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Abstract
Generalized restricted three body problems consist of adding some extra hypotheses to the Restricted three body problem
(RTBP) in order to have a new problem, not very different of the original RTBP. However, not any additional hypothesis
is allowed; it must satisfy the laws of Physics. Among the several generalizations found in literature, we prove that at least
there are two hypotheses that cannot be used, namely: 1) Perturbation in Coriolis and/or centrifugal forces, and 2) primaries
are spheroids moving on elliptical orbits.
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1 Introduction

The restricted three body problem (RTBP) is with no doubt
the most studied problem in Celestial Mechanics. Its appli-
cations span solar system dynamics, stellar dynamics, lunar
theory, spacecraft dynamics, etc. Essentially, it consists of
the motion of an infinitesimal mass that does not influence
on the motion of other two point masses, called primaries,
which move in Keplerian orbits around their mutual center
of mass. However, some times this model is not sufficient to
adequately represent actual cases: thus, since most of plan-
ets are not spherical, the oblateness must be considered; in
close binary stars the tidal deformation should be taken into
account, or even the radiation pressure force when one or
both primaries are radiating forces. Hence, it is necessary
to extend the problem to a generalized restricted three body
problem.

Usually, the generalization is only applied to the Circu-
lar RTBP, which in principle is correct, see e.g. (Sharma and
Subba Rao 1975; Bhatnagar and Chawla 1977; Schuerman
1980; Simmons et al. 1985; Elipe and Ferrer 1985, 1986;
Elipe 1987, 1992; Bhatnagar et al. 1994; Elipe and Lara
1997; Ishwar and Elipe 2001), but several authors consider
this problem to be like a coat rack, where it is possible to
hang on it many items in order to have a “new problem” to
which they apply the same techniques used in the RTBP;

unfortunately, some of these new problems are wrong be-
cause their hypotheses are against physical laws. Neverthe-
less, these papers are published even in well reputed jour-
nals, likely due to the fact that neither authors nor reviewers
paid attention on whether these hypotheses are possible or
not.

One of these assumptions is that there are perturbations
in the Coriolis and/or in the centrifugal forces. Szebehely
(1967) opened this line by assuming perturbations in the
Coriolis force, although he also mentioned that this was not
a real case. This work was extended by Bhatnagar and Hal-
lan (1978) who also included perturbations in the centrifu-
gal forces, and once the gate was open, other authors con-
tinued in this line, as for example (Elshaboury 1989; Shu
and Lu 2005; Raheem et al. 2006; Kaur et al. 2020; Singh
and Amuda 2018; Ansari et al. 2019). But authors contin-
ued applying these hypotheses of perturbations in Coriolis
and/or centrifugal forces to new models, like four, five, six,
. . . -bodies; see e.g. (Raheem et al. 2006; Singh and Vin-
cent 2015; Abouelmagd and Guirao 2016; Suraj et al. 2017;
Aggarwal et al. 2018; Singh and Amuda 2018; Suraj et al.
2019b; Ansari et al. 2019; Idrisi et al. 2021) among others,
not realizing that this is not possible from the physical point
of view (Elipe 2022) and that we prove in Sect. 2.

Another “new problem” is to consider that primaries are
ellipsoids or radiating bodies that move not on a Keplerian
circular orbit, but in a Keplerian elliptic orbit; see for in-
stance (Kumar and Ishwar 2011; Narayan and Usha 2014;
Singh and Tyokyaa 2016; Idrisi and Ullah 2020; Radwan
and Moltep 2021; Singh and Isah 2021) and many others.
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Again, this hypothesis that seems to be a natural extension
of the problem, is wrong as we prove in Sect. 3.

2 Perturbation in Coriolis and centrifugal
forces

Let us denote by R the position vector of a particle with re-
spect to an inertial reference frame (OXYZ), and by r the
same vector expressed in a moving reference frame (Oxyz)
with the same origin and that is moving with an angular
velocity ω(t) with respect to the inertial frame. As we can
find in any undergraduate textbook on Mechanics (see e.g.
(Goldstein 1980; Scheck 2005)), the absolute velocity and
acceleration vectors are related with the relative ones by

Ṙ = ṙ + ω × r,

R̈ = r̈ + ω̇ × r + 2ω × ṙ + ω × (ω × r).

With this, the Second Newton Law reads

F = mR̈ = m
(
r̈ + ω̇ × r + 2ω × ṙ + ω × (ω × r)

)
. (1)

When the rotation of the moving frame is about the fixed
axis OZ at constant rate ‖ω‖ = ω, the derivative ω̇ is null.
Hence, we can put Eq. (1) as

m r̈ = F − 2mω × ṙ − mω × (ω × r). (2)

Note that the three terms of the right member of this equa-
tion have the dimensions of a force, hence, usually the
term −2mω × ṙ is called Coriolis force and the expression
−mω × (ω × r) centrifugal force, but as a matter of fact
they are no physical forces; these terms are originated by
the rotation of the reference frame.

