000132334 001__ 132334
000132334 005__ 20241125101200.0
000132334 0247_ $$2doi$$a10.1021/jacs.3c05053
000132334 0248_ $$2sideral$$a135521
000132334 037__ $$aART-2023-135521
000132334 041__ $$aeng
000132334 100__ $$aStolberg, Michael A.
000132334 245__ $$aLamellar Ionenes with Highly Dissociative, Anionic Channels Provide Lower Barriers for Cation Transport
000132334 260__ $$c2023
000132334 5060_ $$aAccess copy available to the general public$$fUnrestricted
000132334 5203_ $$aSolid polymer electrolytes have the potential to enable safer and more energy-dense batteries; however, a deeper understanding of their ion conduction mechanisms, and how they can be optimized by molecular design, is needed to realize this goal. Here, we investigate the impact of anion dissociation energy on ion conduction in solid polymer electrolytes via a novel class of ionenes prepared using acyclic diene metathesis (ADMET) polymerization of highly dissociative, liquid crystalline fluorinated aryl sulfonimide-tagged (“FAST”) anion monomers. These ionenes with various cations (Li+, Na+, K+, and Cs+) form well-ordered lamellae that are thermally stable up to 180 °C and feature domain spacings that correlate with cation size, providing channels lined with dissociative FAST anions. Electrochemical impedance spectroscopy (EIS) and differential scanning calorimetry (DSC) experiments, along with nudged elastic band (NEB) calculations, suggest that cation motion in these materials operates via an ion-hopping mechanism. The activation energy for Li+ conduction is 59 kJ/mol, which is among the lowest for systems that are proposed to operate via an ion conduction mechanism that is decoupled from polymer segmental motion. Moreover, the addition of a cation-coordinating solvent to these materials led to a >1000-fold increase in ionic conductivity without detectable disruption of the lamellar structure, suggesting selective solvation of the lamellar ion channels. This work demonstrates that molecular design can facilitate controlled formation of dissociative anionic channels that translate to significant enhancements in ion conduction in solid polymer electrolytes.
000132334 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000132334 590__ $$a14.5$$b2023
000132334 592__ $$a5.489$$b2023
000132334 591__ $$aCHEMISTRY, MULTIDISCIPLINARY$$b18 / 231 = 0.078$$c2023$$dQ1$$eT1
000132334 593__ $$aBiochemistry$$c2023$$dQ1
000132334 593__ $$aColloid and Surface Chemistry$$c2023$$dQ1
000132334 593__ $$aChemistry (miscellaneous)$$c2023$$dQ1
000132334 593__ $$aCatalysis$$c2023$$dQ1
000132334 594__ $$a24.4$$b2023
000132334 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000132334 700__ $$aParen, Benjamin A.
000132334 700__ $$aLeon, Pablo A.
000132334 700__ $$aBrown, Christopher M.
000132334 700__ $$aWinter, Gavin
000132334 700__ $$aGordiz, Kiarash
000132334 700__ $$0(orcid)0000-0002-8932-9085$$aConcellón, Alberto$$uUniversidad de Zaragoza
000132334 700__ $$aGómez-Bombarelli, Rafael
000132334 700__ $$aShao-Horn, Yang
000132334 700__ $$aJohnson, Jeremiah A.
000132334 7102_ $$12013$$2765$$aUniversidad de Zaragoza$$bDpto. Química Orgánica$$cÁrea Química Orgánica
000132334 773__ $$g145, 29 (2023), 16200-16209$$pJ. Am. Chem. Soc.$$tJournal of the American Chemical Society$$x0002-7863
000132334 8564_ $$s1440872$$uhttps://zaguan.unizar.es/record/132334/files/texto_completo.pdf$$yPostprint$$zinfo:eu-repo/semantics/openAccess
000132334 8564_ $$s1882708$$uhttps://zaguan.unizar.es/record/132334/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint$$zinfo:eu-repo/semantics/openAccess
000132334 909CO $$ooai:zaguan.unizar.es:132334$$particulos$$pdriver
000132334 951__ $$a2024-11-22-12:11:30
000132334 980__ $$aARTICLE