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Myocardium passive mechanical response has been a major topic of study for decades due to its major impact 
on cardiac physiology. Here, we propose a novel modeling methodology that integrates both in vivo and in 
vitro data to estimate the tissue mechanical parameters for a particular orthotropic hyperelastic model as those 
proposed by Costa and by Holzapfel & Ogden, although it can be easily extended to any other. In vitro biaxial 
and triaxial shear extension tests were conducted in biopsied samples and in vivo pressure-volume recordings 
were obtained. Left ventricle (LV) geometry was reconstructed using magnetic resonance imaging (MRI) and 
pressure gradients during ventricular inflation were recorded with the Catheter Conductance Method (CCM). 
Finally, a Finite Element (FE) in vivo LV model was implemented to get the material model parameters using 
an inverse approach that uses a minimization process combining both the in vivo and in vitro available data. 
Our results demonstrate that the parameters obtained solely from in vitro testing (IVT), or from in vivo passive 
inflation (IVV) do not provide satisfactory fits for both responses simultaneously (𝑅2 𝑡𝑒𝑠𝑡𝑠

𝐼𝑉 𝑇
= 0.977, 𝑅2𝑃𝑉

𝐼𝑉 𝑇
= 0.697

and 𝑅2𝑡𝑒𝑠𝑡𝑠
𝐼𝑉 𝑉

= 0.687, 𝑅2𝑃𝑉

𝐼𝑉 𝑉
= 0.995). On the contrary, the proposed combined in vitro & in vivo optimization 

process (MIN) converges to a solution that effectively captures both the in vivo and in vitro behaviors (𝑅2 𝑡𝑒𝑠𝑡𝑠
𝑀𝐼𝑁

=
0.815, 𝑅2𝑃𝑉

𝑀𝐼𝑁
= 0.992). Thus, this novel combined approach offers a comprehensive framework for accurately 

characterizing myocardial mechanical behavior. The obtained parameters can serve as a basis for further cardiac 
simulations and contribute to a better understanding of cardiac mechanics and function.
1. Introduction

Myocardium mechanics has been a major focus of study for decades 
due to its major impact on cardiac physiology. Myocardium passive 
mechanical properties are of great importance in the cyclic function of 
the heart and in many cardiac pathologies such as diastolic heart failure 
or myocardial infarction [1,2]. Computational modeling has emerged in 
recent years as a powerful tool for the analysis of cardiac function and 
to develop novel devices and therapies [3]. In this context, obtaining 
realistic mechanical experimental properties for the myocardial tissue, 
as well as developing robust constitutive models is of vital importance 
to get reliable simulations.

The anatomic structure of cardiac tissue has been widely studied 
[4–7]. It is composed of three different layers: two thin membranes, 
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the endocardium on the inside and the epicardium on the outside, and 
the internal myocardium, which comprises the main part of the heart’s 
wall. As introduced by LeGrice [5], the myocardium presents a well-
structured three-dimensional muscular fibers distribution in which the 
cardiomyocytes are arranged into parallel sheets separated by exten-
sive cleavage planes, which are interconnected by collagenous fibers. 
In a simplified form, the muscular sheets are arranged along the radial 
direction, with the cardiomyocytes oriented parallel to the epicardial 
surface. This structure defines three main directions that characterize 
the mechanical behavior of the myocardium: the one of the muscle 
fibers (f), the sheet in-plane direction (s), and the normal to the cleav-
age planes (n).

Due to this very specific 3D structure, the cardiac muscle presents a 
highly non-linear anisotropic mechanical behavior. The publications to 
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date have used several passive heterogeneous hyperelastic myocardial 
models, ranging from isotropic to orthotropic formulations, depending 
on the aim of the study. One of the most used approaches considers 
myocardial tissue as transversely isotropic [8–13]. For example, the 
model presented by Guccione et al. [14], one of the most common in 
this family, considers a unique direction of anisotropy along the mus-
cular fiber direction. Other constitutive laws model the myocardium 
as orthotropic, following the aforementioned local ‘fiber-sheet-normal’ 
directions presented by LeGrice. Several studies use this formulation 
[15–19], being those presented by Costa et al. [20] and Holzapfel & 
Ogden [21] two of the most used.

To obtain the parameters that appear in these numerical models, two 
different approaches have been followed: using directly the results from 
in vitro mechanical tests on biopsied tissue samples, or, alternatively, ob-
taining in vivo properties from medical imaging. Within the first option, 
the most standard approach nowadays characterizes the mechanical re-
sponse of the cardiac tissue from biaxial, or triaxial shear extension 
tests, or both test types together. Planar biaxial extension tests have 
been performed on parallel-to-the-epicardium sheets of myocardial tis-
sue of different animal species [22–27], showing a highly nonlinear 
and transversely isotropic response of the cardiac tissue. Alternatively, 
triaxial shear experiments have been carried out [28], demonstrating 
an orthotropic behavior following the LeGrice FSN directions. Recent 
experiments have been also performed combining biaxial and triaxial 
shear data [29], where the orthotropic behavior of the tissue was once 
again demonstrated. Other novel possibility is combining single shear 
and pure shear stress tests [30].

All these methods are however destructive and require invasive 
surgery. Thus, other alternatives based on non-invasive in vivo mea-
surements and inverse analysis have been proposed to characterize the 
cardiac tissue. This approach involves the formulation and solution of 
a multi-step non-linear optimization problem, which, together with the 
high correlation between the constitutive parameters, limits its applica-
bility to transversely isotropic models, such as Guccione’s [14]. Follow-
ing this line, Augenstein et al. [8,31] proposed a finite element-based 
inverse analysis to reproduce myocardium strain and stress distributions 
in porcine hearts. This FE model was based on Diffusion Tensor Mag-
netic Resonance Images (DTMRI) and pressure recordings in ex vivo 
passive ventricular inflation experiments. Wang et al. [11] also devel-
oped an inverse methodology using in vivo MR images combined with 
ex vivo DTI for a canine model. Xi et al. [12] used a reduced-order 
unscented Kalman filter to optimize the mechanical parameters for a 
human heart. Rumindo et al. [13] proposed a patient-specific inverse 
methodology based on the experimentally observed volume by MRI and 
the end-diastolic pressure-volume relationship (EDPVR) established by 
Klotz et al. [32]. They validated the obtained parameters by several LV 
physiological function metrics. All these studies used Guccione’s law for 
myocardium characterization and, although cardiac tissue has already 
been proved to present an orthotropic response, few studies have been 
performed for orthotropic material models. Remme et al. [18] estimated 
the parameters for the pole-zero law [33], but only 3 material param-
eters were estimated. Gao et al. [17] presented an inverse analysis for 
the obtention of the Holzapfel & Ogden [21] complete set of mechanical 
parameters by validating the strain data and pressure–volume relation-
ships, but they did not validate if their results reproduced the in vitro

response.
Although many studies have been carried out in these two lines, to 

the best of our knowledge, it has not been analyzed whether the results 
obtained from both are compatible. With respect to the in vitro charac-
terization, the existing studies are only focused on getting experimental 
properties, but do not analyze the feasibility of the derived parameters 
in heart numerical models or their ability to reproduce the in vivo re-
sponse. Other works, centered on numerical studies, use those in vitro

properties, but they stress the need for their prior readjustment to repro-
duce the physiological behavior of the tissue [34], or they lead to results 
2

that are far from accurately simulating the actual in vivo function [35].
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On the other hand, in vivo studies directly derive their properties 
from images and medical data, obtaining patient-specific solutions that 
may be influenced by various factors such as inter-patient variability or 
accuracy of data collection. Furthermore, in this second methodology, 
no explicit characterization is performed for pure deformation modes, 
and they do not assess if their results are able to reproduce the experi-
mental behavior reported from in vitro studies.

