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Abstract

Two-step peer methods for the numerical solution of Initial Value Problems
(IVP) combine the advantages of Runge-Kutta (RK) and multistep methods to
obtain high stage order and provide in a natural way a dense output. In general,
explicit s-stage peer methods require s evaluations of the vector field at each
step. Nevertheless, Klinge and coworkers (BIT Numer Math, 2018) have shown
that some methods use less function calls se < s, here called effective stages,
by re-using sr = s − se previously computed stages (shifted stages) from the
previous steps in the current one.

In this paper we propose a new approach, different from the one used by
Klinge and coworkers, to re-use previously computed stages, that we call peer
methods with reused stages, showing that methods with reused stages and se
effective stages are equivalent to three-step peer methods with se stages. Then,
we analyze all the families of methods with two effective stages, obtaining meth-
ods with s = 3 and orders 4 and 5 in which the free parameters of the families
have been used to minimize the coefficient of the leading error term as well as
to maximize the absolute stability interval. We have also studied one family of
peer methods with s = 4 and three effective stages, obtaining a method with
order 6, superconvergent of order 7, and optimized leading error term as well as
absolute stability interval. Some numerical experiments show the performance
of the obtained methods by comparing them with other previously obtained
peer methods as well as other standard Runge-Kutta and multistep methods.
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1. Introduction

Peer two step methods [15] have proved to be efficient numerical integrators
of IVPs

d

d t
y(t) = f(t, y(t)), y(t0) = y0 ∈ Rm. (1)

Given approximations Yn,j ≃ y(tn,j) to the solution of (1) at points tn,j =
tn + cjh, j = 1, . . . , s, where h is the time step size, an s-stage two-step peer
method computes new approximations

Yn+1,j ≃ y(tn+1,j), fn+1,j = f(tn+1,j , Yn+1,j), j = 1, . . . , s,

to the solution of (1) and the vector field at the grid points tn+1,j = tn+1+cjh =
tn + h+ cjh, j = 1, . . . , s by means of the equations

Yn+1,j =

s∑
k=1

ajkYn,k + h

s∑
k=1

bjkfn,k + h

s∑
k=1

rjkfn+1,k, j = 1, . . . , s, (2)

where A = (ajk),B = (bjk),R = (rjk) ∈ Rs×s are given real matrices that
define the method.

If the matrix R is strictly lower triangular, then the method is explicit. In
this paper we will consider only explicit methods.

Putting e = (1, . . . , 1)T ∈ Rs, c = (c1, . . . , cs)
T and

Yk =


Yk,1

Yk,2

...
Yk,s

 , f(tke+ hc,Yk) =


f(tk,1, Yk,1)
f(tk,2, Yk,2)

...
f(tk,s, Yk,s)

 ∈ (Rm)
s
, (3)

equations (2) can be written in the matrix form

Yn+1 = (A⊗ Im) Yn + h (B⊗ Im)f(tne+ hc,Yn)
(4)

+h (R⊗ Im) f(tn+1e+ hc,Yn+1),

where ⊗ denotes the standard Kronecker product and Im is the unit matrix of
order m. For our studies of order and stability it will be sufficient to consider
the scalar case (m = 1) in which (4) becomes

Yn+1 = A Yn + h B f(tne+ hc,Yn) + h R f(tn+1e+ hc,Yn+1). (5)

In general, two-step s-stage peer methods require s derivative function calls
per step. Nevertheless, Horváth and coworkers [11] and Klinge and coworkers
[12] have shown that if the matrices A,B and R have a special structure, it
is possible to employ less function calls by re-using previously computed stages
from the previous steps in the current one, in a similar way as Runge-Kutta
schemes do with “first-same-as-last”(FSAL) technique [6]. In fact, in their ap-
proach, a method with sr shifted stages uses one stage of previous sr steps
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in the current step. They call them peer methods with shifted stages. With
this approach, these authors obtain methods with 4 stages but only 2 effective
stages and s-stage peer methods with s = 5, . . . , 8 in which three stages are
reused and only s − 3 evaluations of the vector field are required. It is worth
to remark that after the introduction of peer methods (4) in 2004 by Schmitt
and Weiner [13] there has been a constant flow of publications dealing not only
with theoretical properties such as accuracy and stability of different families
of these type of methods but also with the implementation comparing with
classical IVPs solvers for different types of problems. A complete list of publi-
cations of peer type methods that includes more than 70 papers can be found
in https://www.mathematik.uni-marburg.de/ schmitt/peer/.

In particular, the recent paper of Abdi et al [1] considers a family of s-stage
Explicit Two-Step Peer (ETSPeer) methods with s = 1, 2, 3, 4 stages and order
p = s that are optimally zero-stable (the matrix A of (4) has the form A = e bT

with b ∈ Rs) and further the eigenvalues ws,j , j = 1, . . . , s of the stability matrix
of (4), M(z) = (I − z R)−1 (A+ zB) are all zero except ws,1 =

∑s
j=0(z

j)/(j!).
Clearly this implies that stability region of the s-stage method is the same as
the s-stage Runge-Kutta method with order s. Moreover to deal with variable
step-size the elements of matrices A and R are constant whereas those of B
depend on the step-size ratio σn = (hn+1)/(hn) between two consecutive steps.
These methods have been used to develop a variable-order variable-step code
and numerical experiments show their efficiency when compared with others
standard ODE codes for solving non-stiff IVPs.

