000132493 001__ 132493
000132493 005__ 20240311111225.0
000132493 0247_ $$2doi$$a10.1016/j.seppur.2023.125329
000132493 0248_ $$2sideral$$a137614
000132493 037__ $$aART-2023-137614
000132493 041__ $$aeng
000132493 100__ $$aPérez Miana, Marta$$uUniversidad de Zaragoza
000132493 245__ $$aHighly permeable ZIF-8 membranes for C2H4/C2H6 separation in a wide temperature range
000132493 260__ $$c2023
000132493 5060_ $$aAccess copy available to the general public$$fUnrestricted
000132493 5203_ $$aEthylene/ethane separation is a critical and energy-consuming process in the chemical industry due to the similar properties of the compounds and the great need of ethylene for e.g., polymer production. Many materials have been studied for their implementation as membranes as an energetically favorable alternative to conventional distillation and adsorption processes. Metal-organic frameworks (MOF) have revealed promising properties as highly permeable and selective membranes. Among the most studied and promising MOF candidates is ZIF-8, known for its thermal stability and small pores connected by narrow-sized windows. In this work, we present an analysis of the influence of parameters such as temperature, feed pressure and feed flowrate on the separation of ethylene/ethane through a thin ZIF-8/alumina disc membrane. We observed that the temperature has a significant effect on the separation. The ethylene permeance increased with decreased temperature and reached 8.1 × 10−7 mol/(m2·s·Pa) at −30 °C. At this temperature, the ethylene/ethane selectivity was 2.5. The study concluded with a considerable enhancement of the permeance of ZIF-8 membranes for ethylene/ethane separations, while maintaining a good selectivity compared to the reported values in the literature. The results have important implications for the development of more cost-effective and energy-efficient membrane-based separation technologies for ethylene purification.
000132493 536__ $$9info:eu-repo/grantAgreement/ES/DGA/T68-23R$$9info:eu-repo/grantAgreement/ES/MCIN-AEI/PID2019-104009RB-I00-AEI-10.13039-501100011033
000132493 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000132493 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000132493 700__ $$0(orcid)0000-0003-1512-4500$$aCoronas, Joaquín$$uUniversidad de Zaragoza
000132493 700__ $$aHedlund, Jonas
000132493 700__ $$aYu, Liang
000132493 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000132493 773__ $$g330, Part A (2023), 125329$$pSep. Purif. Technol.$$tSeparation and Purification Technology$$x1383-5866
000132493 8564_ $$s3110694$$uhttps://zaguan.unizar.es/record/132493/files/texto_completo.pdf$$yVersión publicada
000132493 8564_ $$s2517515$$uhttps://zaguan.unizar.es/record/132493/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000132493 909CO $$ooai:zaguan.unizar.es:132493$$particulos$$pdriver
000132493 951__ $$a2024-03-11-09:52:40
000132493 980__ $$aARTICLE