000132377 001__ 132377
000132377 005__ 20240311111224.0
000132377 0247_ $$2doi$$a10.3233/JAE-209118
000132377 0248_ $$2sideral$$a119226
000132377 037__ $$aART-2020-119226
000132377 041__ $$aeng
000132377 100__ $$0(orcid)0000-0003-2848-170X$$aLópez-Alonso, Borja$$uUniversidad de Zaragoza
000132377 245__ $$aElectro-thermal modeling of irreversible electroporation and validation method of electric field distribution
000132377 260__ $$c2020
000132377 5060_ $$aAccess copy available to the general public$$fUnrestricted
000132377 5203_ $$aNowadays, several applications of electroporation have been adopted in cancer therapy with promising results that have boosted research interest. To develop new treatment options, the development of electroporation models and measurement method in order to study the real distribution of the electric field potential are needed. Nowadays, current trends in electroporation techniques suggest the use of more powerful pulse generators that enables the treatment of larger tissue volumes. However, new challenges arise regarding the modeling of the electroporation process in large tissue volumes as well as the potential thermal effects when large amounts of energy are used. The aim of this paper is to propose a finite element analysis (FEA) based model using COMSOL of the irreversible electroporation process considering both electrical and thermal effects, and to validate it through in-vivo experimentation. Moreover, we propose a methodology for measuring the electrical potential in different points of a biological tissue during the application of a train of pulses to measure the distribution of the electric field inside the tissue. For this application, needle-based electrodes have been developed to achieve the least invasive measurement possible. These tools are aimed to improve the application of the electroporation treatment by reducing its side effects.
000132377 536__ $$9info:eu-repo/grantAgreement/ES/DGA/LMP106-18$$9info:eu-repo/grantAgreement/ES/MECD/FPU16-03765$$9info:eu-repo/grantAgreement/ES/MINECO/RTC-2017-5965-6$$9info:eu-repo/grantAgreement/ES/MINECO/TEC2016-78358-R
000132377 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000132377 590__ $$a0.706$$b2020
000132377 591__ $$aENGINEERING, ELECTRICAL & ELECTRONIC$$b256 / 273 = 0.938$$c2020$$dQ4$$eT3
000132377 591__ $$aPHYSICS, APPLIED$$b153 / 160 = 0.956$$c2020$$dQ4$$eT3
000132377 591__ $$aMECHANICS$$b127 / 135 = 0.941$$c2020$$dQ4$$eT3
000132377 592__ $$a0.238$$b2020
000132377 593__ $$aElectrical and Electronic Engineering$$c2020$$dQ3
000132377 593__ $$aElectronic, Optical and Magnetic Materials$$c2020$$dQ3
000132377 593__ $$aMechanics of Materials$$c2020$$dQ3
000132377 593__ $$aMechanical Engineering$$c2020$$dQ3
000132377 593__ $$aCondensed Matter Physics$$c2020$$dQ3
000132377 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000132377 700__ $$0(orcid)0000-0001-8399-4650$$aSarnago, Héctor$$uUniversidad de Zaragoza
000132377 700__ $$0(orcid)0000-0002-9655-5531$$aBurdío, Jose Miguel$$uUniversidad de Zaragoza
000132377 700__ $$0(orcid)0000-0002-1284-9007$$aLucía, Óscar$$uUniversidad de Zaragoza
000132377 7102_ $$15008$$2785$$aUniversidad de Zaragoza$$bDpto. Ingeniería Electrón.Com.$$cÁrea Tecnología Electrónica
000132377 773__ $$g63, S1 (2020), S41-S50$$pInt. j. appl. electromagn. mech.$$tInternational journal of applied electromagnetics and mechanics$$x1383-5416
000132377 8564_ $$s880934$$uhttps://zaguan.unizar.es/record/132377/files/texto_completo.pdf$$yPostprint
000132377 8564_ $$s1312268$$uhttps://zaguan.unizar.es/record/132377/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000132377 909CO $$ooai:zaguan.unizar.es:132377$$particulos$$pdriver
000132377 951__ $$a2024-03-11-09:48:54
000132377 980__ $$aARTICLE