000132478 001__ 132478
000132478 005__ 20240711085512.0
000132478 0247_ $$2doi$$a10.1039/d3lc01082a
000132478 0248_ $$2sideral$$a137637
000132478 037__ $$aART-2024-137637
000132478 041__ $$aeng
000132478 100__ $$aOlaizola-Rodrigo, Claudia
000132478 245__ $$aTuneable hydrogel patterns in pillarless microfluidic devices
000132478 260__ $$c2024
000132478 5060_ $$aAccess copy available to the general public$$fUnrestricted
000132478 5203_ $$aOrgan-on-chip (OOC) technology has recently emerged as a powerful tool to mimic physiological or pathophysiological conditions through cell culture in microfluidic devices. One of its main goals is bypassing animal testing and encouraging more personalized medicine. The recent incorporation of hydrogels as 3D scaffolds into microfluidic devices has changed biomedical research since they provide a biomimetic extracellular matrix to recreate tissue architectures. However, this technology presents some drawbacks such as the necessity for physical structures as pillars to confine these hydrogels, as well as the difficulty in reaching different shapes and patterns to create convoluted gradients or more realistic biological structures. In addition, pillars can also interfere with the fluid flow, altering the local shear forces and, therefore, modifying the mechanical environment in the OOC model. In this work, we present a methodology based on a plasma surface treatment that allows building cell culture chambers with abutment-free patterns capable of producing precise shear stress distributions. Therefore, pillarless devices with arbitrary geometries are needed to obtain more versatile, reliable, and biomimetic experimental models. Through computational simulation studies, these shear stress changes are demonstrated in different designed and fabricated geometries. To prove the versatility of this new technique, a blood–brain barrier model has been recreated, achieving an uninterrupted endothelial barrier that emulates part of the neurovascular network of the brain. Finally, we developed a new technology that could avoid the limitations mentioned above, allowing the development of biomimetic OOC models with complex and adaptable geometries, with cell-to-cell contact if required, and where fluid flow and shear stress conditions could be controlled.
000132478 536__ $$9info:eu-repo/grantAgreement/ES/AEI/PID2021-126051OB-C41$$9info:eu-repo/grantAgreement/ES/DGA/T62-230R$$9info:eu-repo/grantAgreement/EC/H2020/829010/EU/Advanced and versatile PRInting platform for the next generation of active Microfluidic dEvices/PRIME$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 829010-PRIME$$9info:eu-repo/grantAgreement/ES/MCIU/RTI2018-097038-B-C21$$9info:eu-repo/grantAgreement/ES/MCIU/RTI2018-097038-B-C22$$9info:eu-repo/grantAgreement/ES/MICINN/PDC2022-133918-C21$$9info:eu-repo/grantAgreement/ES/MINECO/DIN2020-011544
000132478 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000132478 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000132478 700__ $$aPalma-Florez, Sujey
000132478 700__ $$0(orcid)0000-0001-7232-7588$$aRandelovic, Teodora
000132478 700__ $$0(orcid)0000-0001-6786-2041$$aBayona, Clara
000132478 700__ $$aAshrafi, Mehran$$uUniversidad de Zaragoza
000132478 700__ $$aSamitier, Josep
000132478 700__ $$aLagunas, Anna
000132478 700__ $$aMir, Mònica
000132478 700__ $$0(orcid)0000-0001-8741-6452$$aDoblaré, Manuel$$uUniversidad de Zaragoza
000132478 700__ $$0(orcid)0000-0003-2410-5678$$aOchoa, Ignacio$$uUniversidad de Zaragoza
000132478 700__ $$aMonge, Rosa
000132478 700__ $$0(orcid)0000-0003-0156-4230$$aOliván, Sara$$uUniversidad de Zaragoza
000132478 7102_ $$11003$$2443$$aUniversidad de Zaragoza$$bDpto. Anatom.Histolog.Humanas$$cArea Histología
000132478 7102_ $$15004$$2605$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Mec.Med.Cont. y Teor.Est.
000132478 773__ $$g24, 7 (2024), 2094-2106$$pLab chip$$tLab on a chip$$x1473-0197
000132478 8564_ $$s2474546$$uhttps://zaguan.unizar.es/record/132478/files/texto_completo.pdf$$yVersión publicada
000132478 8564_ $$s2618562$$uhttps://zaguan.unizar.es/record/132478/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000132478 909CO $$ooai:zaguan.unizar.es:132478$$particulos$$pdriver
000132478 951__ $$a2024-07-11-08:52:29
000132478 980__ $$aARTICLE