0,799 0,903" |0,017

“Calculados tras aplicar la trasformacion logaritmica inversa.

Como se puede observar en la tabla 23, solo un modelo (modelo “3”’) cumple las hipbtesis ba-
sicas de los modelos de regresion lineal, siendo este el que mejores estadisticos de ajuste presenta.
En la figura 28 se muestra el resumen de dicho modelo, obtenido del programa estadistico “R”. Se
puede observar el error estandar de estimacion (Residual standard error), el R? corregido y los coe-
ficientes del modelo. También podemos observar, que tanto el modelo como las variables explicati-
vas, son significativas.

Residuals:
in 1Q Median 3
-0.144452 -0.051131 -0.005575 0.05851

k3 2303
=
I

Coefficients:

Estimate Std. Error t wvalue Pr(>|t])
(Intercept) 1.12110 0.0%00%9 12.44 <2e-1§ #*==*
LN ElevP50 0.59569 0.03844 15.49 <2e-1p ww*

S5ignif. codes: O '®***' Q0,001 '**' Q.01 '*' Q.03 "." 0.1 " " 1

Residual standard error:
Multiple R-squared: 0.8027,
F-statistic: 240.1 on 1 and

0 M

0.07227 on 59 degrees of freedom
T, Adjusted R-squared: 0.79%4
59 DF, p-value: < 2.2e-16&

Figura 28. Modelo de estimacion del nimero de la altura media.

Para comprobar el cumplimiento de las hipotesis basicas se representaron las graficas basicas
de diagnéstico (Figura 29). Debido a las dudas que generaban dichas gréaficas, se ejecutaron los ana-
lisis cuantitativos descritos en el apartado 1.3.4 Modelos predictivos, obteniendo un resultado satis-
factorio en todos ellos (Tabla 24).

Tras seleccionar el modelo, se realizo la validacion del mismo. En la tabla 25, se muestra que
los estadisticos sesgo, RMSE y R? corregido obtenidos mediante la validacién cruzada son idénticos
a los generados empleando la totalidad de la muestra, lo que indica que el modelo es valido para la
estimacion.
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Figura 29. Graficas béasicas de diagndstico del modelo de estimacién de la altura media.

Tabla 24. Diagnostico analitico del modelo de estimacién de la altura media.

'I;est r.e set Qe Test de Sha- Test de Test de Dur- | . Factglr de Test de Bon-
no lineali- . . . inflacién de .
) piro-Wilk | Breush-Pagan | bin-Watson X ferroni
dad varianza
Estadistico 2,252 0,985 0,107 g014 | Modelouni- | o iicos
variable
P-valor 0,139 0,649 0,744

Tabla 25. Validacion del modelo de estimacion del nimero de la altura media.

Estadisticos

Modelo original

Validacion cruzada

Sesgo 0,00 0,00
RMSE 0,07 0,07
R? corregido 0,799 0,799

Finalmente, el modelo, una vez recalculados los coeficientes y realizada la transformacion lo-
garitmica inversa, es el siguiente:

Hm = 3,065 * ElevP50%5% « CF
Donde:
Hm: altura media (m).
Percentil 50: percentil 50 de la altura de los puntos LIiDAR (m).

CF: coeficiente de correccidn del sesgo del modelo, 1,003.

El percentil 50 de la altura de la nube de puntos LiDAR es la Unica variable dependiente del
modelo, presentando como es ldgico una relacion directa con la altura media de los pies del rodal.
Se puede pensar que el percentil 50 de la altura de la nube de puntos LiDAR resulta un percentil
bajo para la estimacion de la altura media de la masa, sin embargo, se debe tener en cuenta que para
su calculo solo se han tenido en cuenta los retornos LIDAR de mas de 3 6 6 metros de altura respec-
to al suelo (dependiendo del monte), lo que, en general, equivale a tener en consideracion Unica-
mente los retornos referentes al dosel de copas.
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2.7. Representacion cartogréfica de variables modeladas.

En el Anexo 1, Mapas del 7 al 10, se muestra la representacion cartografica de cada una de las
variables estimadas mediante los modelos generados en los apartados anteriores.

Como las ecuaciones de estimacion no parten del origen, las estimaciones son en algunos casos
negativas (en zonas ralas o desarboladas), por lo que, antes de rasterizar la capa de puntos, se selec-
cionaron los de valor negativo y se les asigné el valor cero.

Para facilitar la visualizacion de las estimaciones, se ha aplicado un sombreado gris con trans-
parencia a las zonas excluidas del area de estudio (ver apartado 1.3.1 Area de estudio), proporcio-
nando un mayor peso visual a los resultados sin perder la referencia espacial de estos.