Moreover, we must be especially aware that, due to the complex 
behavior of cardiac tissue, structurally-based constitutive models, es-
pecially orthotropic ones, usually include many parameters with some 
of them closely correlated, while some other having little impact on 
the overall heart functional response [17,36]. This means that several 
combinations of parameters may provide a similar and apparently ac-
ceptable reproduction of our specific experimental data but are unable 
to get a realistic in vivo behavior. This problem has been widely men-
tioned [8,11,15,17,20,36], suggesting the need for using as much data 
as available to get a sufficiently robust constitutive model.

Following this last line of thinking, we propose in this work a 
methodology that combines data from in vitro mechanical tests and from 
in vivo MRI and hemodynamics to obtain the mechanical properties 
of a particular material model. Our aim is to demonstrate that using 
this combined set of data permits reproducing both the in vitro tests 
performed in our laboratory, and, at the same time, the in vivo heart be-
havior, thus assessing whether the in vitro parameters are suitable for in 
silico simulation of in vivo cardiac mechanical function. To this end, we 
have used experimental results from biaxial and triaxial shear tests on 
porcine cardiac tissue samples, as well as in vivo pressure-volume (PV) 
relationships by means of the conductance catheter method (CCM) and 
magnetic resonance imaging (MRI). Finally, a parameter identification 
method is proposed that uses finite element modeling to simulate the 
ventricular hemodynamic response. Then, a two-step minimization ap-
proach is used in which we firstly obtain the mechanical parameters 
from the in vitro mechanical data, while in a second stage the in vitro

properties are modified to simultaneously reproduce the in vitro and in 
vivo response (Fig. 1).

2. Mechanical properties estimation by in vitro experimental data

2.1. Experimental characterization of porcine tissue

Porcine left ventricular biopsy specimens were obtained from 7 
white pigs (Sus scrofa domesticus) of 18-22 weeks of age (weight be-
tween 55–65 kg) at the Experimental Surgery Service of the Aragon 
Health Sciences Institute. All animal experiments complied with the reg-
ulations of the local animal welfare committee for the care and use of 
experimental animals and were approved by local authorities (Ethics 
Committee on Animal Experimentation, CEAEA, of the University of 
Zaragoza). All animal procedures conformed to the guidelines from Di-
rective 2010/63/EU of the European Parliament on the protection of 
animals used for scientific purposes.

Biaxial and triaxial shear testing were performed following the 
protocol presented by Sommer et al. [29]. Very briefly, 25x25 mm 
parallel-to-the-epicardium biaxial samples were obtained at different 
wall thickness levels. Samples were cut alongside the local main fiber 
direction and the cross fiber direction, which corresponds to the FN 
plane according to LeGrice FSN coordinate system. For shear testing, 
4 mm cubic samples were obtained. Samples were also aligned with 
the FSN axis, obtaining 6 different shear modes according to Dokos et 
al. [28] (FN-FS-SF-SN-NF-NS). Both tests were performed at different 
strain levels under quasistatic conditions to neglect viscoelastic effects. 
We performed a total of 16 biaxial tests and 51 triaxial shear tests. 
In the present study, only 20% strain biaxial results and positive 50% 
shear results were considered for parameter obtention. At the biaxial 
characterization, 5 different loading ratios were applied between the 

Main Fiber Direction (MFD, corresponding to the F LeGrice orientation) 
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Fig. 1. Workflow of the proposed method to determine the mechanical parameters: i) Mechanical tests into in vitro samples, ii) in vivo LV data obtention (diastolic 
pressure gradient and initial geometry), iii) LV FE model implementation and iv) two-steps combined optimization for mechanical parameters identification.

Fig. 2. Experimental protocol summary. a) Scheme of the sample obtention procedure. Biaxial and triaxial shear samples were obtained aligned with the FSN 
directions. b) Considered biaxial extension tests mean results at 20% of deformation (continuous lines correspond to MFD and dotted lines correspond to CFD). c) 

Considered triaxial shear results at 50% of shear strain.

and the Cross Fiber Direction (CFD, corresponding to the N LeGrice ori-
entation), 1(MFD):1(CFD)-1:0.75-1:0.5-0.75:1-0.5:1. For more detailed 
information, the reader is referred to Sommer et al. (2015) [29,37]. 
Fig. 2 shows a summary of the experimental conditions and the main 
results is shown.

2.2. Myocardium constitutive model

For the formulation of a constitutive law that reproduces the my-
3

ocardial behavior, we have considered the tissue as orthotropic, hy-
perelastic and incompressible. To ensure an accurate reproduction of 
the experimental behavior, two widely used material models have been 
contrasted, the invariant-based version of the Costa model [20] and the 
Holzapfel & Ogden (HO) model [21]. Following the classic notation, we 
can define the deformation of a certain body as the motion of its points 
from their reference configuration, Ω0 ⊂ℝ3, to their current-state posi-
tions, Ω𝑡 ⊂ℝ3. Hence, we can define the relative motion of any point of 
the reference domain, 𝐗 ∈ Ω0, by the current coordinates 𝐱(𝐗, 𝑡). The 
deformation gradient is then defined as 𝐅 = ∇𝐗𝐱, and its determinant, 

𝐽 = 𝑑𝑒𝑡(𝐅) > 0 (𝐽 = 1 for incompressible materials). Finally, the strain is 
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described by the right Cauchy Green tensor, 𝐂 = 𝐅𝑇𝐅. The stress-strain 
relationship in a hyperelastic material is given by the strain energy den-
sity function (SEDF), 𝜙, representing the stored elastic energy per unit 
volume. At the present study, the SEDF will be expressed as function of 
the invariants of 𝐂, defined as

𝐼1 =𝐂 ∶ 𝐈, 𝐼2 = 𝑑𝑒𝑡(𝐂)𝐂−1 ∶ 𝐈, 𝐼3 = 𝑑𝑒𝑡(𝐂) = 𝐽. (1)

For an orthotropic material as the myocardium, the anisotropic 
pseudo-invariants along the microstructural directions, which in our 
case correspond to the fiber-sheet-normal axes are usually used. These 
pseudo-invariants represent the squared stretch along these directions, 
and are therefore defined as

𝐼𝑓𝑓 =𝐂 ∶ 𝐞𝑓 ⊗ 𝐞𝑓 , 𝐼𝑠𝑠 =𝐂 ∶ 𝐞𝑠 ⊗ 𝐞𝑠, 𝐼𝑛𝑛 =𝐂 ∶ 𝐞𝑛 ⊗ 𝐞𝑛, (2)

where 𝐞𝑘 (𝑘 ∈ {𝑓, 𝑠, 𝑛}) denote the unitary vectors in each direction. 
Likewise, the coupling pseudo-invariants between the microstructural 
directions, are expressed as

𝐼𝑓𝑠 =𝐂 ∶ 𝐞𝑓 ⊗ 𝐞𝑠, 𝐼𝑓𝑛 =𝐂 ∶ 𝐞𝑓 ⊗ 𝐞𝑛, 𝐼𝑠𝑛 =𝐂 ∶ 𝐞𝑠 ⊗ 𝐞𝑛. (3)

Costa’s model [20] considers an orthotropic formulation of the ex-
ponential Fung-type law and it is normally formulated in terms of the 
rotated Green Lagrange strain tensor. However, as presented by Nord-
sletten et al. [15], we can also obtain its formulation in terms of the 
invariants of the right Cauchy Green strain tensor as follows (IBC for-
mulation)

