000132404 001__ 132404
000132404 005__ 20241125101143.0
000132404 0247_ $$2doi$$a10.1016/j.jpowsour.2023.233822
000132404 0248_ $$2sideral$$a137649
000132404 037__ $$aART-2023-137649
000132404 041__ $$aeng
000132404 100__ $$aRodríguez-Gómez, M.
000132404 245__ $$aOperando analysis of the positive active mass of lead batteries by neutron diffraction
000132404 260__ $$c2023
000132404 5060_ $$aAccess copy available to the general public$$fUnrestricted
000132404 5203_ $$aWe have analysed, through neutron diffraction experiments with the volume-gauge technique, the operando performance of lead cells composed of industrial positive and negative electrodes, previously tank formed in the manufacturing plant. The cells, 6.7 cm × 11.5 cm in surface, comprised a 3.4 mm thick positive electrode sandwiched between two 2.3 mm thick negative electrodes. The electrolyte was sulphuric acid diluted in water, both deuterated, and the separators were industrial grade absorptive glass mat (AGM). The experiments, carried out using the VULCAN instrument at the Oak Ridge National Laboratory (TN, USA), showed the evolution of α-PbO2, β-PbO2 and PbSO4 phases in the positive active mass during charge/discharge cycling, comparing the behaviour of fresh and cycled cells. No evidence of PbSO4 phase in fully charged plates or PbO in any state of charge were found above 1% by weight. Significant inhomogeneity of phase distribution and transition rates inside the positive electrode was observed. The experiments allowed estimation of the energy efficiency by comparing the external energy provided to the cell with the energy stored in the PbSO4 to PbO2 transformations.
000132404 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000132404 590__ $$a8.1$$b2023
000132404 592__ $$a1.857$$b2023
000132404 591__ $$aCHEMISTRY, PHYSICAL$$b39 / 178 = 0.219$$c2023$$dQ1$$eT1
000132404 593__ $$aElectrical and Electronic Engineering$$c2023$$dQ1
000132404 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b72 / 439 = 0.164$$c2023$$dQ1$$eT1
000132404 593__ $$aRenewable Energy, Sustainability and the Environment$$c2023$$dQ1
000132404 591__ $$aENERGY & FUELS$$b33 / 171 = 0.193$$c2023$$dQ1$$eT1
000132404 593__ $$aPhysical and Theoretical Chemistry$$c2023$$dQ1
000132404 591__ $$aELECTROCHEMISTRY$$b6 / 45 = 0.133$$c2023$$dQ1$$eT1
000132404 593__ $$aEnergy Engineering and Power Technology$$c2023$$dQ1
000132404 594__ $$a16.4$$b2023
000132404 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000132404 700__ $$0(orcid)0000-0002-3600-1721$$aCampo, J.
000132404 700__ $$0(orcid)0000-0001-8751-0983$$aOrera, A.$$uUniversidad de Zaragoza
000132404 700__ $$aFuente, F. de la
000132404 700__ $$aValenciano, J.
000132404 700__ $$aFricke, H.
000132404 700__ $$aHussey, D.S.
000132404 700__ $$aChen, Y.
000132404 700__ $$aYu, D.
000132404 700__ $$aAn, K.
000132404 700__ $$aLarrea, A.
000132404 7102_ $$15001$$2065$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Cienc.Mater. Ingen.Metal.
000132404 773__ $$g591 (2023), 233822 [10 pp.]$$pJ. power sources$$tJOURNAL OF POWER SOURCES$$x0378-7753
000132404 8564_ $$s1743932$$uhttps://zaguan.unizar.es/record/132404/files/texto_completo.pdf$$yPostprint$$zinfo:eu-repo/semantics/openAccess
000132404 8564_ $$s2197048$$uhttps://zaguan.unizar.es/record/132404/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint$$zinfo:eu-repo/semantics/openAccess
000132404 909CO $$ooai:zaguan.unizar.es:132404$$particulos$$pdriver
000132404 951__ $$a2024-11-22-12:03:13
000132404 980__ $$aARTICLE