En los diferentes mapas creados, se observa como los valores estimados son normales, no ob-
servando en ningun caso valores extremos que indiquen una estimacion errénea. En general, se per-
cibe que, como es ldgico, las zonas en las que las estimaciones de la altura y la densidad o el area
basimétrica son elevadas, también lo son las del volumen. Se aprecia como el sector sur del monte
“Dehesa de los Enebrales” presenta unas existencias notablemente menores, este hecho es debido al
relieve escarpado de la zona que hace que la cobertura arbdrea sea escasa, igual que sucede en las
areas ocupadas por caminos o cortafuegos. Observando los mapas de variables estimadas y el Mapa
2: Orografia, podemos apreciar como, en general, las mayores estimaciones de alturas, densidades y
por tanto de volimenes se dan en zonas llanas o concavas, como fondos de barrancos o planicies,
hecho propiciado por el mayor desarrollo edafico en estos lugares. Tanto en el Mapa 9: Densidad
estimada, como en el Mapa 10: Altura media estimada, se observa el marcado contraste existente,
respecto a estas dos variables, entre el monte “Dehesa de los Enebrales” y el monte “Valda y Carri-
langa”, contraste completamente l6gico debido a la diferente edad de estas masas. Tanto en el Mapa
9: Densidad estimada, como en el Mapa 8: Area basimétrica estimada, se observa una zona en el
monte “Dehesa de los Enebrales” (coordenadas X: 631.500 Y: 4.554.000) de gran espesura, donde,
en campo, se observo que nunca se habian realizado tratamientos de mejora en la masa, alertando de
la presencia de gran cantidad de pies “gemelos” o “hermanados”, es decir, pies que compiten en el
mismo antiguo hoyo de repoblacién.

3. DISCUSION.

La minuciosa planificacién del inventario de campo, ha hecho que este cumpla el objetivo para
el que fue disefiado, obteniendo una muestra completamente representativa del area de estudio. En
el Mapa 11: Areas fuera del rango muestral del Anexo 1, se puede observar, a modo de ejemplo, las
areas que se encuentran fuera del rango de aplicacion del modelo para la estimacion del volumen
(rojo), considerando este rango como el establecido por los datos muestrales (2,1-195,6 m*/ha). Se
observa, como tan solo algunas zonas (un 1% de la superficie), donde la ausencia de arbolado hace
que el volumen sea cero, se encuentran fuera de dicho rango, lo que pone en evidencia el correcto
disefio del inventario, minimizando asi los posibles errores generados por la extrapolacion de los
resultados.

Los resultados logrados en el ajuste de los modelos de estimacion han sido muy similares a los
obtenidos por otros autores (Garcia, 2010, Li, 2008 y Naesset, 2002), empleando una metodologia
de trabajo semejante, siendo ademéas notablemente menor el nimero de variables independientes
empeladas (Tabla 26).

Como se puede observar en la tabla 26, el ajuste de los modelos para la estimacion del volu-
men, area basimétrica y densidad ha sido similar, ofreciendo un buen coeficiente de determinacion
corregido, en torno a 0,86. Sin embargo, el coeficiente de determinacion corregido del modelo em-
pleado para la estimacion de la altura media ha sido algo inferior, 0,799. Las variables LIDAR em-
pleadas parar la estimacion de las variables dasométricas han sido similares respecto a las emplea-
das por otros autores (Li, 2008 y Naesset, 2002). En general, en los modelos establecidos se inclu-
yen al menos un estadistico referente a altura (m) y otro referente a distribucién horizontal de la
nube de puntos (densidad o porcentaje de retornos LIDAR por encima de una altura determinada).
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A diferencia del estudio elaborado por Garcia (2010), en el que el empleo de diversos estadisticos
referentes a la distribucion vertical de la nube de puntos LiDAR (coeficiente de variacién, asimetria
o desviacidn tipica) es muy frecuente, en el presente estudio, no ha resultado significativo ningun
estadistico de este tipo. También cabe destacar que en los estudios citados anteriormente, siempre se
ha realizado una transformacion logaritmica de las variables, a diferencia del que se presenta, en el
que solo se ha recurrido a ella para la estimacion de la densidad y la altura media.

Tabla 26. Resumen de los modelos obtenidos Garcia, 2010, Li, 2008, Naesset, 2002 y el presente trabajo.
(V: volumen, G: area basimétrica, N: pies/ha, Hm: altura media, Hd: altura dominante, % retornos: densidad
de puntos LiDAR a una determinada altura)