𝜙 = 𝐶

4
[𝑒𝑥𝑝(𝑄(𝐂))−1]+ 𝑝(𝐽 −1), 𝑄(𝐂) =

∑
𝑘𝑙∈𝑅𝐼𝐵𝐶

𝑏𝑘𝑙(𝐼𝑘𝑙 − 𝛿𝑘𝑙)2, (4)

where 𝑅𝐼𝐵𝐶 = [𝑓𝑓, 𝑠𝑠, 𝑛𝑛, 𝑓𝑠, 𝑓𝑛, 𝑠𝑛] and 𝛿𝑘𝑙 denotes the Kronecker 
delta. The IBC model thus depends on a total of 7 parameters, an exter-
nal scaling constant, 𝐶 , and 6 anisotropy parameters, 𝑏𝑘𝑙. The second 
Piola Kirchhoff stress tensor can be obtained from its expression in 
terms of the invariants

𝐒 =
∑
𝑘𝑙∈𝑅

2 𝜕𝜙

𝜕𝐼𝑘𝑙
𝑠𝑦𝑚(𝐞𝑘 ⊗ 𝐞𝑙) + 𝑝𝐽𝐂−1, (5)

where 𝑠𝑦𝑚(𝐗) = 1
2 (𝐗 + 𝐗𝑇 ) represents the symmetric part of a given 

tensor. Finally, the first Piola Kirchhoff (PK1) and Cauchy stress tensors 
can be obtained through the standard weighted push forward opera-
tions (𝐏 = 𝐅𝐒 and 𝝈 = 𝐽−1𝐅𝐒𝐅𝑇 , respectively). The obtention of the 
analytical solution of the IBC model particularized for biaxial and sim-
ple shear extension tests can be found in Appendix A.

For the HO model, the SDEF is characterized by the following ex-
pression

𝜙(𝐂) = 𝜙𝑖𝑠𝑜(𝐼1) +
∑

𝑘𝑙∈𝑅𝐻𝑂

𝜙𝑘𝑙(𝐼𝑘𝑙) + 𝑝(𝐽 − 1), (6)

where 𝑅𝐻𝑂 = [𝑓𝑓, 𝑠𝑠, 𝑓𝑠] and

𝜙𝑖𝑠𝑜(𝐼1) =
𝑎

2𝑏
[𝑒𝑥𝑝(𝑏(𝐼1 − 3)) − 1], (7)

𝐼𝑘𝑙 =
𝑎𝑘𝑙

2𝑏𝑘𝑙
[𝑒𝑥𝑝(𝑏𝑘𝑙(𝐼𝑘𝑙 − 𝛿𝑘𝑙)2) − 1]. (8)

The HO model thus depends on a total of 8 parameters. Analogously 
to Eq. (5), the second Piola-Kirchhoff stress tensor is given by

𝐒 = 2
𝜕𝜙𝑖𝑠𝑜

𝜕𝐼1
𝐈+

∑
𝑘𝑙∈𝑅𝐻𝑂

2
𝜕𝜙𝑘𝑙

𝜕𝐼𝑘𝑙
𝑠𝑦𝑚(𝐞𝑘 ⊗ 𝐞𝑙) + 𝑝𝐽𝐂−1. (9)

Both the IBC and HO models have similar formulations, presenting 
each of them pros and cons for parameter estimation. The main differ-
ences are: (i) the IBC model strain-energy terms are coupled in a single 
exponential function, while the HO function is presented as a sum of dif-
ferent exponentials; (ii) the IBC model also includes nn, fn and sn strain 
modes; and (iii) the HO model includes an isotropic term which rep-
4

resents the stiffening of the extracellular matrix. Regarding (ii), it has 
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been already presented in Li et al. [36] an extended version of the HO 
model (HOE) which hypothesizes that the myocardium exhibits further 
modes of coupling than the ones considered by the 𝐼𝑓𝑠 and includes the 
two other 𝐼𝑘𝑙 pseudo-invariants in Eq. (3). It should be mentioned that 
these additional terms were originally proposed by Holzapfel and Og-
den [21] but they were ultimately excluded. With the addition of these 
terms Eqs. (10) and (11) result as

𝜙(𝐂) = 𝜙𝑖𝑠𝑜(𝐼1) +
∑

𝑘𝑙∈𝑅𝐻𝑂𝐸

𝜙𝑘𝑙(𝐼𝑘𝑙) + 𝑝(𝐽 − 1), (10)

𝐒 = 2
𝜕𝜙𝑖𝑠𝑜

𝜕𝐼1
𝐈+

∑
𝑘𝑙∈𝑅𝐻𝑂𝐸

2
𝜕𝜙𝑘𝑙

𝜕𝐼𝑘𝑙
𝑠𝑦𝑚(𝐞𝑘 ⊗ 𝐞𝑙) + 𝑝𝐽𝐂−1, (11)

where now 𝑅𝐻𝑂𝐸 = [𝑓𝑓, 𝑠𝑠, 𝑓𝑠, 𝑓𝑛, 𝑠𝑛]. Li et al. [36] stated that the in-
clusion of these additional terms improved the fitting and predictive 
capability of the HO model when applied to simple and pure shear 
strains. However, including the additional 𝐼𝑘𝑙 terms implies to increase 
significantly the number of material parameters in the SEDF (8 param-
eters at HO versus 12 parameters at HOE).

3. Mechanical properties estimation by in vivo-in silico data

3.1. Left ventricle in vivo geometry

An in vivo left ventricle (LV) geometry was reconstructed from mag-
netic resonance (MR) images. They were performed on 3 different 
healthy porcine hearts. Crossbred domestic pigs of either gender (Sus 
scrofa, weight 20-25 kg, Animalium KU Leuven, Leuven, Belgium) were 
sedated using Telazol (tiletamine 4 mg/kg and zolazepam 4 mg/kg) 
(Zoletil100, Virbac Animal Health, Carros, France) and xylazine (2.5 
mg/kg, Vexylan, CEVA Sante Animale, Brussels, Belgium) and subse-
quently anesthetized with intravenous propofol (3 mg/kg bolus injec-
tion, Diprivan, AstraZeneca, Brussels, Belgium) followed by 10 mg/kg/h 
continuous infusion and remifentanil (18 μg/kg/h, Ultiva, GSK, Genval, 
Belgium). Mechanical ventilation with a mixture of air and oxygen (1:1) 
at a tidal volume of 8-10 ml/kg was adjusted to maintain normocapnia 
and normoxia. Electrocardiogram, blood pressure and oxygen satura-
tion were continuously monitored using the intensive cardiac monitor 
system (Siemens). Animal 2 was selected as a representative specimen 
for the LV geometry obtention due to the good quality of its MR images. 
Cardiac MRI was performed on a 3T system (TRIO-Tim, Siemens, Erlan-
gen) during suspended respiration using electrocardiographic triggering 
and cardiac-dedicated surface coils. Global volume was assessed with 
cine MRI in the vertical and horizontal long and short axes, covering 
the complete LV using 6-mm thick slices, at rest and during dobutamine-
induced stress. Myocardial fiber orientation was estimated using ex-vivo 
diffusion tensor distribution MRI.

The initial in vivo geometry was selected at early diastole, when 
pressure is lowest. The minimum pressure geometry was considered to 
be equivalent to the zero-pressure geometry (0P) since the pressure at 
this time-point is barely null (0.08 kPa, Fig. 3.a). At that instant, the LV 
cavity volume observed is 45 ml. For context, the volumes observed at 
end of systole (ES) and diastole (ED) were 34 and 75 ml, respectively. 
The 0P voxelized LV geometry was obtained by manually segmenting 
the early diastole frame of the cine cardiac MR sequence.