Let us now move to the Circular RTBP, where the pri-
maries move around its mutual center of mass in a pure Ke-
plerian circular motion. It is usual to define in this problem
an inertial frame OXYZ with origin at the center of mass of
the primaries, and plane OXY the one containing the motion
of the primaries. Besides, it is also usual to define a synodic
frame Oxyz, such that the primaries are always on the axis
Ox, thus, the angular velocity of the rotation of the frames
is ω = (0,0,ω), where ω is the mean motion of the circu-
lar motion of the primaries and consequently ω is constant!
and even more, ω is determined in univocal manner by the
sum of the masses and the period, as the Third Newton Law
clearly states.

Some authors among several others, like Szebehely
(1967), Bhatnagar and Hallan (1978), Elshaboury (1989),
Hallan and Rana (2001), Shu and Lu (2005), Raheem et al.
(2006), Singh and Bello (2014), Singh and Vincent (2015),
Abouelmagd and Guirao (2016), Kaur et al. (2020), Suraj
et al. (2017), Aggarwal et al. (2018), Singh and Amuda

(2018), Ansari et al. (2019), Suraj et al. (2019a), Idrisi et al.
(2021), Kaur et al. (2022), Singh and Ahmad (2022) con-
sider the Circular RTBP, and even more bodies, by assuming
that there are perturbations in the Coriolis force by chang-
ing ω by ω(1 + α) in the Coriolis term, and perturbations in
the centrifugal force by putting ω2(1 + β) instead of ω2 and
even assuming that (1 + β) �= (1 + α)2. As shown before,
these assumptions go against the laws of Physics.

3 Primaries are symmetrical ellipsoids
moving on a Keplerian elliptic orbit

Another additional complexity to the RTBP consists of as-
suming that one or both primaries are symmetrical ellipsoids
moving on a Keplerian elliptic orbit. Let us see whether this
motion is possible or not.

3.1 Potential of two spheroids

Let us consider the motion of two rigid bodies S1 and S2 of
masses m1, and m2 and O1 and O2 their centers of mass.
We also consider two parallel reference frames with origins
at each of the centers of mass of the bodies (OiXYZ). It is
known that the mutual gravitational potential of two rigid
bodies may be expanded in harmonic series, and its first
terms are (see e.g. Leimanis (1965), Elipe and Ferrer (1985))

U = −Gm1m2

r
− Gm1

A2 + B2 + C2 − 3I21

2r3

− Gm2
A1 + B1 + C1 − 3I12

2r3
,

(3)

where G is the gravitational constant; Iij is the moment of

inertia of the body Si with respect to the straight line (
−−−→
OiOj )

joining the mass centers Oi and Oj ; (Ai , Bi , Ci ) are the

principal moments of inertia of body Si ; and r = ‖−−−→
O1O2‖ is

the distance between the centers of mass of the rigid bodies.
The moments of inertia Iij with respect to the line

−−−→
OiOj

are

I12 = A1α
2
12 + B1β

2
12 + C1γ

2
12,

I21 = A2α
2
21 + B2β

2
21 + C2γ

2
21,

(4)

where αij , βij , and γij are the cosines of the angles made by−−−→
OiOj with the principal inertia axes (Oi; ξi, ηi, ζi) of the
body Si (Leimanis 1965) that satisfy

α2
12 + β2

12 + γ 2
12 = 1, α2

21 + β2
21 + γ 2

21 = 1.

Besides, it is well known from Vectorial Calculus (Mars-
den and Tromba 1988) that for a triaxial ellipsoid of semi-
axes a, b and c, and mass m, its principal moments of inertia
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Fig. 1 The three possible cases:
a) float; b) spoke; and c) arrow

are

A = m

5

(
b2 + c2

)
, B = m

5

(
a2 + c2

)
,

C = m

5

(
a2 + b2

)
.

Let us obtain the expression of the moments of inertia
with respect to a straight line (4) depending on the different
chosen ellipsoids.

In what follows we shall consider three types of ellip-
soids, the ones that as proven by Duboshin (1982) have “reg-
ular motions” in the orbital-rotational motion of two rigid
bodies (see Fig. 1). Note that in the three cases, the sys-
tem of principal axes of inertia coincides with the Cartesian
frame; also we assume that the centers of mass Oi are con-
tinuously lying on the Ox-axis, thus, α2

i = 1, β2
i = γ 2

i = 0,
and therefore, Ai + Bi + Ci − 3Iij = −2Ai + Bi + Ci .