Another recent contribution in the class of ETSPeer methods due to D. Conte
and co workers [4], [5], is the development of methods where the coefficients
depend on the Jacobian fy(t, y) of the function f(t, y) at suitable points. Here
the introduction of this dependence allows the authors to obtain methods with
stability properties in all stages similar to linearly implicit methods and therefore
are suitable for solving stiff systems. A detailed derivation of methods and
numerical experiments can be seen in [4].

In this paper we consider peer methods in which sr stages of the previous step
are used in the current step, what we call s-stage peer methods with sr reused
stages and se = s − sr effective stages. Then we show that these methods are
equivalent to three-step peer methods with se stages. Next we obtain families
of methods with s = 3 and se = 2 with orders 4 and 5. We also develop a
family of peer methods with s = 4 and se = 2 with order 5, superconvergent
of order 6, and a family of methods with s = 4 and se = 3 with order 6 and
superconvergence of order 7. The free parameters of the families are used to
minimize the coefficient of the leading error term as well as to maximize the
absolute stability interval.

The paper is organized as follows: In section 2 we give a review of peer
methods and their accuracy and stability properties. In section 3 we define the
relevant properties for our study relative to the peer methods with reused stages,
proving that they are equivalent to three-step peer methods. In section 4 we
study peer methods with two effective stages and develop families of methods
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with orders 4 and 5. In section 5 we develop a family of peer methods with three
effective stages and order 6. In section 6 we present some numerical experiments
to show the performance of the new methods. Finally, we give some conclusions
and future developments.

2. Quick review of two-step peer methods

Let y(t) be a real valued function sufficiently smooth. For the method (5)
the linear s-dim valued vector-valued linear operator L[y(t);h] defined by

L[y(t);h] ≡ Y(t+ h)−A Y(t)− h B Y′(t)− h R Y′(t+ h), (6)

with Y(t) = y(te + hc) ≡ (y(t + c1h), . . . , y(t + csh))
T allows us to define the

order of consistency of the method. Note that for simplicity we are considering
that y(t) is a scalar function. The extension to the non-scalar general case is
straightforward.

Definition 1. The method (4) or (5) has order of consistency p if

L[y(t);h] = O
(
hp+1

)
, (h → 0), (7)

for all y(t) sufficiently smooth.

If the method has order p, the consistency error constant vector Cp+1 ̸= 0
is defined by

L[tp+1;h] = Cp+1 y
(p+1)(t)hp+1 ̸= 0 . (8)

As it has been pointed out in [13], [15] the method (4) is zero-stable if and
only if the matrixA has the eigenvalue λ1(A) = 1 and the remaining eigenvalues
λj(A), j = 2, . . . , s have modulus ≤ 1 and those of modulus one correspond to
simple elementary divisors. Hence, a safe stability requirement is to choose A
so that

λ1(A) = 1, λj(A) = 0, j = 2, . . . , s, (9)

because these conditions ensure the zero stability ([9], pp. 293). This is usually
called optimal zero stability. Remark that λ1(A) = 1 is a consequence of the
preconsistency condition L[1;h] = 0 which reduces to Ae = e.

A zero-stable method which is consistent of order p is convergent of order p
(see e.g. [15]).

When fixed step size is used, Skeel [14] showed that some methods that
satisfy an additional condition can increase their order of convergence. This
property is called superconvergence. Weiner and coworkers [16] proved that
optimal zero stable peer methods of order p satisfying

νννTCp+1 = 0, with ννν ∈ Rs defined by lim
n→∞

An = e νννT , (10)

are superconvergent and have at least, when implemented with fixed step size,
order p+ 1.
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The linear absolute stability of the methods (5) is studied by applying them
to the scalar test equation y′ = λ y, where λ is a complex constant. Putting
z = λh, (5) becomes

Y1 = (I − zR)−1 (A+ zB) Y0 ≡ M(z)Y0.

Then the stability region S is the set of all z ∈ C such that all eigenvalues
of M(z) satisfy |λj(M(z))| ≤ 1 and those with |λj(M(z))| = 1 correspond
to simple divisors in its Jordan’s canonical form. In particular, the absolute
stability interval is defined as the intersection of the stability region with the
negative real axis.

3. Two-step peer methods with reused stages

According to [12], a peer method (5) is said to have sr shifted stages (there-
fore se = s− sr effective stages) if

cj = cj+1 − 1, and Yn+1,j = Yn,j+1, for j = 1, . . . , sr.

These conditions imply that

Yn+1,1 = Yn,2 = · · · = Yn−sr+1,sr+1

and therefore the stage value Yn−sr+1,sr+1 is reused along sr consecutive steps.
Accordingly, the nodes cj , sr ≥ j ≥ 1, take the values cj = csr+1 − sr + j.

Here, instead of using the information of the last sr computed steps, we will
consider only information of the last computed step, reusing sr stages of the
previous step as stages of the current step. Thus we give the following

Definition 2. An explicit s-stage peer method (5) is said to have sr reused
stages (therefore se = s−sr effective stages) if there exist sr pairs (i1, j1) . . . , (isr , jsr )
such that

� ik ̸= il, jk ̸= jl, for all k ̸= l and ik ̸= jl for all k, l.

� cik = cjk − 1, k = 1, . . . , sr.

� Yn+1,ik = Yn,jk , k = 1, . . . , sr.

These conditions imply that the jk-th stage value of the n-th step, Yn,jk , is
reused only at the ik-th stage of the (n + 1)-th step. Moreover the coefficients
of the method satisfy

eTikB = eTikR = (0, . . . , 0)T , k = 1, . . . , sr,

eTikA = eTjk , cik = cjk − 1, k = 1, . . . , sr.
(11)

It is clear that the number of evaluations of the derivative function reduces
to se = s− sr at each step. Moreover, the order conditions (7) are immediately
satisfied for the components corresponding to the sr reused stages.
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Remark 1.

