000132331 001__ 132331
000132331 005__ 20240301161208.0
000132331 0247_ $$2doi$$a10.1088/0957-4484/24/50/505702
000132331 0248_ $$2sideral$$a83604
000132331 037__ $$aART-2013-83604
000132331 041__ $$aeng
000132331 100__ $$aCastrillon, Mariana
000132331 245__ $$aSynthesis and magnetic behaviour of ultra-small bimetallic FeCo/graphite nanoparticles
000132331 260__ $$c2013
000132331 5060_ $$aAccess copy available to the general public$$fUnrestricted
000132331 5203_ $$aFeCo-alloy graphite-coated nanoparticles with mean particle diameter under 8 nm have been synthesized following a CVD carbon-deficient method. The superior magnetic properties of FeCo-alloy nanoparticles makes them good candidates to be used as magnetic filler in magneto-polymer composites. Thanks to the protective effect of the graphite shell, FeCo nanoparticles are stable under oxygen atmosphere up to 200 ° C. The as-prepared nanoparticles presented a highly long range chemically ordered core being ferromagnetic at room temperature with a saturation magnetization at room temperature close to the bulk value. After annealing at 750 K the saturation magnetization and the coercive field increase. To investigate the processes involved in the thermal treatment, the temperature dependence of the magnetization and the particle composition, size and structure have been characterized before and after annealing. Besides powder x-ray diffraction (XRD) and x-ray photoelectron spectroscopy (XPS), a detailed study by means of advanced transmission electron microscopy (TEM) techniques has been carried out. In particular, aberration corrected scanning transmission electron microscopy (STEM), has shown that nanoparticles became faceted after the thermal treatment, as a mechanism to reach the thermodynamic equilibrium within the metastable phase. This outstanding feature, not previously reported, leads to an increase of the shape anisotropy, which in turn might be the origin of the observed increase of the coercive field after annealing.
000132331 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E98-MOLCHIP$$9info:eu-repo/grantAgreement/ES/MINECO/MAT2012-38318-C03-03
000132331 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000132331 590__ $$a3.672$$b2013
000132331 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b39 / 246 = 0.159$$c2013$$dQ1$$eT1
000132331 591__ $$aPHYSICS, APPLIED$$b19 / 135 = 0.141$$c2013$$dQ1$$eT1
000132331 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b24 / 73 = 0.329$$c2013$$dQ2$$eT1
000132331 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000132331 700__ $$0(orcid)0000-0002-5229-2717$$aMayoral, Alvaro
000132331 700__ $$0(orcid)0000-0002-8424-9780$$aUrtizberea, Ainhoa
000132331 700__ $$0(orcid)0000-0003-0602-492X$$aMarquina, Clara$$uUniversidad de Zaragoza
000132331 700__ $$0(orcid)0000-0002-2966-9088$$aIrusta, Silvia$$uUniversidad de Zaragoza
000132331 700__ $$aMeier, Johan
000132331 700__ $$0(orcid)0000-0002-8701-9745$$aSantamaria, Jesus$$uUniversidad de Zaragoza
000132331 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000132331 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000132331 773__ $$g24, 50 (2013), 505702 [11 pp]$$pNanotechnology$$tNanotechnology$$x0957-4484
000132331 8564_ $$s1716102$$uhttps://zaguan.unizar.es/record/132331/files/texto_completo.pdf$$yPostprint
000132331 8564_ $$s2391155$$uhttps://zaguan.unizar.es/record/132331/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000132331 909CO $$ooai:zaguan.unizar.es:132331$$particulos$$pdriver
000132331 951__ $$a2024-03-01-14:55:07
000132331 980__ $$aARTICLE