Initially, the LV segmentation was tetrahedralized with a mean edge 
length of 1.26 mm which resulted in a LV mesh of 64477 nodes and 
345685 elements [38]. Moreover, a rule-based model was employed for 
defining the FSN cardiac fiber field of the LV mesh (Fig. 4.b-d), as re-
ported in Bayer et al. (code version 2023.3.0) [39]. Briefly, the local 
longitudinal, circumferential and radial coordinated system was com-
puted from a multi-diffusion analysis on the LV model. The longitudinal 
fiber direction F was determined by clockwise linearly rotating the local 
circumferential axis from 60 to -60 degrees from endo- to epicardium, 
respectively. A sensitivity analysis was carried out to study the influ-

ence of fiber distribution on the minimization process. In addition to 
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Fig. 3. CCM LV pressure recordings. a) Full cycle pressure gradient for a significant heartbeat. b) Strictly passive inflation mean pressure gradient considered in the 
simulations.

Fig. 4. Considered FE model geometry. a) Finite element mesh of the MRI in vivo geometry. b) Fiber field distribution for the F, c) S and d) N directions.
the -60º/60º orientation (endocardium/epicardium), the -50º/60º and 
-60º/50º cases were analyzed. Our methodology achieved a good fit for 
all the orientations considered, without any significant difference be-
tween the three cases (Supplementary data). The S direction was set as 
perfectly radial to the LV, while the N direction was defined as normal 
to the FS plane. Afterwards, in order to solve the numerical problem 
with the FE method, a coarser mesh was generated for the initial geom-
etry, since the computational cost was too expensive with the original 
mesh size. A covered LV mesh of 107704 elements and 25504 nodes 
(mean tetrahedral edge length of 2.2 mm) was defined from the seg-
mentation. Subsequently, the FSN fiber orientation in the covered LV 
mesh was interpolated from the uncovered thinner one employing ra-
dial basis functions. The final LV mesh and its fiber field can be observed 
in Fig. 4.a.

3.2. LV pressure-volume relationship

Diastolic inflation from the 0P to ED has been considered. The tissue 
was considered to present strictly passive behavior during this phase. 
For pressure gradient recordings, invasive hemodynamics was per-
formed using a 5-French Millar equipment (Millar Instruments, Hous-
ton, TX, USA) for pressure-conductance catheter methodology (CCM), 
which was retrogradely introduced into the LV via carotid artery. 
𝑑𝑃∕𝑑𝑡𝑚𝑎𝑥 and 𝑑𝑃∕𝑑𝑡𝑚𝑖𝑛 were recorded during steady state conditions. 
During the CCM experiment, a total of 118 heartbeats were recorded at 
the ventricular cavity. None of these beats corresponded to the MR im-
5

ages obtained, so the mean value of the 0P-ED pressure gradient was 
computed (Fig. 3.b). ED was identified thanks to the 𝑑𝑃∕𝑑𝑡 recordings 
during the cycle, coinciding with the point at which the pressure starts 
to rise drastically.

3.3. Finite element model

A FE model was implemented using the software Abaqus (Abaqus 
6.14.1, Symulia) considering the geometry and pressure gradient afore-
mentioned. The recorded pressure was introduced as a boundary con-
dition for the simulations and the 0P-ED volume increment due to this 
pressure gradient was used as one of the variables at the minimiza-
tion process. C3D4H elements were used. Hybrid formulation is needed 
since the material is assumed to be incompressible. The mesh consists 
of a total of 25504 nodes and 107704 elements. UANISOHYPER subrou-
tine was used for the implementation of the IBC material model. Fluid 
Cavity was implemented to control pressure volume conditions along 
ventricular inflation. For the Fluid Cavity condition, it is necessary to 
specify a closed surface, so extra elements were added on the top of the 
ventricular cavity. These elements are not considered for the mechan-
ical analysis, they are only introduced to obtain a completely closed 
ventricular cavity. Finally, we also constrained the displacements at the 
top nodes of these extra elements to ensure the fixation of the model.

4. Combined in vivo - in vitro parameters optimization

For the estimation of the parameters of the selected material, we 

propose a minimization process with the aim of simultaneously re-
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Fig. 5. Comparison of in vitro fitting for biaxial and triaxial shear extension tests with the considered constitutive models: Invariant-based Costa (IBM), Holzapfel & 
Ogden (HO) and Extended HO (HOE). Dotted lines correspond to the simulated results of the second experimental curve of each plot, which are CFD, FN, SN and 
NS, respectively.
producing both the in vivo PV data recorded in the CCM and MRI 
experiments and the results of the in vitro mechanical testing. To de-
fine the objective function of the minimization, we implemented the 
Mean Squared Error (MSE) between the simulated and the experimen-
tal results of the different inputs considered, which is defined as follows

𝑓𝑜𝑏𝑗 = 𝑓𝑡𝑒𝑠𝑡𝑠 + 𝑓𝑃𝑉 , (12)

𝑓𝑡𝑒𝑠𝑡𝑠 =
1

𝑘+ 1
1

𝑁𝑡𝑒𝑠𝑡𝑠

𝑁𝑡𝑒𝑠𝑡𝑠∑
𝑖=1

⎛⎜⎜⎝
𝑁𝑝𝑜𝑖𝑛𝑡𝑠∑
𝑖=1

(𝐏𝑡𝑒𝑠𝑡 − 𝐏𝑎𝑛

𝑚𝑎𝑥(𝐏𝑡𝑒𝑠𝑡)

)2⎞⎟⎟⎠ , (13)

𝑓𝑃𝑉 = 𝑘

𝑘+ 1

𝑁𝑝𝑜𝑖𝑛𝑡𝑠∑
𝑖=1

(
𝑉𝐶𝐶𝑀 − 𝑉𝐹𝐸𝑀

𝑚𝑎𝑥(𝑉𝐶𝐶𝑀 )

)2
, (14)

where 𝑁𝑝𝑜𝑖𝑛𝑡𝑠 corresponds to the number of points evaluated in each 
curve, which was fixed to 100 in every term; 𝐏𝑡𝑒𝑠𝑡 and 𝐏𝑎𝑛 represent 
the experimental and analytical values of the PK1 stress tensor for each 
strain mode test, respectively; 𝑁𝑡𝑒𝑠𝑡𝑠 is the total amount of considered 
in vitro tests for the fitting process, equal to 12; 𝑉𝐶𝐶𝑀 and 𝑉𝐹𝐸𝑀 are 
the volumes recorded along the passive filling in the MR images and 
the FE simulations, respectively. Finally, 𝑘 corresponds to a weighting 
factor between the volume data and the experimental data, which was 
taken to be equal to 5 after a sensitivity analysis as described below. Er-
rors were normalized by dividing them by the maximum experimental 
value, since the order of values and units of the PK1 stresses and the PV 
curves volumes are different. For the experimental minimization, the 6 
different shear modes presented by Dokos et al. [28] as well as 3 differ-
ent biaxial loading ratios (1:1-1:0.5-0.5:1) were considered. The resting 
2 biaxial loading ratios (0.75:1-1:0.75) were used for validation of the 
obtained parameters, so they were not considered in the optimization 
process.