1. Float case:

x2

a2
+ y2

a2
+ z2

c2
= 1, (5)

hence,

Ai + Bi + Ci − 3Iij = Ci − Ai = m

5
(a2 − c2). (6)

2. Spoke case:

x2

a2
+ y2

b2
+ z2

b2
= 1, (7)

thus,

Ai + Bi + Ci − 3Iij = 2(Bi − Ai) = 2m

5
(a2 − b2). (8)

3. Arrow case:

x2

a2
+ y2

b2
+ z2

a2
= 1, (9)

now,

Ai + Bi + Ci − 3Iij = (Bi − Ai) = m

5
(a2 − b2). (10)

Fig. 2 The float-float case

Therefore, it is possible to take whatever combination of
two ellipsoids belonging to the aforementioned axisymmet-
ric ellipsoids. In particular we consider below only three
configurations, already described by Duboshin (1982), al-
though it is possible to take any combination of them.

1.- Float-float configuration:
Because of the similitude with planets, most authors

studying the generalization of the circular RTBP consider
that primaries are spheroids, that is, ellipsoids of revolution
defined by Eq. (5) in such a way that the equatorial planes
of the spheroids coincide with the plane of the motion of the
centers of mass. This case corresponds to the case denoted
by Duboshin (1982) as float-float case (see Fig. 2). The most
usual case in literature is for oblate spheroids (a > c), but
also may be used for prolate spheroids (a < c) or even a
combination of both; when spheres, a = c.

2.- Spoke-spoke case:
In this case both ellipsoids are of type spoke (7), and they

rotate synchronously about their z-axes with the same angu-
lar velocity as the orbital angular velocity of the motion of
O2 around O1 (see Fig. 3).

This configuration has been recently used by Elipe et al.
(2024) to model tidal deformations in close binary stars, fact
that has already been confirmed by astronomical observa-
tions (Baron et al. 2012).

3.- Float-arrow case:
Now, one ellipsoid is of the type float (5) whereas the

other is of the type arrow (9); the configuration can be seen
in Fig. 4. To the knowledge of the author none application
of this model to any real case is done.
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Fig. 3 The spoke-spoke case

Fig. 4 The float-arrow case

What is most remarkable is that whatever the configura-
tion we may choose, the second and third terms of the ex-
pression of the potential given in Eq. (3) are

Gm1
A2 + B2 + C2 − 3I21

2r3 = Gm1m2

r3 F2(a
2
2, b2

2, c
2
2),

Gm2
A1 + B1 + C1 − 3I12

2r3 = Gm1m2

r3 F1(a
2
1, b2

1, c
2
1),

where Fi (a
2
i , b

2
i , c

2
i ) stands for a linear combination of the

semi-axes of the ellipsoid Si given by Equations (6), (8),
and (10). In sum, the gravitational potential of the mutual
attraction of two spheroids given by Eq. (3) reduces to

U(r) = −Gm1m2

r

− Gm1m2

r3

[
F2(a

2
2, b2

2, c
2
2) +F1(a

2
1, b2

1, c
2
1)

]
.

(11)

At this point it is worth noting first, that the motion is a cen-
tral force motion; and second, that the semi-axes of the ellip-
soids are much smaller than the radial distance r , hence the
quantity F = F1 +F2 may be considered a small parameter.

3.2 Motion of two spheroids

Proceeding as in the two-body problem (see e.g. Danby
(1988)), and by virtue of the six integrals of the center of
masses of the bodies, the relative motion of O2 with respect
to O1 is the solution of the differential equation

r̈ = −∇rU(r) = − μ

r3 r − 3μF
r5 r, (12)

where μ = G (m1 + m2), and F � 1.
It is easy to check that the angular momentum G = r ×

ṙ is constant and whence its norm G = ‖G‖ = constant,
and the motion is planar. Besides, because the independent
variable t does not appear explicitly in Eq. (12), the energy
h is constant along the motion

h = 1

2
ṙ · ṙ + U(r) = 1

2
ṙ2 + G2

2r2 − μ

r
− μF

r3 , (13)

and the effective potential becomes

Ueff = Ueff(r) = G2

2r2
− μ

r
− μF

r3
= UKeff − μF

r3
, (14)

where the term UKeff is the effective potential of Kepler’s
problem. Thus, by Eq. (13), at a certain level of energy h,
the motion is only possible when h ≥ Ueff.