Autores Varlaple Variables Independientes Coeﬁmgnteg d ¢
dependiente determinacion
Ln(media), Ln(asimetria), Ln(desv. tipica) y
Ln(v) Ln(%retornos) 0.897
Garcia, Ln(G) Ln(media), Ln(moda), Ln (percentil 30) y Ln(asimetria) 0,883
2010 Ln(percentil 70), Ln(percentil 80), Ln(mediana), Ln( per-
Ln(N) centil 95), Ln(asimetria), Ln(coef. variacion) y 0,798
Ln(%retornos)
Li, 2008 Ln(V) Media, coef. variacion y % retornos 0,670-0,880
Ln(V) Ln(percentil 30), Ln(percentil 50), Ln(percentil 60) y 0.800
Naesset - Ln(% reto_rnos)
2002 ’ Ln(G) Ln(percentil 50), Ln(percentil 60) y Ln (% retornos) 0,690
Ln(N) Ln(percentil 0), Ln(maximo) y Ln (% retornos) 0,650
Ln(Hd) Ln(percentil 90) y Ln(percentil 50) 0,860
\Y % retornos y percentil 10 0,867
Cabrera, G % retornos 0,854
2013 Ln(N) Ln(% retornos) y Ln(percentil 95) 0,858
Ln(Hm) Ln(percentil 50) 0,799

Generalmente, como puede apreciarse en la tabla 26, los mejores ajustes se obtienen para va-
riables como el volumen, area basimétrica y alturas, siendo peores los ajustes para variables como la
densidad o el didmetro medio. En este trabajo, el modelo obtenido para la estimacion de la densidad
(pies/ha) ha logrado un mejor ajuste que en el resto de estudios citados. Este hecho puede deberse a
la especie objeto de estudio, ya que en las masas de pino carrasco, por el marcado caracter heliéfilo
de la especie, no es habitual la presencia de pies dominados o sumergidos. La presencia de pies do-
minados es dificilmente detectable por el sensor, no reflejandose esta en los estadisticos generados.
Sin embargo, la escasa aportacion de estos pies en términos de volumen o &rea basimétrica, hace
que las estimaciones de estas variables no se vean afectadas.

El modelo obtenido para la estimacion de la altura media, a diferencia del resto de estudios ci-
tados, no ha resultado ser el que mejor ajuste presenta (Tabla 26). A priori, parece légico, que una
variable como la altura obtenga un ajuste extraordinario, ya que esta completamente correlacionada
con las alturas de la nube de puntos que proporciona el sensor LiDAR. En este caso, este peor ajus-
te, puede deberse a las imprecisiones y errores generados por la estimacion de la altura individual de
cada arbol (a partir de arboles tipo), ya que en el resto de estudios se ha medido la altura de todos y
cada uno de los pies que componen la muestra, siendo en estos casos la precision en la obtencion de
la altura general de la parcela mucho mayor.

Al igual que ocurre con la altura individual, el volumen unitario con corteza también ha sido
estimado, no empleando tarifas de cubicacion disefiadas especificamente para el monte en cuestion,
sino empleando las establecidas por el IFN 3 para la provincia de Zaragoza. Asi, ademas de los
errores introducidos por el modelo de prediccidn, hay que considerar la existencia de los generados
en la estimacion de la variable de campo.
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Aparentemente, no hay razon para pensar que el desfase temporal existente entre la toma de da-
tos LIDAR y datos de campo (3 afios) haya sido influyente en la validez de los resultados del pre-
sente trabajo, ya que, como se ha comentado, en ese lapso no ha habido cambios significativos en la
estructura de la masa.

En cuanto al calculo de los errores cometidos en el tipo de muestreo empleado en este trabajo,
no se ha encontrado ninguna referencia. Cochran (1963) describe esta técnica como un muestreo en
dos fases, con estimador de regresion, pero las ecuaciones que desarrolla para el calculo de los erro-
res solo tienen validez para regresiones lineales simples. Otros autores (Naesset, 2002 y Li, 2008)
solo consideran los errores estadisticos del modelo ajustado, ya que realmente se obtiene informa-
cion LiDAR de toda la superficie, desapareciendo el error de muestreo. Asi, utilizan los estadisticos
de bondad del ajuste del modelo (R? corregido, RMSE y sesgo), obtenidos del proceso de valida-
cion cruzada, para evaluar el error de las estimaciones. Sin embargo, esta practica no proporciona el
error cometido en toda el area, sino el cometido considerando solamente los datos muestrales, por lo
que si la muestra ofrece un ajuste extraordinario, pero no es representativa del monte, los errores
reales que cometeremos seran mucho mayores que los que estaremos estimando con los citados
estadisticos de bondad del ajuste. Asi, ante la dificultad que plantea establecer una metodologia para
el calculo de errores en muestreos de dos fases con regresiones lineales multiples, y més aun con
regresiones potenciales y exponenciales, quizas la solucion sea, como se ha planteado en este traba-
jo, adquirir una muestra completamente representativa de la poblacion, haciendo que los estadisti-
cos que indican la bondad del ajuste del modelo sean aplicables a toda el area de estudio.