� From the condition ik ̸= il, jk ̸= jl, for all k ̸= l, ik ̸= jl for all k, l, we
deduce that sr ≤ s/2 and consequently sr ≤ se.

� By reordering properly the stages, we can get an equivalent peer method
where i1 = 1, . . . , isr = sr, that is, the reused stages are the first sr ones,
and jk > sr for k = 1, . . . , se. Moreover, we can assume, without lacking
of generality, that j1 < j2 < . . . < jsr .

As an example, the three stage general method given by c = (c2− 1, c2, c3)
T

and

A =

 0 1 0
a21 a22 a23
a31 a32 a33

 , B =

 0 0 0
b21 b22 b23
b31 b32 b33

 , R =

 0 0 0
r21 r22 r23
r31 r32 r33

 ,

satisfies eT1 B = eT1 R = (0, 0, 0) and eT1 A = e2. It has one reused stage,
sr = 1, and two effective stages, se = 2. In this case, i1 = 1 and j1 = 2. In
addition, since Y1,1 = Y0,2, we can regroup the evaluations f(t1 + c1h, Y1,1) and
f(t0 + c2h, Y0,2) in one term and rewrite the method with the matrices

A =

 0 1 0
a21 a22 a23
a31 a32 a33

 , B =

 0 0 0
b21 b22 + r21 b23
b31 b32 + r31 b33

 , R =

0 0 0
0 r22 r23
0 r32 r33

 .

We will then consider that a method with reused stages satisfies in addition

rij = 0 for j ≤ sr (12)

Theorem 1. Any two-step peer method with s stages and sr reused stages is
equivalent to a three-step peer method with se = s− sr stages.

Proof. A three-step peer method can be written as

Yn+1 = A0 Yn−1 +A1 Yn + h B0 f(tn−1e+ hc,Yn−1)+

h B1 f(tne+ hc,Yn) + h R2 f(tn+1e+ hc,Yn+1). (13)

where Yn−1 and Yn are approximations at two previous steps. Denoting

Zn = (Yn−1,Yn)
T ,

Zn+1 = (Yn,Yn+1)
T ,

c̄ = (c, e+ c)T ,

f(tne+ hc̄,Zn) = (f(tn−1e+ hc,Yn−1), f(tne+ hc,Yn))
T ,

f(tn+1e+ hc̄,Zn+1) = (f(tne+ hc,Yn), f(tn+1e+ hc,Yn+1))
T ,

(14)
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the above expression (13) can be rewritten as

Zn+1 = ĀZn + hB̄f(tne+ hc̄,Zn) + hR̄f(tn+1e+ hc̄,Zn+1), (15)

where

Ā =

(
0 I
A0 A1

)
, B̄ =

(
0 0
B0 B1

)
, R̄ =

(
0 0
0 R2

)
. (16)

Conversely, any s-stage two-step peer method with such an structure can be
equivalently written as a three-step peer method with s/2 stages.

We will show that a peer method with se effective stages satisfying (11) and
(12) can be written in the above form with 2se stages and consequently, it is
equivalent to a three-step peer method.

If sr = se = s/2, by reordering adequately the first s/2 stages, the matrices
A, B, R have already the structure in (16) and the vector c has the form of c̄
in (14). The method is equivalent to a method (15), (16).

If sr < se, we can add se − sr stages by adding se − sr zero rows to B and
R and the same zero columns. For the matrix A we add se − sr zero rows,
except the diagonal element set to 1, and the same zero columns, so that the
new matrices have the form (15),(16). Thus, for the above example, the method
is equivalent to the scheme with

Ā =


0 0 1 0
0 0 0 1
a21 0 a22 a23
a31 0 a32 a33

 , B̄ =


0 0 0 0
0 0 0 0
b21 0 b22 b23 + r21
b31 0 b32 b33 + r31

 , R̄ =


0 0 0 0
0 0 0 0
0 0 r22 r23
0 0 r32 r33

 ,

and c̄ = (c2 − 1, c3 − 1, c2, c3)
T . This method is equivalent to a three-step peer

method.

Remark 2. Note that all peer methods with se effective stages have a similar
computational cost because they require the same number of evaluations of the
vector field per step. However, the number of total stages s affects the number
of vectors that must be saved at each step, that is, greater number of stages s
implies greater storage requirements and more arithmetic operations.

Remark 3. In this paper we are considering methods that reuse some of the
stages of just the previous step. Stages of k previous steps can be used in the
current step, as it was done in [12]. In such a case, the peer method with se
effective stages will be equivalent to a k-step peer method with se stages.

Remark 4. In the case of variable step-size, if we are advancing from tn to
tn+1 with step size hn ̸= hn−1 we require the values Yn,i ≃ y(tn + cihn) for
i = 1, . . . , sr. However, from the previous step we have the values Yn−1,j ≃
y(tn−1 + cjhn−1), j > sr, which are not exactly the same because tn + cihn =
tn−1 + hn−1 + (cj − 1)hn ̸= tn−1 + cjhn−1. This is solved in [12] by taking
variable nodes cj in such a way that cjhn−1 = hn−1 + cihn. The formulation
as a three-step peer method can have some advantage. Thus, we can keep
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the nodes constant and get approximations Ŷn,i ≃ y(tn + cihn) of order p by
interpolating the previous known values Yn,i, fn,i. Recall that all the stages
have the same order p. This approach is similar to the interpolatory technique
in variable step multistep methods [8, 10]. Another possibility is to state the
order conditions for the three-step peer method in terms of the step-size ratio
rn = hn/hn−1 and compute the coefficients of the method as functions of rn,
similarly to the variable coefficients technique in multistep methods [2]. This
approach is equivalent to the one proposed in [12].

