000132503 001__ 132503
000132503 005__ 20240311111225.0
000132503 0247_ $$2doi$$a10.1016/j.compstruc.2023.107241
000132503 0248_ $$2sideral$$a137660
000132503 037__ $$aART-2024-137660
000132503 041__ $$aeng
000132503 100__ $$0(orcid)0000-0001-8946-4829$$aLaita, Nicolás$$uUniversidad de Zaragoza
000132503 245__ $$aOn modeling the in vivo ventricular passive mechanical behavior from in vitro experimental properties in porcine hearts
000132503 260__ $$c2024
000132503 5060_ $$aAccess copy available to the general public$$fUnrestricted
000132503 5203_ $$aMyocardium passive mechanical response has been a major topic of study for decades due to its major impact on cardiac physiology. Here, we propose a novel modeling methodology that integrates both in vivo and in vitro data to estimate the tissue mechanical parameters for a particular orthotropic hyperelastic model as those proposed by Costa and by Holzapfel & Ogden, although it can be easily extended to any other. In vitro biaxial and triaxial shear extension tests were conducted in biopsied samples and in vivo pressure-volume recordings were obtained. Left ventricle (LV) geometry was reconstructed using magnetic resonance imaging (MRI) and pressure gradients during ventricular inflation were recorded with the Catheter Conductance Method (CCM). Finally, a Finite Element (FE) in vivo LV model was implemented to get the material model parameters using an inverse approach that uses a minimization process combining both the in vivo and in vitro available data. Our results demonstrate that the parameters obtained solely from in vitro testing (IVT), or from in vivo passive inflation (IVV) do not provide satisfactory fits for both responses simultaneously ([Fórmula] and [Fórmula]). On the contrary, the proposed combined in vitro & in vivo optimization process (MIN) converges to a solution that effectively captures both the in vivo and in vitro behaviors [Fórmula]). Thus, this novel combined approach offers a comprehensive framework for accurately characterizing myocardial mechanical behavior. The obtained parameters can serve as a basis for further cardiac simulations and contribute to a better understanding of cardiac mechanics and function.
000132503 536__ $$9info:eu-repo/grantAgreement/ES/MCIN/PLEC2021-008127$$9info:eu-repo/grantAgreement/ES/MICINN/PID2019-107517RB-I00
000132503 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000132503 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000132503 700__ $$aRosales, Ricardo M.
000132503 700__ $$aWu, Ming
000132503 700__ $$aClaus, Piet
000132503 700__ $$aJanssens, Stefan
000132503 700__ $$0(orcid)0000-0002-8375-0354$$aMartínez, Miguel Ángel$$uUniversidad de Zaragoza
000132503 700__ $$0(orcid)0000-0001-8741-6452$$aDoblaré, Manuel$$uUniversidad de Zaragoza
000132503 700__ $$0(orcid)0000-0002-0664-5024$$aPeña, Estefanía$$uUniversidad de Zaragoza
000132503 7102_ $$15004$$2605$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Mec.Med.Cont. y Teor.Est.
000132503 773__ $$g292 (2024), 107241 [12 pp.]$$pComput. struct.$$tCOMPUTERS & STRUCTURES$$x0045-7949
000132503 8564_ $$s3401763$$uhttps://zaguan.unizar.es/record/132503/files/texto_completo.pdf$$yVersión publicada
000132503 8564_ $$s2455990$$uhttps://zaguan.unizar.es/record/132503/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000132503 909CO $$ooai:zaguan.unizar.es:132503$$particulos$$pdriver
000132503 951__ $$a2024-03-11-09:52:51
000132503 980__ $$aARTICLE