4. CONCLUSIONES.

Los resultados ofrecidos por este trabajo reafirman la hipotesis de partida del mismo, mostran-
do la utilidad de los datos LIDAR PNOA para el inventario de masas regulares de pino carrasco. La
metodologia empleada tanto para el disefio del inventario de campo, como para el establecimiento
de los modelos de estimacion, ha resultado adecuada, obteniendo precisas estimaciones de variables
como el volumen, area basimétrica, densidad y altura media para toda la zona de estudio, encon-
trandose un elevado porcentaje de esta (99%) dentro del rango de aplicacion de la regresion, mini-
mizando asi los errores debidos a la extrapolacion de las estimaciones. En este sentido, cabe desta-
car la utilidad de los estadisticos LIDAR en la estratificacion y planificacion del inventario de masas
forestales, permitiendo, como se ha demostrado en este trabajo, realizar un muestreo en cierto modo
dirigido, discriminando tipologias de masa a escala de detalle, con un minimo trabajo de campo.
También es importante resaltar, que se ha conseguido establecer una metodologia adecuada para
que la presencia de sotobosque no altere los resultados, haciendo ademas innecesaria la estratifica-
cion por este motivo, con la optimizacion de recursos que ello conlleva. Asi mismo, no se debe ol-
vidar, lo que hasta ahora, empleando los métodos de inventario tradicional, era impensable, y es que
estos resultados se obtienen de forma continua para toda la superficie y a una escala de gran detalle,
ofreciendo un gran avance en la planificacion y gestion de masas forestales.

El buen ajuste de los modelos de estimacion generados, pone de manifiesto, no solo la adecua-
cién de la metodologia empleada, sino también, y ain mas importante, la correlacion existente entre
los estadisticos obtenidos de la nube de puntos LIDAR vy las variables dasométricas. Concretamente,
han sido los percentiles (bajo, medio o alto, segun la variable a estimar) y el porcentaje de retornos
LiDAR por encima de una altura determinada, los estadisticos LIDAR que mejor ajuste han propor-
cionado en los modelos establecidos.

El empleo de una cobertura de datos LiDAR tres afios anterior a la toma de datos de campo, no
ha afectado a la existencia de altas y significativas correlaciones entre las variables obtenidas en
campo Y las obtenidas a partir de los datos LiDAR, por lo que se cree que este hecho no es influyen-
te en la obtencion de unos buenos resultados. Sin embargo, a la hora de la interpretacion de los mo-
delos generados, si que se debe tener en cuenta ese desfase, ya que de haber contado con una cober-
tura LIDAR simultanea a los datos de campo, probablemente, tanto las variables seleccionadas, co-
mo, evidentemente, los coeficientes de los modelos hubieran sido otros.
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Como ya se ha comentado, ante la division de opiniones que genera el calculo de errores, se ha
concluido, viendo la representatividad de la muestra, fruto del estricto disefio del muestreo, que los
estadisticos de bondad del ajuste (R? corregido, el RMSE y sesgo), obtenidos del proceso de valida-
cion cruzada, son aplicables al total de la poblacidn, dando idea de los errores y la variabilidad ex-
plicada por el modelo en toda el area de estudio. De todos modos, se cree necesario el desarrollo de
una técnica adecuada para este fin, ya que los estadisticos de bondad del ajuste no son comparables
con el error calculado en un inventario tradicional, ya que no consideran el tamafio muestral, ni la
variabilidad, ni extension de la zona a inventariar, siendo estos factores enormemente influyentes en
la precision de las estimaciones. De no ser posible el desarrollo de esta técnica, deberian ser los
mismos organismos encargados de ratificar estos inventarios quienes se amoldasen a estas nuevas
metodologias, estableciendo nuevas directrices para su aprobacion, marcando asi los niveles criticos
de tamafos y representatividad muestrales y de los citados estadisticos de ajuste.

Los posibles errores introducidos por la estimacion de las variables de campo volumen y altura,
no deben lastrar los resultados del presente trabajo, ni, en definitiva, la posibilidad de estimar estas
variables a partir de datos LIDAR, ya que, aungue no se citen, estan presentes en la gran mayoria de
inventarios forestales. Comunmente, variables como el volumen, biomasa, crecimientos corrientes o
altura, se obtienen a partir de pequefias muestras o modelos de estimacion de &mbito regional.