We considered two different stages for the optimization (Fig. 1). 
First, we obtained the parameters that reproduced only the in vitro me-
chanical response (taking 𝑓𝑡𝑒𝑠𝑡𝑠 as the objective function). Subsequently, 
these constants were used as the starting point for the next stage, where 
the overall response (𝑓𝑜𝑏𝑗 as the objective function) was minimized. 
6

Therefore, in the first step, the minimization process only requires the 
in vitro data, so the initial set of constants is obtained without the need 
to perform numerical simulations. In the second step, in addition to the 
in vitro data, we used the FE model to inversely estimate the ED volume 
in each iteration, using the experimental PV data from the CCM and 
MRI. Thus, both in vitro and in vivo responses are taken into account in 
the second stage. The seven IBC material parameters were considered 
in both stages.

The minimization was conducted using the Matlab function fmin-

con, a gradient-based function for non-linear objective functions. Other 
studies have proposed the use of trust-region-reflective algorithms [17], 
genetic algorithms [40] or medium-scale algorithms such as sequential 
quadratic programming optimization techniques [8,31,11]. Gradient-
based optimizations tend to be inefficient when the objective presents 
several local minima, as in our case. However, by imposing a suffi-
ciently high initial step, fmincon was able to avoid local minima and 
eventually reach the global minimum of the problem. The interior-point 
algorithm has been selected as it is a large-scale algorithm that helps to 
reduce the computational cost [41–43].

Finally, to assess the goodness of fitting of the obtained results for 
both the in vitro and the in vivo data, we have considered the coefficient 
of determination, (𝑅2), which is defined as

𝑅2 = 1 −
∑𝑁

𝑖=1(𝑌𝑖 − 𝑌 )2∑𝑁

𝑖=1(𝑌𝑖 − 𝑌 )2
, (15)

where 𝑌 correspond to the experimental values considered for each test, 
𝑌 to the simulated values, 𝑌 to the mean experimental value and 𝑁 to 
the number of considered points

5. Results

5.1. In vitro fitting and material model selection

Firstly, we compare the three proposed material models, IBC, HO 
and HOE, to check their fitting and predictive capability against our 
experimental data. For this first analysis, only the data from the in 
vitro mechanical tests were used, not the PV diagrams. Fig. 5 shows 

the estimated Cauchy stress obtained for each model against the level 
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Fig. 6. Comparison of in vitro (a-h) and in vivo (i) data for the two initial approaches: Only in vitro tests were considered in the minimization process (IVT) and only 
in vivo passive inflation were considered in the minimization process (IVV). Dotted lines correspond to the simulated results of the second experimental curve of 
each plot, which are CFD, FN, SN and NS, respectively.
Table 1

Goodness of in vitro fitting values for differ-
ent constitutive laws. Two different groups 
considered: Fit (Biaxial ratios 1-3-5 + Shear 
tests) and Pred (Biaxial ratios 2-4).

SEDF 𝑅2 (Fit) 𝑅2 (Pred)

ICB 0.9796 0.9836

HO 0.9564 0.9708

HOE 0.9830 0.9715

of stretch, for every considered strain mode. The goodness of fit for 
each of the models is shown in Table 1. To get a global value of 𝑅2

for all the experimental curves, we estimated the individual values for 
each experiment and then computed their median term. All models ob-
tain acceptable fits, staying within the experimental deviation range in 
practically all tests. The IBC and HOE models show the best results, be-
ing very similar to each other. If we analyze the results of Table 1 in 
greater detail, we see that the IBC model presents slightly better results 
for the prediction curves (ratios 2 and 4 of the biaxial tests) and the 
HOE model presents slightly better results for the fitting curves (rest of 
the biaxial tests and tangential tests).

In view of these results, we decided to use the IBC model for the 
minimization process, since it presents the best response together with 
HOE and requires fewer fitting parameters (7 parameters for IBC and 
12 for HOE).

5.2. Separated fitting for in vivo and in vitro characterization

Once selected the constitutive law for the optimization process, we 
started by simulating the passive inflation with the initial parameters 
obtained from the in vitro results (IVT). We also performed a parallel 
study to obtain a set of parameters only from the in vivo passive inflation 
data (IVV), neglecting the IVT ones. The aim of this first process is to 
7

analyze whether the parameters obtained separately are comparable.
Fig. 6 shows the fittings for in vitro mechanical testing and the in 
vivo diastolic inflation for both scenarios. The results obtained for each 
of them are not entirely satisfactory, since they significantly mismatch 
their unconsidered counterpart. In the IVT case (only 𝑓𝑡𝑒𝑠𝑡𝑠 were con-
sidered), the PV adjustment is not accurate enough, obtaining lower 
end-diastolic volume (65 ml) than the MRI (75 ml), well outside the de-
viation range (Fig. 6.f). In the IVV case (only 𝑓𝑃𝑉 were considered), 
the fit of the experimental curves is also greatly affected. In Table 2, we 
show the IBC parameters and the different minimization errors for each 
case. It can be seen that the parameters are very different for IVT and 
IVV. For the IVV case, we even get non-physiological values for 𝑏𝑠𝑠 and 
𝑏𝑛𝑛, as we obtain a higher value for 𝑏𝑛𝑛 than 𝑏𝑠𝑠, which would mean that 
the stiffness along the N direction is higher than the S direction. This 
behavior is in disagreement with what has been reported previously 
[28,29] and suggests that in vivo pressure-volume data is not enough to 
fully characterize the tissue response by itself. With respect to the min-
imization errors, the obtained values are lower for the IVT than for the 
IVV case. However, as already mentioned, the in vivo estimated volume 
for the IVT case is not sufficiently accurate.

Table 2 shows the final minimization errors, after applying the 
weighting factor, 𝑘. To estimate this factor, the original minimization 
errors were considered: 𝑓𝐼𝑉 𝑇

𝑡𝑒𝑠𝑡𝑠,0 = 0.219, 𝑓𝐼𝑉 𝑇
𝑃𝑉 ,0 = 0.622 and 𝑓𝐼𝑉 𝑉

𝑡𝑒𝑠𝑡𝑠,0 =
3.324, 𝑓𝐼𝑉 𝑉

𝑡𝑒𝑠𝑡𝑠,0 = 0.067. The ratio between these errors allows us to es-

timate 𝑘. For the IVT case, the estimated 𝑓𝐼𝑉 𝑇
𝑃𝑉 ,0 value is 0.622, while in 

the IVV case, 𝑓𝐼𝑉 𝑉
𝑡𝑒𝑠𝑡𝑠,0 is 3.324, which gives a ratio of approximately 5.34. 

In order for the minimization process to converge to a result capable of 
adjusting the physiological response without neglecting the fine-tuning 
of in vitro tests, it is necessary to prioritize the adjustment of the infla-
tion volume. Therefore, a weighting factor of 5 was considered.

These results of the parallel analyses show that the parameters ob-
tained when considering only the in vitro or the in vivo responses are 
substantially different from each other, suggesting that, apparently, it 
is not possible to simultaneously reproduce both responses. However, as 
we will see below, due to the multiplicity of solutions to the orthotropic 

problem, if we introduce both behaviors into the minimization process 
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Table 2

Invariant-based Costa model mechanical parameters and minimization MSE values for different 
fitting strategies.