This problem has been analyzed with detail by Elipe et al.
(2024) and the reader is addressed to it. We put in Table 1 the
main differences between both potentials. Note that rmax <

rmin. Observe too that those critical points correspond to two

Table 1 Main differences between the two potentials UKeff and Ueff

UKeff Ueff

r → 0 → +∞ → −∞
r → +∞ → 0 → 0

maximum – rmax = (G2 + √
G2 − 12με)/(2μ)

minimun G2/μ rmin = (G2 + √
G2 + 12με)/(2μ)

Fig. 5 Effective potential Ueff = Ueff(r). Points in red are the relative
extrema, and points in blue (r0 < rp ≤ ra ), the intersection of the po-
tential with the constant energy level h. When rp ≤ r ≤ ra the motion
is bounded within an annulus; When rp = r = ra = rmin the motion is
circular
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Fig. 6 Orbit in case 2, that is,
oscillatory motion with lower
and upper bounds, rp ≤ r ≤ ra ;
the motion takes place inside an
annulus, and it is not elliptical.
Both plots belong to same orbit
but computed for different spans
of time; (a) for 0 ≤ t ≤ 10, and
(b) for 0 ≤ t ≤ 40. The initial
conditions for the orbit are:
μ = 1, ε = 0.055, a = 1,
e = 0.2, position vector
x(t = 0) = (0.8, 0), and
velocity vector
ẋ(t = 0) = (0, 1.2247448714)

circular orbits; one unstable (r = rmax) and the other stable
(r = rmin), whereas in the Keplerian case, there is only one
minimum that corresponds to a stable circular orbit.

As we proved in Elipe et al. (2024), there are only three
possible types of motions depending on where r is with re-
spect to the three possible roots r0 < rp ≤ ra of the equation
Ueff(r) − h = 0 (see Fig. 5), namely

1. Bounded motion when 0 < r ≤ r0;
2. Oscillatory motion with lower and upper bounds, that is,

rp ≤ r ≤ ra ;
3. Unbounded motion for h ≥ 0.

In what follows, we restrict our analysis to motion of type 2.
The Laplace vector (also know by physicists as Runge-

Lenz vector) is defined (Goldstein 1980) as

A = ṙ × G − μ

r
r. (15)

In the Keplerian problem, it is a constant vector always
pointing to the pericenter and is related with the eccentricity
(e = ‖e‖) in such a way that e = A/μ. In our case, by using
Eq. (12), there results that

dA

dt
= − 3μF

r5 (r × G) �= 0. (16)

From Eq. (16), Laplace’s vector suffers a tangential push
and its norm is

‖Ȧ‖ = 3μF G

r4 , (17)

but since the radial distance r oscillates in the interval
[rp, ra] (see Fig. 5), ‖Ȧ‖ has an oscillatory behavior, and
hence e also does.

In consequence, the Laplace vector is not constant, and
then neither the eccentricity e nor the pericenter angle ω

are constant, and therefore, the motion is not elliptical. We
easily can check this fact by integrating the equations of
motion (12) and plotting the planar orbit (see Fig. 6). The
orbit is bounded and takes place inside a circular annulus

(rp ≤ r ≤ ra); the orbit is precessing and has a rosetta-like
motion.

Let us note that the equation of motion (12) is essentially
the same that appear in the so-called Cid’s radial intermedi-
ary (Cid and Lahulla 1969) in Artificial Satellite Theory, and
its analytical integration has been done from different points
of view; in terms of elliptic functions (Belen’kii 1981; Fer-
rándiz 1986; Lara and Gurfil 2012; Elipe et al. 2024) of by
using a regularizig function and then applying (Abad et al.
2021) the Krylov and Bogoliubov (1947) averaging method.

Although the motion is not elliptical, circular motion is
possible, although not Keplerian. This corresponds to the
case h = Ueff(rmin), that is, when the initial conditions are
such that the constant energy coincides with the relative
minimum of the effective potential (see Fig. 5).

Let us consider the circular stable orbit that corresponds
to the value r = rmin of the effective potential. From the ra-
dial acceleration (r̈ − rθ̇2), we have that

r̈ − rθ̇2 = −dU

dr
,

and because the radial distance in a circle is constant, r =
rmin = constant, there results that

θ̇2 = μ

r3
min

+ 3μF
r5

min

= n2
K + 3μF

r5
min

,

where nK is the mean motion of the Kepler circular orbit;
hence, the mean motion of the circular orbit here considered
and the Keplerian one are related through the expression

n2 = n2
K

(
1 + 3F

r2
min

)
.

4 Conclusions

We prove that some assumptions used in generalizations of
the restricted three body problem are not correct, because
they are contravening Physics Laws. In particular, we focus
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our attention on two cases: 1) Perturbation in Coriolis and/or
centrifugal forces, and 2) Primaries are spheroids moving on
elliptical orbits. Both cases are not possible.
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