Se debe considerar que los resultados obtenidos en este trabajo demuestran la utilidad de los
datos LIDAR PNOA en el inventario de masas regulares monoespecificas, no siendo extrapolable
dicha afirmacién a otras tipologias de masa, debido a la dificultad que plantea la discriminacion
entre especies y clases diamétricas a partir de datos LiDAR. En este sentido, seria deseable que se
estudiara la utilidad de estos datos en otras masas, irregulares, pluriespecificas, montes bajos, etc.,
asi como, en inventarios de grandes superficies, donde el uso de esta tecnologia podria suponer un
aumento en la precisién de los resultados y una disminucion en los costes. Asi mismo, teniendo en
cuenta que la cobertura LIDAR PNOA va a ser un producto presumiblemente periddico, seria
deseable evaluar la adecuacién de los modelos ya generados, empleando las futuras coberturas Li-
DAR. También, en la misma linea, seria deseable la evaluacion de la aplicabilidad de los modelos
generados en este trabajo a masas de similares caracteristicas. A priori, parece l6gico que los mode-
los ya generados para los montes objeto de estudio, obtendrian resultados similares en masas de
caracteristicas analogas, igualmente, parece ldgico que, sobre todo en montes cuya variabilidad ha-
ga que estén presentes en él todas las clases de edad (para minimizar la extrapolacion), el ajuste del
modelo tras el paso del tiempo y empleado la cobertura LiIDAR actualizada, fuera similar al obteni-
do en primera instancia. Sin embargo, en el caso concreto del presente estudio, se debe tener en
cuenta el handicap del desfase temporal existente entre datos LIDAR y datos de campo, ya que es-
tamos relacionando las variables dasométricas actuales con datos LiDAR 3 afios anteriores a estas,
afectando posiblemente a las dos hip6tesis anteriores. De todos modos, se cree conveniente evaluar
dichas conjeturas, en este y en otros trabajos similares, ya que de constatarse, se obtendrian datos de
gran valor a muy bajo coste, posibilitando la gestion de un mayor nimero de masas forestales.

Como ultimo proposito, este trabajo pretende servir de estimulo, promoviendo asi el uso, en el
ambito del inventario forestal, de la técnica aqui descrita, ya que solo el paso del tiempo y la expan-
sion de su empleo acabaran por demostrar realmente su utilidad. Como se ha comentado a lo largo
del trabajo, ya hay disponible una cobertura LIDAR para la mayor parte del territorio espafiol, por
lo que esté en nuestra mano sacar el mayor provecho posible a estos datos.
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7. ANEXOS

Anexo 1: Cartografia.
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Mapa 1: Localizacion
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Mapa 2: Orografia
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Mapa 3: Vegetacion
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Mapa 4: Ruido Informacién LiDAR
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Mapa 5: Areas Homogénas
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Mapa 6: Parcelas Inventariadas
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Mapa 7: Volumen estimado
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Mapa 8: Area basimétrica estimada
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Mapa 9: Densidad estimada
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Dehesa de los Enebrales [_] < 150
[ Valda y Carrilanga 1150 - 300
[ 300 - 500
I 500 - 750
I 750 - 1.363

632.000

633.000

631.000

4.557.000

634.000

635.000

_4.556.000

4.554.000

4.553.000

Elaboracion:

Jesus Cabrera Guarinos, Ingeniero Forestal. 1.000 metros
Sistema geodésico de referencia: ETRS89.

Noviembre de 2013.




Mapa 10: Altura media estimada
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Mapa 11: Areas fuera del rango muestral
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Anexo 2: Descripcion funcional del software FUSION.

A continuacidn, se describe el procedimiento seguido para la ejecucién de las herramientas del
software FUSION, empleadas en el tratamiento de datos LiDAR. Para ejecutar cada herramienta es
necesario crear un archivo de comandos en formato ““.bat”. Este archivo debe ubicarse en una sub-
carpeta dentro de la carpeta de instalacién del software FUSION.

Para ejecutar el comando desde esta propia carpeta, sin necesidad de llevarlo al intérprete de
comandos (cmd.exe) de Windows, es necesario que, como prefijo de cada comando agreguemos
“../”. Asi, bastard con hacer doble “click” en cada uno, para que se ejecute automaticamente en el
intérprete de comandos. El “../” simplemente hace que el comando se ejecute en la carpeta superior,
que en este caso serd la de instalacion de FUSION, donde se debe ejecutar el comando.

Comandos:
=  GroundFilter:

La arquitectura del comando es la siguiente:

GroundFilter [switches] (output file) (cell size) (input file)
Este es el comando que finalmente se empled:

.\GroundFilter /wparam:2 /gparam:-2,5 Ruta\suelo.las 1 Ruta\*.las

En la siguiente tabla se muestra el significado de cada variable del comando:

Tabla 27. Variables comando GroundFilter.

outputfile El nombre del archivo LIDAR de salida con los puntos “suelo”.
cellsize Tamafio de celda para el modelo de superficie intermedio.
datafile Archivo LIDAR con los datos en “bruto”, sin clasificar, en formato *.1as.

Indicando “*.1as” como archivo de entrada, el comando se ejecuta tomando todos los archivos
de ese formato presentes en la ruta indicada.