In the next sections we will develop peer methods with 3 and 4 stages having
one or two reused stages, assuming fixed step-size. A first point is the construc-
tion of the transition matrices A with the preconsistency condition and such
that the method is optimally 0-stable. Then A must satisfy Ae = e and s− 1
eigenvalues of A must vanish. If an s-stage method has sr reused stages and
se = s − sr effective stages, its matrix A has its sr first rows constant. Then
there are in principle s× se free parameters in A. The preconsistency condition
Ae = e imposes se linear relations between the coefficients of A and implies
that one eigenvalue of A is 1. The condition that the other s − 1 eigenvalues
of A must be zero imposes, through the characteristic polynomial of A, s − 1
additional relations. In conclusion, it is expected that the number of free pa-
rameters of A is s × se − se − (s − 1) = (s − 1)(se − 1). The point here is
that when either s or se are not small it turns out a complicated task to give
an explicit expression of the elements of A in terms of a set of (s − 1)(se − 1)
free parameters because as remarked above for an optimally stable matrix A
some relations between the aij are non linear algebraic equations. Note that
in [12] the matrix A is assumed to be upper triangular, with diagonal elements
0, . . . , 0, 1, and consequently there are (se − 1)(se − 2)/2 free parameters. Here
we are assuming a general matrix, A, which gives more available parameters
but at the price of solving some complicate nonlinear conditions.

The free parameters will be selected having in mind the following conditions:

� Take cs = 1 so that the last stage Yn,s gives an approximation to the
solution y(tn + h) at the grid point tn + h.

� Make the norm of the coefficient Cp+1 of the leading term (8) of the local
error as small as possible.

� Make the absolute stability interval as large as possible.

� Have superconvergence if possible.

4. Peer methods with two effective stages

There are three possibilities of two-step peer methods with two effective
stages, se = 2, that are equivalent to a three-step peer method with two stages:
two with three stages

� s = 3 with c = (c1 = c2−1, c2, 1)
T and Y1,1 = Y0,2. In this case eT1 A = eT2

and therefore a11 = 0, a12 = 1, a13 = 0.
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� s = 3 with c = (0, c2, 1)
T and Y1,1 = Y0,3. Then eT1 A = eT3 and a11 =

0, a12 = 0, a13 = 1.

and one with four stages

� s = 4 with c = (c1 = c3 − 1, 0, c3, 1)
T and Y1,1 = Y0,3 and Y1,2 = Y0,4.

Then eT1 A = eT3 , eT2 A = eT4 and a11 = 0, a12 = 0, a13 = 1, a14 = 0,
a11 = 0, a12 = 0, a13 = 0, a14 = 1.

Methods with se = 2 and s > 4 have sr = s−se > se reused stages and therefore
they are equivalent to methods with s = 3, 4.

4.1. Case c = (c2 − 1, c2, 1)
T

Imposing the preconsistency condition Ae = e and that the matrix A has
eigenvalues 1, 0, 0 (optimal zero stability) we have two possibilities for the matrix
A. If a32 = 1 the matrix A has the form

A =

 0 1 0
a21 1 −a21
0 1 0

 , (17)

and there is one free parameter a21. If a32 ̸= 1, A has the form

A =


0 1 0

a31 +
a231

a32 − 1
a31 + a32 − (a32 + a31 − 1)2

a32 − 1
a31 a32 1− a31 − a32

 , (18)

and we have two free parameters a31 and a32 ̸= 1.
Next we study the maximum order attainable for these transition matrices.

4.1.1. Case a32 = 1

In case of the matrix A given by (17) we have 9 free parameters: c2, a21,
b21, b22, b23, b31, b32, b33 and r32. With them we can attain order 4. In fact,
expanding (6) around the point t+ (c2 − 1)h we get the following order condi-
tions for the second stage (recall that we are assuming the conditions (12) and
consequently r21 = 0)

(2− c2)a21 − b21 − b22 − b23 + 1 = 0,
(2− c2)

2a21 − 2b22 − 2(c2 + 1)b23 + 3 = 0,
(2− c2)

3a21 − 3b22 − 3(c2 + 1)2b23 + 7 = 0,
(2− c2)

4a21 − 4b22 − 4(c2 + 1)3b23 + 15 = 0,

from where we can obtain b21, b22, b23 and a21. We have a linear system in
these parameters whose matrix of coefficients has a non zero determinant if
c2 ̸= 0, 1, 2. Then, we have a unique solution in terms of c2.
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Analogously, for the third stage, b31, b32, b33 and r32 can be obtained in terms
of c2 from the orderconditions,

−c2 − b31 − b32 − b33 = 0,
(1− c2)

2 + 4c2 − 2b32 − 2(2− c2)b33 − 4r32 + 3 = 0,
(3− c2)

3 − 3b32 − 3(2− c2)
2b33 − 12r32 − 1 = 0,

(3− c2)
4 − 4b42 − 4(2− c2)

3b33 − 32r32 − 1 = 0,

that form a linear system whose coefficient matrix is non-singular again if
c2 ̸= 0, 1, 2. Then, the method with order ≥ 4 is determined by the non-zero
parameters

a21 =
3− 10c2

c2(2− c2)3
, r32 =

(2− c2)
2(−c22 + 2c2 + 6)

24c2
,

b21 = −c32 + c22 + 3c2 − 1

2c2(2− c2)2
, b22 =

(1 + c2)(1− 3c2)

2c2(1− c2)
,

b23 =
5c22 − 2c2 + 1

2c2(1− c2)(2− c2)2
, b31 =

(2− c2)(c
2
2 − 6c2 + 6)

24
,

b32 =
(4− c2)(2− c2)(c

2
2 + 2c2 − 2)

12(1− c2)
, b33 =

c32 − 6c22 + 10c2 − 4

4c2(1− c2)
.

