000132385 001__ 132385
000132385 005__ 20240311111224.0
000132385 0247_ $$2doi$$a10.1039/c5nr04352b
000132385 0248_ $$2sideral$$a129422
000132385 037__ $$aART-2015-129422
000132385 041__ $$aeng
000132385 100__ $$0(orcid)0000-0002-8424-9780$$aUrtizberea, A.
000132385 245__ $$aA diffusive ink transport model for lipid dip-pen nanolithography
000132385 260__ $$c2015
000132385 5060_ $$aAccess copy available to the general public$$fUnrestricted
000132385 5203_ $$aDespite diverse applications, phospholipid membrane stacks generated by dip-pen nanolithography (DPN) still lack a thorough and systematic characterization that elucidates the whole ink transport process from writing to surface spreading, with the aim of better controlling the resulting feature size and resolution. We report a quantitative analysis and modeling of the dependence of lipid DPN features (area, height and volume) on dwell time and relative humidity. The ink flow rate increases with humidity in agreement with meniscus size growth, determining the overall feature size. The observed time dependence indicates the existence of a balance between surface spreading and the ink flow rate that promotes differences in concentration at the meniscus/substrate interface. Feature shape is controlled by the substrate surface energy. The results are analyzed within a modified model for the ink transport of diffusive inks. At any humidity the dependence of the area spread on the dwell time shows two diffusion regimes: at short dwell times growth is controlled by meniscus diffusion while at long dwell times surface diffusion governs the process. The critical point for the switch of regime depends on the humidity.
000132385 536__ $$9info:eu-repo/grantAgreement/EC/FP7/328163/EU/In depth characterization of bio-mimetic lipid membrane structures generated by dip-pen nanolithography/DPNLipidMembranes
000132385 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000132385 590__ $$a7.76$$b2015
000132385 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b23 / 270 = 0.085$$c2015$$dQ1$$eT1
000132385 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b12 / 82 = 0.146$$c2015$$dQ1$$eT1
000132385 591__ $$aCHEMISTRY, MULTIDISCIPLINARY$$b18 / 162 = 0.111$$c2015$$dQ1$$eT1
000132385 591__ $$aPHYSICS, APPLIED$$b12 / 144 = 0.083$$c2015$$dQ1$$eT1
000132385 592__ $$a2.77$$b2015
000132385 593__ $$aNanoscience and Nanotechnology$$c2015$$dQ1
000132385 593__ $$aMaterials Science (miscellaneous)$$c2015$$dQ1
000132385 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000132385 700__ $$aHirtz, M.
000132385 773__ $$g7, 38 (2015), 15618-15634$$pNanoscale$$tNanoscale$$x2040-3364
000132385 8564_ $$s4164051$$uhttps://zaguan.unizar.es/record/132385/files/texto_completo.pdf$$yVersión publicada
000132385 8564_ $$s1687013$$uhttps://zaguan.unizar.es/record/132385/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000132385 909CO $$ooai:zaguan.unizar.es:132385$$particulos$$pdriver
000132385 951__ $$a2024-03-11-09:49:50
000132385 980__ $$aARTICLE