Los “switches” son posibles variantes que pueden ser aplicadas en la ejecucion del comando.
En este caso los “switches” empleados para el comando Groundfilter fueron los siguientes:

Tabla 28. “switches” empleados en el comando GroundFilter.

gparam:#  [Valor del pardmetro g para la ecuacion de asignacion de pesos. El valor por defecto es -2,0.

wparam:# | Valor del pardmetro w para la ecuacion de asignacion de pesos. El valor por defecto es 2,5.

= GridSurfaceCreate:
La arquitectura del comando es la siguiente:

GridSurfaceCreate [switches] (surfacefile) (cellsize) (xyunits) (zunits) (coordsys zone) (horizda-
tum) (vertdatum) (inputfile)

Este es el comando que finalmente se empleo:

.\GridSurfaceCreate RUTA\Suelo.dcm 1 mm 1 0 0 0 RUTA\Suelo.las

En la siguiente tabla se muestra el significado de cada variable del comando:




Tabla 29. Variables comando GridSurfaceCreate.

surfacefile Nombre del archivo de salida (*.dtm).

cellsize Tamafio de la celda de la malla de la superficie.

Unidades de los datos LIDAR X e Y: “m” para metros

Xyunits :
Y “f para pies.

Unidades de los datos LIDAR X e Y: “m” para metros

zunits ;
“f” para pies.

Sistemas de coordenadas:
0 para desconocido
1 paraUTM
2 para SPCS

coordsys

Zona del sistema de coordenadas (uso)

zone .
0 para desconocido

Datum horizontal de la zona:
0 para desconocido
1 para NAD27
2 para NAD83

horizdatum|

Datum vertical de la zona:
0 para desconocido
vertdatum 1 para NGVD29
2 para NAVDS88
3 para GRS80

datafile |Archivo de datos LIDAR (LDA, LAS, ASCII LIDARDAT) del que se extraera el *.dtm

En este caso no se empled ningln “switches”. A continuacion se muestran los disponibles para
este comando:

Tabla 30. “switches” comando GridSurfaceCreate.

median:# Aplica un filtro basado en la mediana, usando # pixeles vecinos.
smooth:# Aplica un filtro basado en la media, usando # pixeles vecinos.
slope:# Filtra areas de la superficie con pendiente superior a un porcentaje #.
spike:# Filtrado final de la superficie eliminando sa_lientes con una pendiente superior a un
porcentaje #.
residuals Calculo de estadisticas de residuos para todos los puntos.

minimum |Usa el punto de menor elevacion de cada celda como la elevacion de la superficie.

= ClipData:

Para ejecutar este comando, primero se deben obtener las coordenadas de los extremos de todas
las parcelas, para después, incluirlas en un mismo comando.

La arquitectura del comando es la siguiente:




ClipData [switches] (InputSpecifier) (SampleFile) (MinX) (MinY) (MaxX) (MaxY)
Este es el comando que finalmente se emple6 en la parcela 1:

.\clipdata /shape:1 /dtm:RUTA\mde.dtm /height RUTA\*.las RUTA\l.las 632651,389
4555179,272 632681,389 4555209,272

En la siguiente tabla se muestra el significado de cada variable del comando:

Tabla 31. Variables comando ClipData.

InputSpecifier Datos LIDAR de partida.
. Nombre de salida del archivo que contiene el recorte de los datos
SampleFile )
LIDAR, en nuestro caso seran las parcelas.

MinX Miny Coordenadas X e Y de Ia_esquma inferior izquierda del rectangulo que
contiene la parcela a extraer.

MaxX Maxy Coordenadas X e Y de Ia_ esquina superior derecha del rectangulo que
contiene la parcela a extraer.

En este caso los “switches” utilizados para el comando ClipData fueron los siguientes:

Tabla 32. “switches” comando ClipData.

Forma de la parcela a extraer:
shape:# 0 para rectangulo
1 para circulo

Usa el modelo especificado de superficie para normalizar los datos LI-
dtm:file DAR. Se puede usar con /zmin para incluir puntos sobre el zmin especifi-
cado o con /zmax para incluir puntos bajo el zmax especificado.

Convierte elevaciones de puntos en alturas sobre la superficie, usando el

height archivo *.dtm especificado.

=  CloudMetrics:

La arquitectura del comando es la siguiente:

CloudMetrics [switches] (InputDataSpecifier) (OutputFileName)

Este es el comando que finalmente se empled, se muestran dos ejemplos, uno de cada monte,
variando la altura minima. Se den incluir en el comando una linea por cada parcela:

.\CloudMetrics /above:6 /minht:6 RUTA\l.las RUTA\est_parcelas.csv
.\CloudMetrics /above:3 /minht:3 RUTA\52.las RUTAest_parcelas.csv
En la siguiente tabla se muestra el significado de cada variable del comando:

Tabla 33. Variables comando CloudMetrics.