The remaining parameter c2 will be fixed by considering the Euclidean norm
of the error constant vector and the real interval of absolute stability. For this
method the norm of the error constant vector is

C5 = ∥C5∥2 =

(
(5c32 + c22 + 3c2 − 1)2

57600c22
+

(2− c2)
2(3c32 − 3c22 − 34c2 + 26)2

2073600

)1/2

.

The error coefficient C5 does not vanish for any value of c2 and the method
can not have order 5. The minimum value of C5 is attained at c2 = 0.563 and
has the value C5(0.563) = 0.016814.

On the other hand, computing numerically the interval of absolute stability
of the method we get that it attains its maximum value at c2 = 0.45. As a
compromise between minimizing the error coefficient and maximizing the sta-
bility interval, we propose to take c2 = 0.46 for which C5 = 0.0191722 and the
stability interval is [−0.85, 0].

The exact rational coefficients of the method for c2 = 23/50 are

a21 =
−100000000

10500259
, r32 =

99435259

6900000
,

b21 =
−86117

272734
, b22 =

−1387

1242
, b23 =

3556250

3681909
,

b31 =
−167167

3000000
, b32 =

9862853

13500000
, b33 =

−71533

124200
,

c1 = −27/50, c2 = 23/50, c3 = 1.

(19)

10



Another option to select the parameter c2 is to impose the superconvergence.
This is accomplished if νννTC5 = 0 with νννT = (a21, 1,−a21). This condition is sat-
isfied for c2 = 0.293865329707072, that gives the stability interval [−0.31263, 0],
yielding the coefficients

a21 = 1.0392457378907218849, r32 = 3.2205711960111734306,
b21 = −0.10871679818314161401, b22 = 0.47234216956993994061,
b23 = 0.66471606254708996838, b31 = −0.95609053754149465449,
b32 = 2.2459253000123416179, b33 = −2.7599113569149019133,
c1 = −0.706134670292928, c2 = 0.293865329707072,
c3 = 1.

(20)

For c2 = 0.9626284454321548437, we also obtain superconvergence but the
stability interval [−0.01167, 0] is very small.

4.1.2. Case a32 ̸= 1

In the case of matrix A given by (18) we have 10 parameters a31, a32, bij , r32
and c2. With them, we can get a method of order 5.

The order equations up to order 4 for the second stage

(2− c2)(a31 + a32 − 1)2

a32 − 1
− a31 − a32 − b21 − b22 − b23 + 2 = 0,

(2− c2)
2(a31 + a32 − 1)2

a32 − 1
− a31 − a32 − 2b22 − 2(2− c2)b23 + 4 = 0,

(2− c2)
3(a31 + a32 − 1)2

a32 − 1
− a31 − a32 − 3b22 − 3(2− c2)

2b23 + 8 = 0,

(2− c2)
4(a31 + a32 − 1)2

a32 − 1
− a31 − a32 − 4b22 − 4(2− c2)

3b23 + 16 = 0,

can be solved for b23, b21, a31, a32 as functions of b22 and c2 whenever c2 ̸= 0, 1, 2.
The equations of order 4 for the third stage
(2− c2)a31 + (1− c2)a32 − b31 − b32 − b33 + 1 = 0,

2(1− c2) + (2− c2)
2a31 + (1− c2)(3 + c2)a32 − 2b32 + 2c2b33 − 4r32 + 3 = 0,

(3− c2)
3 + (2− c2)

3(a31 + a32 − 1)− a32 − 3b32 − 3(2− c2)
2b33 − 12r32 = 0,

(3− c2)
4 + (2− c2)

4(a31 + a32 − 1)− a32 − 4b32 − 4(2− c2)
3b33 − 32r32 = 0,

give us b31, b32, b33 and r32.
The coefficients of the fifth order term reduce to C5 = (0, C52, C53)

T with

C52 = b22(1− c2)
2 − 4c22,

C53 =
b0c2 + b1c2b22 + b2c2b

2
22

24(c2(2c2(b22 − 4) + b22 + 2) + 2)
,

where

b0(c2) = (2− c2)
2(−194 + 935c2 − 1393c22 + 757c32 + 279c42 − 192c52),

b1(c2) = −12(1− c2)(2− c2)
2(−15 + 35c2 − 17c22 − 23c32 + 12c42),

b2(c2) = −24c2(1− c2)
3(2− c2)

3.

11



To get order 5 we must impose C52 = 0 which gives b22 = 4c22/(1 − c2)
2. The

condition C53 = 0 is then satisfied for the roots of the polinomial

p3(c2) = −194 + 741c2 + 68c22 − 135c32.

The only root of this polinomial in the interval [0, 1] is c2 = 0.2588197469856989.
With this value we get the coefficients

c1 = −0.741180253014301145, c2 = 0.2588197469856989,
c3 = 1,

a12 = 1, a21 = 0.161238627799772241213,
a22 = 0.828412865165948871638, a23 = 0.0103485070342788871495,
a31 = 2.673474934799112431145, a32 = −1.845062069633163559507,
a33 = 0.171587134834051128362,

b21 = 0.0441913578409199441791, b22 = 0.4877610622761986795467,
b23 = 0.6216160986206665167366, b31 = 0.8214385374014276549412,
b32 = 3.662929452413390864301, b33 = −4.444462523102436783378,

r32 = 4.247572725090730819489.

