000132781 001__ 132781 000132781 005__ 20240315113107.0 000132781 0247_ $$2doi$$a10.1016/j.apsusc.2023.159164 000132781 0248_ $$2sideral$$a137700 000132781 037__ $$aART-2024-137700 000132781 041__ $$aeng 000132781 100__ $$0(orcid)0000-0002-8753-2397$$aBadía-Majós, Antonio$$uUniversidad de Zaragoza 000132781 245__ $$aLaser nanostructured metasurfaces in Nb superconducting thin films 000132781 260__ $$c2024 000132781 5060_ $$aAccess copy available to the general public$$fUnrestricted 000132781 5203_ $$aSuperconducting Nb thin films have been nanostructured by means of a femtosecond UV laser. Laser induced periodic surface structures (LIPSS) with lateral modulation of and depth smaller than amplitude ( from crest to trough) are obtained for optimized laser scanning conditions over the film surface, i.e. power, frequency, scanning speed and polarization. This provides a fast and scalable procedure of surface control at the nanoscale. In thin films, control over the kinetics of the LIPSS formation process has been crucial. Untreated and laser-patterned samples have been characterized by electron and atomic force microscopy as well as by local and global magnetometry. The superconducting properties reveal anisotropic behavior in accordance with the observed topography. The imprinted LIPSS define channels for anisotropic current flow and flux penetration. At low temperatures, magnetic flux avalanches are promoted by the increased critical current density, though flux tends to be channeled along the LIPSS. In general, directional flux penetration is observed, being a useful feature in fluxonic devices. Scalability allows us to pattern areas of the order of cm /min. 000132781 536__ $$9info:eu-repo/grantAgreement/ES/DGA/T54-23R$$9info:eu-repo/grantAgreement/ES/MICINN/AEI/PID2020-113034RB-I00 000132781 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/ 000132781 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion 000132781 700__ $$0(orcid)0000-0003-4839-5286$$aMartínez, Elena 000132781 700__ $$0(orcid)0000-0001-5685-2366$$aAngurel, Luis A.$$uUniversidad de Zaragoza 000132781 700__ $$0(orcid)0000-0002-0500-1745$$ade la Fuente, Germán F. 000132781 700__ $$aFourneau, Emile 000132781 700__ $$aMarinkovic, Stefan 000132781 700__ $$aSilhanek, Alejandro V. 000132781 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada 000132781 7102_ $$15001$$2065$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Cienc.Mater. Ingen.Metal. 000132781 773__ $$g649 (2024), 159164 [12 pp.]$$pAppl. surf. sci.$$tApplied Surface Science$$x0169-4332 000132781 787__ $$tData for "Laser Nanostructured Metasurfaces in Nb Superconducting Thin Films"$$whttps://doi.org/10.5281/zenodo.10245401 000132781 8564_ $$s4234024$$uhttps://zaguan.unizar.es/record/132781/files/texto_completo.pdf$$yVersión publicada 000132781 8564_ $$s2711390$$uhttps://zaguan.unizar.es/record/132781/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada 000132781 909CO $$ooai:zaguan.unizar.es:132781$$particulos$$pdriver 000132781 951__ $$a2024-03-15-08:49:27 000132781 980__ $$aARTICLE