InputDataSpecifier Archivo *.las de determinada parcela

OutputFileName Nombre del archivo que contendra las estadisticas de cada parcela.

En este caso los “switches” utilizados para el comando CloudMetrics fueron los siguientes:




Tabla 34. “switches” comando CloudMetrics.

Calcula el porcentaje de primeros retornos sobre la altura # especificada.
above:# L L . .
Se usa como una estimacion de la fraccién de cabida cubierta.
. Solamente utiliza para los célculos, retornos por encima de la altura #
minht:# L
indicada.
GridMetrics:

La arquitectura del comando es la siguiente:

GridMetrics [switches] groundfile heightbreak cellsize outputfile datafile
Este es el comando que finalmente se empled, uno para cada monte:
2\gridmetrics /minht:6 RUTA\mde.dtm 6 25 RUTA\estadisticos_6hmin RUTA\*.las
2\gridmetrics /minht:3 RUTA\mde.dtm 3 25 RUTA\estadisticos_3hmin RUTA\*.las
En la siguiente tabla se muestra el significado de cada variable del comando:

Tabla 35. Variables comando GridMetrics.

groundfile Nombre del MDE *.dtm.
heightbreak Altura limite para el calculo de la cobertura.
cellsize Tamafio de la celda.
outputfile Nombre del archivo que contendra las estadisticas de cada celda.
datafile Archivos LiDAR *.las

En este caso el “switches” utilizado para el comando GridMetrics fue el siguiente:

Tabla 36. “switches” comando GridMetrics.

. Solamente utiliza para los calculos, retornos por encima de la altura #
minht:# indicada




Anexo 3: Correlaciones entre variables de campo y LIDAR.

A continuacion se muestran las correlaciones entre las variables dependientes y las variables
independientes. Como la mayoria de las variables no se distribuyen de forma normal se ha emplea-
do el coeficiente de correlacion de “Spearman”, el cual no se ve afectado por la transformacion lo-
garitmica de las variables, luego los coeficientes que se muestran son aplicables también a las va-
riables transformadas. Para el calculo de dicho coeficiente de correlacion se han empleado las 61
parcelas inventariadas.

™ la correlacion es significativa al nivel 0,01 (bilateral).
“ la correlacion es significante al nivel 0,05 (bilateral).

Tabla 37. Correlacion entre Vcc y las variables independientes (LiDAR).

Vce
Variables C‘(‘)rrelauon ge Sig, (bilateral)
Spearman
Minimo 316" ,013
Maximo 255" ,047
Media 284" ,027
Moda 362" ,004
Desviacion estandar -,101 438
Varianza -,101 438
Coef, variacion -4177 ,001
Rango intercuartilico -,189 ,146
Asimetria -,175 ,178
kurtosis 3327 ,009
AAD -, 146 261
Percentil 01 500" ,000
Percentil 05 422" ,001
Percentil 10 3977 ,002
Percentil 20 363" ,004
Percentil 25 3397 ,008
Percentil 30 327" ,010
Percentil 40 298" ,020
Percentil 50 274" ,032
Percentil 60 268" ,037
Percentil 70 258" ,044
Percentil 75 ,249 ,053
Percentil 80 ,240 ,063
Percentil 90 ,250 ,052
Percentil 95 ,242 ,061
Percentil 99 ,230 ,074
Porcentaje de primeros retornos por encima de 3 6 6 metros 803" ,000
Porcentaje de retornos por encima de 3 6 6 metros 755" ,000
Porcentaje de retornos por encima de 3 6 6 metros respecto del total -
. ,808 ,000
de primeros retornos
Porcentaje de primeros retornos por encima de la media 786" ,000
Porcentaje de primeros retornos por encima de la moda 446" ,000
Porcentaje de retornos por encima de la media 7107 ,000
Porcentaje de retornos por encima de la moda 294" ,021




Vce

Variables C‘?rrelauon ile Sig, (bilateral)
Spearman
Porcentaje de retornos por fencima de la media respecto del total de 786™ 000
primeros retornos ’ '
Porcentaje de retornos por encima de la moda respecto del total de 446™ 000