(21)

This method has [−0.1283, 0] as the stability interval.

4.2. Case c = (0, c2, 1)
T

Imposing the preconsistency condition Ae = e and that A has eigenvalues
1, 0, 0 (optimal zero stability) we get

A =

0 0 1
0 a22 1− a22
0 a22 1− a22

 ,

that depends only on a22.
The order equations of the second stage are linear in a22, b21, b22, b23 and

define uniquely these coefficients as a function of c2 ̸= 0, 1,−1. The order
equations of the third stage are linear in b31, b32, b33, r32 and define them as
rational functions of c2. Them we have a family of fourth order methods given
by

a22 =
c22(−6− 2c2 + c22)

(−1 + c2)3(1 + c2)
, r32 =

(−1 + c2)(−17− 7c2 − c22 + c32)

12c2(1 + c2)
,

b21 = − c2
2(1 + c2)

, b22 =
c2(1 + 4c2 + 2c22)

2(−1 + c2)2(1 + c2)
,

b23 =
c2(2 + 4c2 + c22)

2(−1 + c2)2(1 + c2)
, b31 =

−7 + 14c2 − 12c22 − 2c32 + c42
12c2(1 + c2)

,

b32 = −−7 + 10c2 + c22 − 36c32 − 13c42 + 2c52 + c62
12(−1 + c2)2c2(1 + c2)

,

b33 =
17− 38c2 − 5c22 + 12c32 − 31c42 + 2c52 + c62

12(−1 + c2)2c2(1 + c2)
.
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The remaining parameter c2 can be fixed by considering the error constant
and the absolute stability. For this method the norm of the error constant is
given by

C5 = ∥C5∥2 =

(
(c22(2 + c2)(1 + 2c2))

2

57600(1 + c2)2

+
(−31 + 29c2 + 29c22 − 45c32 − 11c42 + c52 + c62)

2

2073600(1 + c2)2

)1/2

. (22)

The method can not have order 5 because the above error coefficient C5

does not vanish for any c2. It has a minimum at c2 = 0.61968 and has a value
C5(0.619682) = 0.0133889. Unfortunately, the stability interval for this value of
c2 is [−0.0841, 0] which is very small. This interval can be enlarged by reducing
c2, but in this case the error coefficient is large. For example, for c2 = 0.01 the
interval is [−0.4784, 0], but the error coefficient is 0.0422265.

Nevertheless, it is possible to get superconvergence. For this method νννT =
(0, a22, 1− a22) and hence

νννTC5 =
−31 + 60c2 + 186c22 − 5c42

720(−1 + c22)
,

that has a unique zero at c2 = 0.277847 and for this value the order of conver-
gence (with fixed step) is 6. The stability interval is [−0.2085, 0]. The properties
of this method, are slightly inferior to those of method (20), which makes the
method have a lower performance.

4.3. Case c = (c3 − 1, 0, c3, 1)
T

Imposing the preconsistency condition Ae = e and that the eigenvalues of
matrix A are 1, 0, 0, 0, we get the relations

a41 = a31
− a32 + (a32 + a31)a33

−a32 + (a31 + a32)(a31 + a32 + a33)
,

a42 = a32
−a32 + (a32 + a31)a33

−a32 + (a31 + a32)(a31 + a32 + a33)
,

a43 =
a32(a32 + (a33 − 1)a33) + a31(a32 + a233)

−a32 + (a31 + a32)(a31 + a32 + a33)
.

With these conditions we can obtain a family of methods of order 5 with
three free parameters c3, a31, a32. It is even possible to get a method of order
6 but its stability interval is very small, which makes the method not useful in
practice. Then the three free parameters are selected to have a reasonable sta-
bility interval, small error coefficient and also superconvergence. To this end,we
have taken a grid of 100×100 points in the domain (c3, a32) ∈ [0, 1]× [−24,−14]
computing at each of them the value of a31 that gives superconvergence, remov-
ing the points for which the stability interval has a length smaller than 0.15.
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Searching for a method well balanced between small error constant and large
stability interval we have taken a32 = −16.457280303394512, a31 = −13.020850320747137
and c3 = 0.68. The resulting method has the error coefficient ∥C6∥2 = 0.0057816
and a stability interval [−0.23, 0].

The method is determined by the coefficients

c1 = −0.32, c2 = 0,
c3 = 0.68, c4 = 1,

a13 = 1, a24 = 1,
a31 = −13.020850320747137, a32 = −16.457280303394512,
a33 = 13.863029873184144, a34 = 16.615100750957505,
a41 = 10.8836646940165005, a42 = 13.7560540352874859,
a43 = −10.77668885611984, a44 = −12.86302987318414,

b31 = −0.10475289336554956, b32 = −13.181978943397285,
b33 = −18.04239080932914, b34 = 2.8004894787301634,
b41 = 0.11361995837242606, b42 = 10.96161489848743367,
b43 = 15.122018420408626, b44 = −1.4681992040025898,

r43 = 0.9448969241650209.

(23)

5. Peer methods with three effective stages

There are seven possible familes of two-step peer methods with three effective
stages: three with four stages (c1 = c2 − 1, or c1 = c3 − 1, or c1 = c4 − 1), three
with five stages (c1 = c3 − 1, c2 = c4 − 1, or c1 = c3 − 1, c2 = c5 − 1, or
c1 = c4 − 1, c2 = c5 − 1) and one with six stages. With more than six stages,
sr > se and the method must be reducible.