𝐶 [kPa] 𝑏𝑓𝑓 𝑏𝑠𝑠 𝑏𝑛𝑛 𝑏𝑓𝑠 𝑏𝑓𝑛 𝑏𝑠𝑛 𝑓𝑡𝑒𝑠𝑡𝑠 𝑓𝑃𝑉 𝑓𝑜𝑏𝑗

IVT 1.884 2.723 1.650 1.320 3.874 2.734 2.964 0.073 0.518 0.591
IVV 1.275 2.844 1.205 1.533 3.816 2.612 2.882 1.107 0.056 1.163
MIN 1.231 3.382 2.284 1.287 3.856 2.603 2.973 0.191 0.033 0.224

Fig. 7. Comparison of in vitro (a-h) and in vivo (i) fitting for the obtained parameters after the minimization process (MIN). Dotted lines correspond to the simulated 
results of the second experimental curve of each plot, which are CFD, FN, SN and NS, respectively.
it is possible to arrive at a set of parameters that satisfies both require-
ments at the same time.

5.3. In vitro and in vivo combined fitting and parameter estimation

Table 2 and Fig. 7 present the results after the proposed mini-
mization process (MIN), considering 𝑘 = 5. The material parameters 
obtained are intermediate between the IVT and IVV cases as well as 
the minimization errors. In Table 3, we include 𝑅2 values for each of 
these three scenarios. The errors are divided in three different groups of 
curves: the in vitro fitting curves (triaxial shear tests and biaxial ratios 
1:1, 1:0.5, 0.5:1), FIT, in vitro prediction curves (0.75:1, 1:0.75), PRED, 
and the in vivo pressure-volume curve, PV. Both Fig. 7 and Table 3 re-
flect the impossibility of achieving a simultaneous adjustment of the 
hemodynamic response and in vitro assays if both datasets are not con-
sidered in the minimization process. However, the MIN group achieves 
a reasonably acceptable, although not perfect, simultaneous fit. Results 
in Fig. 7 are around the range of deviation in almost all curves, except 
for biaxial ratio 3 and FS-FN tests, which are the worst fitted in all sce-
narios. In this case, despite achieving a reasonable adjustment of the 
hemodynamic response, the 𝑏𝑠𝑠 and 𝑏𝑛𝑛 constants do reach physiologi-
cal values in contrast to the IVV case. MIN values for 𝑅2 in each group 
show that, after the minimization process, a reliable reproduction of all 
the input data is achieved, without obtaining any 𝑅2 value lower than 
0.85.

Finally, Fig. 8 shows the deformed ventricular geometry and the 
maximum principal strain distribution at ED for each case. As expected, 
8

the strains achieved for IVV and MIN are larger than those for IVT, since 
Table 3

Goodness of fitted values for different fitting strate-
gies. Three different groups considered: Fit (Biaxial 
ratios 1-3-5 + Shear tests), Pred (Biaxial ratios 2-4) 
and PV (in vivo PV curve).

𝑅2 (Fit) 𝑅2 (Pred) 𝑅2 (PV)

IVT 0.977 0.984 0.697
IVV 0.687 0.717 0.995
MIN 0.815 0.962 0.992

the volume reached at the end of the simulation is larger in those sce-
narios (Fig. 6-7). Nevertheless, the strain maps seem to follow the same 
pattern for the two cases, suggesting that the distribution of local defor-
mations along the ventricular wall is similar for the different selected 
properties in each case.

6. Discussion

6.1. Material model selection

Both IBC and HO are the most used orthotropic material models 
for the characterization of the passive mechanical behavior of the my-
ocardium. Although they share very similar formulations, there are 
minor differences between them that lead to variations in their pre-
dictive capability. Nordsletten et al. [15] noted that the IBC model 
has greater predictive capability when applied to biaxial stretching at 
different loading ratios, whereby the HO one fails to predict different 

stretches at cross-fiber directions under non-equibiaxial loads. This is 
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Fig. 8. Comparison of the maximum principal strain for the simulated End Diastole (ED) geometries: a) In vitro data properties (IVT) only, b) In vivo data properties 
(IVV) only, c) Combined data properties (MIN).
due to the approach followed by each model to relate the deforma-
tions associated with each strain mode. In the IBC model, all modes are 
coupled within the same exponential term, achieving an inherent cou-
pling between the microstructural directions. On the other hand, the 
HO model considers each strain mode in separate terms, which neglects 
the interaction between the orthotropy directions in non-equibiaxial bi-
axial tests. This study also highlights that the HO model has a better 
predictive ability for highly non-linear responses compared to the IBC 
one. Li et al. [36] also stated that the HO model fails to predict mul-
tiaxial loading paths such as pure shear testing. The HOE model was 
proposed as a solution to these limitations since it offers advantages 
when fitting multiaxial loading paths.

All these same comments are reflected in the obtained results. First, 
given that our tests are largely composed of non-equibiaxial biaxial 
tests, the IBC model presents a slightly better prediction than the HO 
one. Closer results to experiments were achieved by the HOE approach 
when compared to the HO one. Special attention should be paid to an-
alyze which constitutive law best fits each specific problem, and both 
Costa and HO models offer great predictive power. However, in our 
particular problem, the IBC one offers the best response in relation to 
the number of parameters and the fitting accuracy. It should also be 
noted that this initial conclusion is highly dependent on the particular 
experimental dataset.

6.2. In vitro & in vivo combined minimization process

The use of in vitro properties for in vivo simulations of cardiac re-
sponse has sometimes been questioned since the effect of tissue disrup-
tion during sample obtention is not well understood [17,20]. However, 
in vitro characterization is still of great interest nowadays and there 
are many works that base their models on in vitro properties, consider-
ing different alternatives for their implementation. For example, there 
are studies [15,29,30,36] that use in vitro studies only to validate their 
proposed numerical or experimental methodologies, since in vitro test-
ing allows to analyze the tissue response to pure strain modes, not as 
in physiological conditions when heart is subjected to coupled strain 
modes during the cardiac cycle. Other studies by Bovendeerd et al. 
[9,34,44] use in vitro biaxial tests by Yin et al. [23] in their FE models, 
but they tune some of the mechanical parameters so that the simu-
lated hemodynamic response agrees reasonably with in vivo results [34], 
without checking if the in vitro response is still respected with that new 
parameter set. On the other hand, in the work published by Göktepe 
et al. [35,45], the passive response is based exclusively on the in vitro

shear properties presented in Dokos et al. [28] to simulate the PV heart 
cycle. However, the inflation obtained is significantly smaller than the 
physiological one [35], suggesting that the considered material is not 
representative of the in vivo behavior. Hence, none of these studies have 
succeeded to implement in vitro properties directly to accurately repro-
duce the in vivo hemodynamic response.

Therefore, the methodology presented proposes an alternative to use 
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the in vitro properties while ensuring that the physiological behavior is 
respected in subsequent simulations. We have shown that using this 
novel approach is possible to get an acceptable in vivo and in vitro fit-
ting for an orthotropic material model as the IBC one. We believe that 
this methodology can be very useful for the development of computa-
tional models using in vitro properties and we think that this is justified 
by the high correlation between the parameters of the IBC model, which 
leads to multiple parametric solutions that match the same experimen-
tal results with sufficient accuracy. Our methodology overcomes this 
problem, offering one of that family of parametric solutions that is able 
to accurately reproduce the in vivo behavior.

With respect to the works that use in vivo properties derived from 
clinical images, very few of them consider orthotropic models [17,18]. 
The non-uniqueness of the solution, as well as the limited amount of 
available in vivo input data, make very expensive to obtain a represen-
tative set of parameters for this highly multi-parametric type of consti-
tutive laws. That is why most studies use simpler transversely isotropic 
materials [8,10–13,16]. Incorporating in vitro results in the parameter 
identification problem can help in guiding the process and facilitate 
the search for a unique solution. In addition, this new approach is also 
an interesting alternative when insufficiently accurate in vivo data is 
available. This methodology allows us to obtain patient-specific physi-
ological properties only from hemodynamic data, complementing them 
with our own species-specific in vitro data or those from literature.

