000132487 001__ 132487
000132487 005__ 20250923084416.0
000132487 0247_ $$2doi$$a10.1002/aelm.202300475
000132487 0248_ $$2sideral$$a137580
000132487 037__ $$aART-2024-137580
000132487 041__ $$aeng
000132487 100__ $$aFernández-Guillén, Ismael
000132487 245__ $$aPerovskite thin single crystal for a high performance and long endurance memristor
000132487 260__ $$c2024
000132487 5060_ $$aAccess copy available to the general public$$fUnrestricted
000132487 5203_ $$aMetal halide perovskites (MHPs) exhibit electronic and ionic characteristics suitable for memristors. However, polycrystalline thin film perovskite memristors often suffer from reliability issues due to grain boundaries, while bulk single‐crystal perovskite memristors struggle to achieve high LRS/HRS ratios. In this study, a single crystal memristive device utilizing a wide bandgap perovskite is introduced, MAPbBr3, in a high surface/thickness configuration. This thin single crystal overcomes these challenges, exhibiting a remarkable LRS/HRS ratio of up to 50 and endurance of 103 cycles, representing one of the highest reported values to date. This exceptional stability enables to analyze the electroforming process and LRS through impedance spectroscopy, providing insights into the underlying operational mechanism. As far as it is known, this is the first reported thin single‐crystal MHP memristor device and the first time that the electroforming process is recorded through impedance spectroscopy. This device's outstanding stability and performance position it as a promising candidate for high‐density data storage and neuromorphic applications.
000132487 536__ $$9info:eu-repo/grantAgreement/EUR/AEI/TED2021-131600B-C32$$9info:eu-repo/grantAgreement/ES/MCIN/PID2020-119628RB-C31$$9info:eu-repo/grantAgreement/ES/MICINN-AEI/PRTR-C17.I1
000132487 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000132487 590__ $$a5.3$$b2024
000132487 592__ $$a1.478$$b2024
000132487 591__ $$aPHYSICS, APPLIED$$b43 / 187 = 0.23$$c2024$$dQ1$$eT1
000132487 593__ $$aElectronic, Optical and Magnetic Materials$$c2024$$dQ1
000132487 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b52 / 147 = 0.354$$c2024$$dQ2$$eT2
000132487 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b140 / 460 = 0.304$$c2024$$dQ2$$eT1
000132487 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000132487 700__ $$aAranda, Clara A.
000132487 700__ $$aBetancur, Pablo F.
000132487 700__ $$aVallés-Pelarda, Marta
000132487 700__ $$0(orcid)0000-0003-2953-3065$$aMomblona, Cristina$$uUniversidad de Zaragoza
000132487 700__ $$aRipollés, Teresa S.
000132487 700__ $$aAbargues, Rafael
000132487 700__ $$aBoix, Pablo P.
000132487 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000132487 773__ $$g10, 5 (2024), 2300475 [9 pp.]$$pAdv. Electron. Mater.$$tAdvanced Electronic Materials$$x2199-160X
000132487 8564_ $$s1886139$$uhttps://zaguan.unizar.es/record/132487/files/texto_completo.pdf$$yVersión publicada
000132487 8564_ $$s2604962$$uhttps://zaguan.unizar.es/record/132487/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000132487 909CO $$ooai:zaguan.unizar.es:132487$$particulos$$pdriver
000132487 951__ $$a2025-09-22-14:33:15
000132487 980__ $$aARTICLE