000132397 001__ 132397
000132397 005__ 20240311111224.0
000132397 0247_ $$2doi$$a10.1016/j.apsusc.2024.159655
000132397 0248_ $$2sideral$$a137619
000132397 037__ $$aART-2024-137619
000132397 041__ $$aeng
000132397 100__ $$aNuñez, Nahuel
000132397 245__ $$aEffect of temperature and copper doping on the heterogeneous fenton-like activity of CuxFe3-xO4 nanoparticles
000132397 260__ $$c2024
000132397 5060_ $$aAccess copy available to the general public$$fUnrestricted
000132397 5203_ $$aFerrite nanoparticles serve as potent heterogeneous Fenton-like catalysts, producing reactive oxygen species (ROS) for decomposing organic pollutants. We investigated the impact of temperature and copper content on the catalytic activity of nanoparticles with different oxidation states of iron. Via solvothermal synthesis, we fabricated copper-doped magnetite (CuxFe3-xO4) with a Fe2+/Fe ratio ∼ 0.33 for the undoped system. Using a microwave-assisted method, we produced copper-doped oxidized ferrites, yielding a Fe2+/Fe ratio of ∼ 0.11 for the undoped nanoparticles. The ROS generated by the catalyst were identified and quantified by electron paramagnetic resonance, while optical spectroscopy allowed us to evaluate its effectiveness for the degradation of a model organic dye. At room temperature, the magnetite nanoparticles exhibited the most •OH radical production and achieved almost 90 % dye discoloration in 2 h. This efficiency decreased with increasing Cu concentration, concurrently with a decrease in •OH generation. Conversely, above room temperature, Cu-doped nanoparticles significantly enhance the dye degradation, reaching 100 % discoloration at 90 °C. This enhancement is accompanied by a systematic increase in the kinetic constants, obtained from reaction equations, with Cu doping. This study highlights the superior stability and high-temperature catalytic advantages of copper ferrite holding promise for enhancing the performance of nanocatalysts for decomposing organic contaminants.
000132397 536__ $$9info:eu-repo/grantAgreement/EC/H2020/101007629 /EU/Nanomaterials for Enzymatic Control of Oxidative Stress Toxicity and Free Radical Generation/NESTOR$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 101007629 -NESTOR$$9info:eu-repo/grantAgreement/ES/MICINN/PDC2021-12109-I00
000132397 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000132397 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000132397 700__ $$aLima, Enio
000132397 700__ $$aVásquez Mansilla, Marcelo
000132397 700__ $$0(orcid)0000-0003-1558-9279$$aGoya, Gerardo F.$$uUniversidad de Zaragoza
000132397 700__ $$aGallo-Cordova, Álvaro
000132397 700__ $$aMorales, María del Puerto
000132397 700__ $$aWinkler, Elin L.
000132397 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000132397 773__ $$g656 (2024), 159655 [10 pp.]$$pAppl. surf. sci.$$tApplied Surface Science$$x0169-4332
000132397 8564_ $$s2505369$$uhttps://zaguan.unizar.es/record/132397/files/texto_completo.pdf$$yPostprint$$zinfo:eu-repo/date/embargoEnd/2026-02-11
000132397 8564_ $$s1022934$$uhttps://zaguan.unizar.es/record/132397/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint$$zinfo:eu-repo/date/embargoEnd/2026-02-11
000132397 909CO $$ooai:zaguan.unizar.es:132397$$particulos$$pdriver
000132397 951__ $$a2024-03-11-09:50:12
000132397 980__ $$aARTICLE