In this section we will consider only the case of peer methods with 4 stages
and three effective stages with c = (c2 − 1, c2, c3, 1)

T .
By imposing the condition that A has eigenvalues 1, 0, 0, 0 and that a11 =

a13 = a14 = 0, a12 = 1, we obtain that the coefficients a41, a42, a43, a44, a24,
a34 can be expressed in terms of the other 6 coefficients aij . The remaining
23 parameters can fulfill the order 6 conditions leaving five free parameters
a21, a31, a32, c2 and c3. It is possible to have order seven, but the absolute
stability of the resulting methods is very poor.

Proceeding as in the case of methods with s = 4 and two effective stages, we
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have obtained a method with

c1 = −0.8035242525537255, c2 = 0.19647574744627448,
c3 = 0.72, c4 = 1,

a21 = −0.07128783623436709, a22 = −2.387509763076835,
a23 = 0.36944011350403578, a24 = 3.089357485807169,
a31 = −0.62042181681008028, a32 = −0.6563599502668403,
a33 = 0.62955494134947196, a34 = 1.64722682572745,
a41 = 0.098720023563549021, a42 = −2.0658949190396446,
a43 = 0.2092200737487298, a44 = 2.757954821727366,

b21 = −0.01638484510723668, b22 = −0.600007633856693,
b23 = −1.35655864264368, b24 = 0.22587876143321779,
b31 = −0.15949696692096115, b32 = −1.709290486968977,
b33 = 3.486392736696774, b34 = −6.2893371594343907,
b41 = 0.024420393431217120, b42 = −0.015773121933605,
b43 = −2.93561830783985, b44 = 3.50260698391356795,

r32 = 3.9216603283306189245,
r42 = −1.77040450882688773, r43 = 0.713974679388708.

(24)

With this values of the parameters the method has order 6 with error coefficient
C7 = 0.0006121 and an absolute stability interval [−0.15, 0] and also supercon-
vergence.

6. Numerical experiments

To show the performance of the peer methods above developed we present
some numerical experiments to compare them with other previously developped
peer methods and to check the correctness of the order results. In order to
do that, we consider two non-linear problems of low dimension used by many
authors as non-stiff test problems:

1. The Euler’s equations that describe the motion of a free rigid body

y′1 = (α− β)y2y3,
y′2 = (1− α)y1y3, t ∈ [0, 10],
y′3 = (β − 1)y1y2,
y(0) = (0, 1, 1)T ,

(25)

where
α = 1 + 1/

√
1.51, β = 1− 0.51/

√
1.51.

The solution of this problem is

y(t) =

(√
1.51 sn(t, 0.51), cn(t, 0.51),dn(t, 0.51)

)T

,
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where sn, cn, dn are the Jacobi elliptic functions with elliptic modulus
0.51.

2. The Duffing’s equation

y′′ + (w2 + k2)y = 2k2y3, t ∈ [0, 20],
y(0) = 0, y′(0) = w,

with k = 0.035 and w = 1. This problem has the solution

y(t) = sn
(
wt, (k/w)

2
)
.

We have selected in our experiments the following peer methods (we use the
notation ijk to indicate: i total number of stages, j effective stages and order
k and ijks to indicate that the method has superconvergence order (k + 1):

New324 The peer method with three stages, two effective stages and order 4
with c1 = c2 − 1, given in (19). This method has an stability interval
larger than the other selected peer methods.

New324s The peer method with three stages, two effective stages and order
4 with c1 = c2 − 1, given in (20). This method has superconvergence of
order 5.

New325 The peer method with three stages, two effective stages and order 5
with c1 = c2 − 1, given in (21).

New425s The peer method with four stages, two effective stages and order 5
with c1 = c3−1, c2 = c4−1 = 0, given in (23). It has also superconvergence
of order 6.

New436s The peer method with four stages, three effective stages and order
6 with c1 = c2 − 1, c4 − 1 = 0, given in (24). It has also superconvergence
of order 7.

Calvo335 The peer method with three stages, three effective stages and order
5 proposed in [3].

Klinge425 The peer method with four stages, two effective stages and order 5
with c1 = c3 − 1, c2 = c4 − 1 = 0, proposed in [12].

In Table 1 we give the main properties of the methods used in the experi-
ments

In the above problems we have used a fixed stepsize, taking h = T/2i, for
i = 3, 4, . . .

To start the integration, the stages corresponding to the first step were
defined as the exact solution, that is, Y0,k = (y(t0 + c1h)

T , . . . , y(t0 + csh)
T )T .

For each integration we have computed at each step the Euclidean norm of
the global error, and we have obtained the maximum of these values, GE. We
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Table 1: Properties of the methods

Method Order Stab Error coef. se Super conv.
Calvo335 5 2.02 0.003642 3 No
Klinge425 5 0.38 0.044127 2 No
New324 4 0.82 0.019172 2 No
New324s 4 0.31 0.032019 2 Yes
New325 5 0.13 0.014686 2 No
New425 5 0.23 0.005781 2 Yes
New436 6 0.15 0.000612 3 Yes
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Figure 1: Efficiency plot for Euler’s equations
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Figure 2: Duffing’s equation: efficiency plot

have also computed the number of function evaluations nfcn required for the
corresponding integration.

In Figures 1 and 2 we display the efficiency plots, log10(GE) versus log10(nfcn),
corresponding to the problems 1 and 2.