Although we have shown promising results, there are some limita-
tions in this study that need to be addressed. First, we did not validate 
the distribution of local deformations along the wall, since we did not 
have this type of data. It would be necessary to analyze whether the pro-
posed solutions not only reproduce the global hemodynamic response 
but also the local strains in the myocardium. Second, we have focused 
this first analysis only on passive behavior, but it would be of interest to 
analyze the entire cardiac cycle including the active contraction stage. 
Lastly, we have not performed a comprehensive study on the influence 
of different sets of in vivo data on our methodology, which may be in-
teresting for our study. In future research, we should move towards a 
more patient-specific approach considering different MRI and hemody-
namic data alternatives. Furthermore, throughout this study we have 
considered several assumptions that may have an impact on the results 
and should be taken into account.

First, we have considered the myocardium to be purely hyperelas-
tic, neglecting its viscoelastic response. This is fairly standard, as the 
time scale of the cardiac cycle is much shorter than the relaxation 
characteristic time of the heart tissue [21]. However, this assumption 
has been recently challenged, as novel studies have been presented in 
which the myocardium is considered as a visco-hyperelastic material 
[15,19], claiming that the viscoelastic part of the mechanical response 
does have a significant influence on the overall behavior, and should 
be considered. The same applies to the compressibility of the tissue. We 
have considered the cardiac tissue to be fully incompressible, as it is 
normally assumed. Nevertheless, recently, some studies have also ques-
tioned this hypothesis considering the myocardium as a material with a 

non-negligible compressibility [46] or even considering a variable com-
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pressibility during the cycle depending on the blood perfusion of the 
heart wall [16,30]. It should be also noted that the initial pressure at 
the 0P geometry has been neglected since it is close to zero, but whether 
this hypothesis can have an impact on the process should be further ex-
plored. Finally, although a real patient-specific geometry has been used 
for the simulations, an idealized fiber field has been considered, with-
out including phenomena such as dispersion or cross-linking between 
parallel fibers. There are studies that insist on the importance of these 
phenomena on the cardiac tissue behavior [9]. However, no data were 
available to us to introduce a more realistic fiber distribution.

7. Conclusions

A new approach has been proposed aiming at healthy myocardium 
mechanical parameter estimation using an orthotropic hyperelastic con-
stitutive law. We have proposed a minimization process that combines 
in vitro and in vivo results to ensure a robust set of parameters that si-
multaneously reproduces both responses. The proposed methodology 
has proven its capacity to reproduce the in vivo tissue response from 
in vitro data, at least at the hemodynamic level. We believe that this 
approach can help in the development of computational models as it 
simplifies the process of fitting highly complex material models by in-
cluding the in vitro data and, in addition, helps to shed some light on 
the relationship between the in vitro and in vivo tissue response.
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Appendix A. In vitro tests analytical solution

Here we describe the full procedure to obtain the IBC constitutive 
law analytical solution, both for biaxial and triaxial shear extension 
tests.

A.1. Biaxial extension tests

Considering a biaxial extension test as shown in Fig. 2.a, we can 
define the deformation gradient tensor, 𝐅, as

𝐅 =
⎛⎜⎜ 𝜆𝑓 0 0
0 𝜆𝑠 0

⎞⎟⎟ =
⎛⎜⎜ 𝜆𝑓 0 0
0 1

𝜆𝑓 𝜆𝑛
0
⎞⎟⎟ , (A.1)
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⎝ 0 0 𝜆𝑛 ⎠ ⎜⎝ 0 0 𝜆𝑛
⎟⎠
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where 𝜆𝑓 , 𝜆𝑠 and 𝜆𝑛 are the respective elongation in the LeGrice di-
rections F, S and N. Since we have considered the myocardium as 
incompressible, we can rewrite the tensor F as in the second term of 
Equation (A.1). Then, as described in Section 2.2, we can define the 
right Cauchy-Green tensor, 𝐂, as

𝐂 =
⎛⎜⎜⎜⎝
𝜆2
𝑓

0 0
0 1

𝜆2
𝑓
𝜆2𝑛

0

0 0 𝜆2
𝑛

⎞⎟⎟⎟⎠ . (A.2)

According to Eq. (5) we can write the PK2 tensor, 𝐒, as

𝐒 =

⎛⎜⎜⎜⎜⎝
2 𝜕𝜙

𝜕𝐼𝑓𝑓

𝜕𝜙

𝜕𝐼𝑓𝑠

𝜕𝜙

𝜕𝐼𝑓𝑛
𝜕𝜙

𝜕𝐼𝑓𝑠
2 𝜕𝜙

𝜕𝐼𝑠𝑠

𝜕𝜙

𝜕𝐼𝑠𝑛
𝜕𝜙

𝜕𝐼𝑓𝑛

𝜕𝜙

𝜕𝐼𝑠𝑛
2 𝜕𝜙

𝜕𝐼𝑓𝑓
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+ 𝑝𝐽𝐂−1

=

⎛⎜⎜⎜⎜⎝
2 𝜕𝜙

𝜕𝐼𝑓𝑓
+ 𝑝
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𝑓

𝜕𝜙

𝜕𝐼𝑓𝑠

𝜕𝜙
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𝜕𝜙

𝜕𝐼𝑓𝑠
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𝜕𝐼𝑠𝑠
+ 𝑝𝜆2

𝑓
𝜆2
𝑛

𝜕𝜙

𝜕𝐼𝑠𝑛
𝜕𝜙

𝜕𝐼𝑓𝑛

𝜕𝜙

𝜕𝐼𝑠𝑛
2 𝜕𝜙

𝜕𝐼𝑓𝑓
+ 𝑝

𝜆2𝑛

⎞⎟⎟⎟⎟⎠
.

(A.3)

The Cauchy stress tensor can be obtained by 𝝈 = 𝐽−1𝐅𝐒𝐅𝑇 , resulting 
in

𝝈 = 𝐶 ⋅ 𝑒𝑄𝐵𝑥

⎛⎜⎜⎜⎜⎜⎝

𝑏𝑓𝑓 𝜆
2
𝑓
(𝜆2

𝑓
− 1) 0 0

0
𝑏𝑠𝑠

(
1

𝜆2
𝑓
𝜆2𝑛

−1

)
𝜆2
𝑓
𝜆2𝑛

0

0 0 𝑏𝑛𝑛𝜆
2
𝑛
(𝜆2

𝑛
− 1)

⎞⎟⎟⎟⎟⎟⎠
+ 𝑝, (A.4)

where

𝑒𝑄𝐵𝑥 = 𝑒

⎛⎜⎜⎝𝑏𝑓𝑓
(
𝜆2
𝑓
−1

)2
+𝑏𝑠𝑠

(
1

𝜆2
𝑓
𝜆2𝑛

−1

)2

+𝑏𝑛𝑛
(
𝜆2𝑛−1

)2⎞⎟⎟⎠ (A.5)

To obtain 𝑝, we can impose 𝜎𝑠𝑠 = 0. Finally, we need to obtain the 
PK1 tensor by 𝐏 = 𝐅𝐒, since is the stress tensor implemented at the 
minimization process. The final expressions for 𝑃𝑓𝑓 and 𝑃𝑛𝑛 are

𝑃𝑓𝑓 =

⎡⎢⎢⎢⎢⎣
𝑏𝑓𝑓 (𝜆2𝑓 − 1) − 𝑏𝑠𝑠

(
1

𝜆2
𝑓
𝜆2𝑛

− 1
)