primeros retornos

Tabla 38. Correlacion entre G y las variables independientes (LiDAR),

G
Variables C‘(‘)rrelacmn ge Sig, (bilateral)
Spearman
Minimo ,218 ,092
Maximo ,088 ,500
Media ,109 ,402
Moda 225 ,081
Desviacion estandar -,238 ,065
Varianza -,238 ,065
Coef, variacion -3977 002
Rango intercuartilico -,294" 021
Asimetria -,128 ,327
kurtosis 288" ,024
AAD -279° ,029
Percentil 01 368" ,004
Percentil 05 276" ,031
Percentil 10 237 ,066
Percentil 20 ,198 ,126
Percentil 25 ,169 ,192
Percentil 30 ,157 227
Percentil 40 126 ,334
Percentil 50 ,100 444
Percentil 60 ,095 ,468
Percentil 70 ,084 ,520
Percentil 75 ,075 ,565
Percentil 80 ,065 ,618
Percentil 90 ,075 ,567
Percentil 95 ,065 ,619
Percentil 99 ,059 ,652
Porcentaje de primeros retornos por encima de 3 6 6 metros 889 ,000
Porcentaje de retornos por encima de 3 6 6 metros 824 ,000
Porcentaje de retornos por encima de 3 6 6 metros respecto del total -
. ,888 ,000
de primeros retornos
Porcentaje de primeros retornos por encima de la media 850" ,000
Porcentaje de primeros retornos por encima de la moda 416~ ,001
Porcentaje de retornos por encima de la media 755" ,000
Porcentaje de retornos por encima de la moda ,248 ,054
Porcentaje de retornos por fencima de la media respecto del total de 851" 000
primeros retornos ’ ’
Porcentaje de retornos por encima de la moda respecto del total de 415™ 001

pl’i meros retornos




Tabla 39. Correlacion entre N y las variables independientes (LiDAR),

N
Variables C‘c‘)rrelacmn Sle Sig, (bilateral)
Spearman
Minimo -,058 ,659
Maximo -,248 ,054
Media -,253 ,049
Moda -,113 ,388
Desviacion estandar -398" ,001
Varianza -,398™ ,001
Coef, variacion -,191 ,140
Rango intercuartilico -3717 ,003
Asimetria -,029 ,826
kurtosis ,142 275
AAD -426" ,001
Percentil 01 -,010 ,942
Percentil 05 -,089 ,495
Percentil 10 -,124 ,342
Percentil 20 -,159 221
Percentil 25 -,191 ,140
Percentil 30 -,205 113
Percentil 40 -,234 ,070
Percentil 50 -,261 ,042
Percentil 60 -,261 ,042
Percentil 70 271" ,035
Percentil 75 -274 ,032
Percentil 80 -,281" ,028
Percentil 90 -,280° ,029
Percentil 95 -,289" ,024
Percentil 99 -,282° ,028
Porcentaje de primeros retornos por encima de 3 6 6 metros 8377 ,000
Porcentaje de retornos por encima de 3 6 6 metros 776" ,000
Porcentaje de retornos por encima de 3 6 6 metros respecto del total 826~ 000
de primeros retornos ’ ’
Porcentaje de primeros retornos por encima de la media 764" ,000
Porcentaje de primeros retornos por encima de la moda 366" ,004
Porcentaje de retornos por encima de la media 675" ,000
Porcentaje de retornos por encima de la moda ,226 ,080
Porcentaje de retornos por encima de la media respecto del total de 764" 000
primeros retornos ’ ’
Porcentaje de retornos por_encima de la moda respecto del total de 366~ 004
primeros retornos ’ ’

Tabla 40. Correlacion entre Hm y las variables independientes (LiDAR),

Hm
Variables Correlacion de | 0 bilateral)
Spearman
Minimo 480~ 000
Méximo 7197 000
Media 757" ,000
Moda 649" ,000




Hm

Variables C‘?rrelauon ile Sig, (bilateral)
Spearman
Desviacion estandar 563" ,000
Varianza 563" ,000
Coef, variacién -,094 ,469
Rango intercuartilico 402" ,001
Asimetria -,260" ,043
kurtosis ,135 ,300
AAD 537" ,000
Percentil 01 618" ,000
Percentil 05 656" ,000
Percentil 10 684" ,000
Percentil 20 708" ,000
Percentil 25 724" ,000
Percentil 30 7317 ,000
Percentil 40 7417 ,000
Percentil 50 757" ,000
Percentil 60 754" ,000
Percentil 70 762" ,000
Percentil 75 754" ,000
Percentil 80 749 ,000
Percentil 90 753" ,000
Percentil 95 755" ,000
Percentil 99 727" ,000
Porcentaje de primeros retornos por encima de 3 6 6 metros -,212 ,102
Porcentaje de retornos por encima de 3 6 6 metros -,150 247
Porcentaje de retornos por encima de 3 6 6 metros respecto del total -192 137
de primeros retornos ’ ’
Porcentaje de primeros retornos por encima de la media -,138 ,289
Porcentaje de primeros retornos por encima de la moda ,081 ,536
Porcentaje de retornos por encima de la media -,078 552
Porcentaje de retornos por encima de la moda ,123 ,344
Porcentaje de retornos por _encima de la media respecto del total de - 138 289
primeros retornos ’ ’
Porcentaje de retornos por encima de la moda respecto del total de 082 531

pri meros retornos
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