From Figures 1 and 2, we can see that all the methods exhibit the order
deduced from the theory. Moreover, in general, the higher the order, the more
efficient the method. It is also seen that the new methods are more efficient than
the existing methods with the same order. It is worth to note that the methods
New436s, New425s and New324s show numerical orders 5, 6 and 7 respectively,
due to the superconvergence property.

Secondly, we want to compare the performance of the proposed methods
with some existing state of the art methods such as the classical sixth-order
Adams-Bashforth-Moulton implemented in PECE mode and the well-known
fifth-order Runge-Kutta scheme of Dormand and Prince [6]. In this case, we
have considered two problems with high dimension.

3 The reaction-diffusion equation (Brusselator with diffusion) ([9], page 248)
∂u
∂t = 1 + u2v − 4.4u+ α

(
∂2u
∂x2 + ∂2u

∂y2

)
,

∂v
∂t = 3.4u− u2v + α

(
∂2v
∂x2 + ∂2v

∂y2

)
,

for 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, t ≥ 0, α = 2 · 10−3 together with the initial
conditions

u(x, y, 0) = 0.5 + y, v(x, y, 0) = 1 + 5x,
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and the Neumann boundary conditions

∂u

∂n
= 0,

∂v

∂n
= 0,

where n is the normal vector to the boundary of the square [0, 1]× [0, 1].
The method of lines using centered finite differences with

xi = (i− 1)/(N − 1), yj = (j − 1)/(N − 1), i, j = 1, . . . , N,

and defining

Uij(t) = u(xi, yj , t), Vij(t) = v(xi, yj , t),

yields the system of ODEs for i, j = 1, . . . , N,

U ′
ij = 1 + U2

ijVij − 4.4Uij + α(N − 1)2 (Ui+1,j + Ui−1,j + Ui,j+1 + Ui,j−1 − 4Uij)

V ′
ij = 3.4Uij − U2

ijVij + α(N − 1)2 (Vi+1,j + Vi−1,j + Vi,j+1 + Vi,j−1 − 4Vij)
(26)

of dimension 2N2.
Because of the boundary conditions we have

U0 j = U2 j , UN+1 j = UN−1 j , Ui 0 = Ui 2, UiN+1 = UiN−1,

and similarly for Vij . We choose N = 21, giving a dimension of 882 and
as the integration interval t ∈ [0, 10].
We have solved it with the 4-stage peer methods deduced in the previ-
ous section, the DOPRI5 and the sixth-order Adams-Bashforth-Moulton
(ABM6) to show the behaviour of this class of methods in high dimension
problems.

4 As another problem with large dimension, we consider the ROPE problem
([9], page 247)

n∑
k=1

alkθ̈k = −
n∑

k=1

blkθ̇
2
k − n

(
n+

1

2
− l

)
sin (θl)

−n2 sin (θl)Fx(t) +

{
n2 cos (θl)Fy(t) if l ≤ 3n/4,
0 if l > 3n/4,

for l = 1, 2, . . . , n, and

alk = glk cos (θl − θk) , blk = glk sin (θl − θk) , glk = n+
1

2
−max{l, k},

with the horizontal force Fy(t) = 1/(cosh(4t−2.5))4 and the vertical force

Fx(t) = 0.4. The initial conditions are θl(0) = ˙θ(0) = 0, the integration
interval is [0, 3.723] and choosing n = 40 we obtain a system of ODEs of
dimension 80.
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Figure 3: Efficiency plot for the Brusselator equation

In problems 3 and 4 we have used different values for the number of inte-
gration steps (fixed stepsize). To obtain the exact solution, we have taken the
DOPRI853 with stringent tolerances to compute the global error at the end
point of the integration interval.

In Figures 3 and 4 we display the efficiency plots, log10(GE) versus log10(nfcn),
corresponding to the two problems considered.

In the non-stiff Brusselator equation, the most efficient method when the step
is small corresponds to the New436s. Also, the efficiency of the peer New425s
is the same as the ABM6.

For the ROPE problem, the efficiency of New425s is very similar to ABM6
and the peer scheme New436s appears to be better when the step size is small.

This numerical experiments indicate that both methods are quite competi-
tive when are compared against the DOPRI5 method.

7. Conclusions

In general an two-step explicit s-stage peer method requires the computation
of s vector fields f(tn,j , Yn,j), (j = 1, 2, . . . , s) per step but under some relation
between the nodes it is possible to construct s-stage methods that require se < s
effective computations at each step. In this paper a new technique to construct
explicit s-stage peer methods with se ≤ s/2 efective stages of the previous step
is presented.

We have derived new peer methods with three stages and two effective stages
that attain order 4 and 5. With four stages we have developed methods with

20



104 104.2 104.4 104.6

10−8

10−7

10−6

10−5

10−4

10−3

10−2

log10(nfcn)

lo
g
1
0
(e
rr
o
r)

New425s New436s ABM6 DOPRI5

Figure 4: Efficiency plot for the ROPE equation

and 2 and 3 effective stages that attain order 5 and 6 respectively. By choosing
the available parameters to get the highest order of accuracy with smallest error
constant and maximum real stability interval. Since optimal methods with each
of these requirements is achieved for different values of the available parameters
a compromise between these objectives is considered.

The results of some numerical experiments are presented to show that with a
fixed step size the new methods have orders of accuracy that are those predicted
by the theory and can be more efficient than some standard explicit formulas
used in the solution of non-stiff IVPs. At the moment an extension of the present
formulas to a variable step size environment is under study as well as local error
estimators with the purpose to use these formulas in codes that may adjust the
size step along the integration to have an efficient computation.
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