𝜆4
𝑓
𝜆2
𝑛

⎤⎥⎥⎥⎥⎦
×𝐶 ⋅ 𝜆𝑓 ⋅ 𝑒

⎛⎜⎜⎝𝑏𝑓𝑓
(
𝜆2
𝑓
−1

)2
+𝑏𝑠𝑠

(
1

𝜆2
𝑓
𝜆2𝑛

−1

)2

+𝑏𝑛𝑛
(
𝜆2𝑛−1

)2⎞⎟⎟⎠
(A.6)

𝑃𝑛𝑛 =

⎡⎢⎢⎢⎢⎣
𝑏𝑛𝑛(𝜆2𝑛 − 1) − 𝑏𝑠𝑠

(
1

𝜆2
𝑓
𝜆2𝑛

− 1
)

𝜆2
𝑓
𝜆4
𝑛

⎤⎥⎥⎥⎥⎦
×𝐶 ⋅ 𝜆𝑛 ⋅ 𝑒

⎛⎜⎜⎝𝑏𝑓𝑓
(
𝜆2
𝑓
−1

)2
+𝑏𝑠𝑠

(
1

𝜆2
𝑓
𝜆2𝑛

−1

)2

+𝑏𝑛𝑛
(
𝜆2𝑛−1

)2⎞⎟⎟⎠

(A.7)

A.2. Triaxial shear extension test

Considering now a simple shear extension test as shown in Fig. 2.a, 
we can now define the deformation gradient, 𝐅, as

𝐅 =
⎛⎜⎜⎝
1 0 0
𝛾 1 0
0 0 1

⎞⎟⎟⎠ . (A.8)

It should be noted that, depending on the shear direction with re-
spect to the different tissue’s orthotropy orientations, there are a total 

of 6 different simple shear stress configurations as stated by Dokos et al. 
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[28]. In this Appendix, we will focus only on the FS mode, which cor-
responds to a shear stress in the FS plane where the loading direction is 
the S-direction, according to Holzapfel & Ogden [21]. Once again, we 
can now define the right Cauchy-Green tensor, as

𝐂 =
⎛⎜⎜⎝
𝛾2 + 1 𝛾 0

𝛾 1 0
0 0 1

⎞⎟⎟⎠ . (A.9)

According to Eq. (5), for simple shear we can write the PK2 tensor 
now as

𝐒 =

⎛⎜⎜⎜⎜⎝
2 𝜕𝜙

𝜕𝐼𝑓𝑓
+ 𝑝

𝜕𝜙

𝜕𝐼𝑓𝑠
− 𝑝𝛾

𝜕𝜙

𝜕𝐼𝑓𝑛
𝜕𝜙

𝜕𝐼𝑓𝑠
− 𝑝𝛾 2 𝜕𝜙

𝜕𝐼𝑠𝑠
+ 𝑝(𝛾2 + 1) 𝜕𝜙

𝜕𝐼𝑠𝑛
𝜕𝜙

𝜕𝐼𝑓𝑛

𝜕𝜙

𝜕𝐼𝑠𝑛
2 𝜕𝜙

𝜕𝐼𝑓𝑓
+ 𝑝

⎞⎟⎟⎟⎟⎠
, (A.10)

and the Cauchy stress tensor as

𝝈 =
⎛⎜⎜⎜⎝

𝑝+ 𝛾2𝑏𝑓𝑓 ⋅𝐶𝑒𝑄𝑆ℎ

(
𝛾2𝑏𝑓𝑓 + 𝑏𝑓𝑠

2

)
𝛾𝐶𝑒𝑄𝑆ℎ 0(

𝛾2𝑏𝑓𝑓 + 𝑏𝑓𝑠

2

)
𝛾𝐶𝑒𝑄𝑆ℎ

(
𝛾3𝑏𝑓𝑓 + 𝑏𝑓𝑠(𝛾+1)

2

)
𝛾𝐶𝑒𝑄𝑆ℎ + 𝑝(𝛾2 − 𝛾 + 1) 0

0 0 𝑝

⎞⎟⎟⎟⎠ ,
(A.11)

where

𝑒𝑄𝑆ℎ = 𝑒
(
𝑏𝑓𝑓 ⋅𝛾

4+𝑏𝑓𝑠⋅𝛾2
)
. (A.12)

Now, to obtain 𝑝, we impose 𝜎𝑛𝑛 = 0. From Eq. (A.11), we observe 
directly 𝑝 = 0. Finally, the PK1 tensor term 𝑃𝑓𝑠 is given by

𝑃𝑓𝑠 =
(
𝛾2 ⋅ 𝑏𝑓𝑓 +

𝑏𝑓𝑠

2

)
⋅ 𝛾 ⋅𝐶 ⋅ 𝑒

(
𝑏𝑓𝑓 ⋅𝛾

4+𝑏𝑓𝑠⋅𝛾2
)
. (A.13)

Repeating this process for the other 5 shear strain modes, we can 
express the respective terms of the PK1 tensor as

𝑃𝑠𝑓 =
(
𝛾2 ⋅ 𝑏𝑠𝑠 +

𝑏𝑓𝑠

2

)
⋅ 𝛾 ⋅𝐶 ⋅ 𝑒

(
𝑏𝑠𝑠⋅𝛾

4+𝑏𝑓𝑠⋅𝛾2
)
, (A.14)

𝑃𝑛𝑠 =
(
𝛾2 ⋅ 𝑏𝑛𝑛 +

𝑏𝑠𝑛

2

)
⋅ 𝛾 ⋅𝐶 ⋅ 𝑒

(
𝑏𝑛𝑛⋅𝛾

4+𝑏𝑠𝑛⋅𝛾2
)
, (A.15)

𝑃𝑠𝑛 =
(
𝛾2 ⋅ 𝑏𝑠𝑠 +

𝑏𝑠𝑛

2

)
⋅ 𝛾 ⋅𝐶 ⋅ 𝑒

(
𝑏𝑠𝑠⋅𝛾

4+𝑏𝑠𝑛⋅𝛾2
)
, (A.16)

𝑃𝑛𝑓 =
(
𝛾2 ⋅ 𝑏𝑛𝑛 +

𝑏𝑓𝑛

2

)
⋅ 𝛾 ⋅𝐶 ⋅ 𝑒

(
𝑏𝑛𝑛⋅𝛾

4+𝑏𝑓𝑛⋅𝛾2
)
, (A.17)

𝑃𝑓𝑛 =
(
𝛾2 ⋅ 𝑏𝑓𝑓 +

𝑏𝑓𝑛

2

)
⋅ 𝛾 ⋅𝐶 ⋅ 𝑒

(
𝑏𝑓𝑓 ⋅𝛾

4+𝑏𝑓𝑛⋅𝛾2
)
. (A.18)

However, as proved by Latorre & Montans [47], only five out of the 
six different simple shear responses in preferred planes, are indepen-
dent. As they can be related by

𝜎𝑓𝑠 − 𝜎𝑠𝑓 + 𝜎𝑠𝑛 − 𝜎𝑛𝑠 + 𝜎𝑛𝑓 − 𝜎𝑓𝑛 = 0. (A.19)

In equations (A.13)-(A.18) we can see that the parameters of the 
IBC model are coupled to each other in the shear modes. As we have 
mentioned throughout the study, this makes obtaining a single solution 
to the mechanical problem very complex and opens the possibility of 
various combinations of parameters to be able to reproduce the same 
experimental response.

Appendix B. Supplementary material

Supplementary material related to this article can be found online 
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