000132795 001__ 132795
000132795 005__ 20240315113107.0
000132795 0247_ $$2doi$$a10.1021/acs.jpcc.3c08250
000132795 0248_ $$2sideral$$a137675
000132795 037__ $$aART-2024-137675
000132795 041__ $$aeng
000132795 100__ $$aJungwirth, Felix
000132795 245__ $$aGas-Phase Synthesis of Iron Silicide Nanostructures Using a Single-Source Precursor: Comparing Direct-Write Processing and Thermal Conversion
000132795 260__ $$c2024
000132795 5060_ $$aAccess copy available to the general public$$fUnrestricted
000132795 5203_ $$aThe investigation of precursor classes for the fabrication of nanostructures is of specific interest for maskless fabrication and direct nanoprinting. In this study, the differences in material composition depending on the employed process are illustrated for focused-ion-beam- and focused-electron-beam-induced deposition (FIBID/FEBID) and compared to the thermal decomposition in chemical vapor deposition (CVD). This article reports on specific differences in the deposit composition and microstructure when the (H3Si)2Fe(CO)4 precursor is converted into an inorganic material. Maximum metal/metalloid contents of up to 90 at. % are obtained in FIBID deposits and higher than 90 at. % in CVD films, while FEBID with the same precursor provides material containing less than 45 at. % total metal/metalloid content. Moreover, the Fe:Si ratio is retained well in FEBID and CVD processes, but FIBID using Ga+ ions liberates more than 50% of the initial Si provided by the precursor. This suggests that precursors for FIBID processes targeting binary materials should include multiple bonding such as bridging positions for nonmetals. In addition, an in situ method for investigations of supporting thermal effects of precursor fragmentation during the direct-writing processes is presented, and the applicability of the precursor for nanoscale 3D FEBID writing is demonstrated.
000132795 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E13-23R$$9info:eu-repo/grantAgreement/ES/DGA/E31-23R$$9info:eu-repo/grantAgreement/ES/MCIU/PID2020-112914RB-I00$$9info:eu-repo/grantAgreement/ES/MICINN/PID2019-105881RB-I00$$9info:eu-repo/grantAgreement/EUR/MICINN/TED2021-131318B-I00
000132795 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000132795 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000132795 700__ $$0(orcid)0000-0003-2517-9468$$aSalvador-Porroche, Alba
000132795 700__ $$aPorrati, Fabrizio
000132795 700__ $$aJochmann, Nicolas P.
000132795 700__ $$aKnez, Daniel
000132795 700__ $$aHuth, Michael
000132795 700__ $$aGracia, Isabel
000132795 700__ $$aCané, Carles
000132795 700__ $$0(orcid)0000-0002-4729-9578$$aCea, Pilar$$uUniversidad de Zaragoza
000132795 700__ $$0(orcid)0000-0001-9566-0738$$aDe Teresa, José María
000132795 700__ $$aBarth, Sven
000132795 7102_ $$12012$$2755$$aUniversidad de Zaragoza$$bDpto. Química Física$$cÁrea Química Física
000132795 773__ $$g128, 7 (2024), 2967-2977$$pJ. phys. chem., C$$tJournal of physical chemistry. C.$$x1932-7447
000132795 8564_ $$s5711524$$uhttps://zaguan.unizar.es/record/132795/files/texto_completo.pdf$$yVersión publicada
000132795 8564_ $$s3172981$$uhttps://zaguan.unizar.es/record/132795/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000132795 909CO $$ooai:zaguan.unizar.es:132795$$particulos$$pdriver
000132795 951__ $$a2024-03-15-08:49:51
000132795 980__ $$aARTICLE