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Abstract. We study the number of points in the family of plane curves

defined by a trinomial with fixed exponents and varying coefficients over

finite fields. We prove that each of these curves has an almost predictable

number of points, given by a closed formula that depends on the coefficients,

the exponents, and the field, with a small error term for which we provide an

upper bound in terms of an analog of the genus and the size of the field. We

obtain these upper bounds from some linear and quadratic identities that

the error terms satisfy. These identities are, in some cases, strong enough to

determine the error terms completely.

1. Introduction

The main goal of this paper is to study the number of points in the family of

plane curves defined by a trinomial

C(α, β) = {(x, y) ∈ F2
q : αxa11ya12 + βxa21ya22 = xa31ya32}

with fixed exponents (not collinear) and varying coefficients over a finite field Fq.

We prove that each of these curves has an almost predictable number of points,

given by a closed formula that depends on the coefficients, exponents, and the

field, with a small error term N(α, β) that is bounded in absolute value by 2g̃q1/2,

where g̃ is a constant that depends only on the exponents and the field. A formula

for g̃ is provided, as well as a comparison of g̃ with the genus g of the projective
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closure of the curve over Fq. We also give several linear and quadratic identities

for the numbers N(α, β) that are strong enough to prove the estimate above, and

in some cases, to characterize them completely.

The main result in this article is inspired by Theorem 1.1 given below, proven

by Gauss in his book Disquisitiones Arithmeticae [5, Theorem 358]. We have used

a mildly rephrased version of the original theorem, taken from [9, p. 111], that

better matches our more modern notation.

Theorem 1.1 (Gauss). Let p be an odd prime and let Mp be the number of points

in the projective curve {[x : y : z] ∈ P2(Fp) : x3 + y3 + z3 = 0}.
(1) If p ̸≡ 1 (mod 3), then Mp = p+ 1.

(2) If p ≡ 1 (mod 3), then the equation u2 + 27v̄2 = 4p has a unique integer

solution (up to the signs), and if u is chosen such that u ≡ 1 (mod 3),

then Mp = p+ 1 + u.

In a few words, Gauss’ theorem says that the number of (projective) points in

the plane curve x3 + y3 + z3 ≡ 0 (mod p) is p+1 plus a small error term u (that

only appears when p ≡ 1 (mod 3)) which is characterized by the quadratic equa-

tion u2 + 27v̄2 = 4p with integral unknowns. Our main result (Theorem 2.1) is a

generalization of Gauss’ theorem to any non-degenerate trinomial equation in two

variables, over any finite field, where we show that the number of points is a pre-

dictable number (given by a closed formula in terms of the coefficients, exponents,

and the field) plus an error term which also satisfies an explicit quadratic equation

in many unknowns, all of them having a precise meaning (as opposed to Gauss’

theorem, where only the variable u matters). More precisely, our result gives, in

the case p ≡ 1 (mod 3), that Mp = p+ 1 + u, where u2 + v2 + uv = 3p for some

u, v ∈ Z. The symmetry of the curve allows one to rewrite it as u2 + 27v̄2 = 4p,

where v̄ = 2v+u
9 ∈ Z and to show that u ≡ 1 (mod 3). All the details are given

in Section 4.

Note that Gauss’ theorem implies that the error term u is bounded in absolute

value by 2
√
p. This observation was generalized by Hasse to elliptic curves over

finite fields [8, Chapter 5, Theorem 1.1], then by Weil to hypersurfaces defined

by an equation of the type α0x
a0
0 + α1x

a1
1 + · · · + αrx

ar
r = b [13], which led

to the statement of the famous Weil’s conjectures, finally proven by Dwork [4],

Grothendieck [6], and Deligne [3] for any smooth hypersurface.

Using our approach, the estimate of the error follows from a simple computation

using Lagrange multipliers (see Proposition 3.4). In contrast with the results

above, our proof is elementary and the estimate is valid for any trinomial (not

necessarily smooth). Moreover, our estimate 2g̃q1/2 (see Corollary 2.2) is better
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that the bound obtained from Weil’s conjectures 2gq1/2, since the genus g is an

invariant that only reflects the complex geometry of the curve, while our g̃ includes

also information about the field. In Section 5, we obtain a closed formula for the

genus g of a trinomial plane curve (see Proposition 5.2), that can be compared

term by term with the definition of g̃ given in (1). For instance, in the case of

Gauss’ theorem, the curve has genus g = 1, but our g̃ is zero when p ̸≡ 1 (mod 3),

hence capturing both cases of the statement in a unified way.

A bound for trinomials (of the same type studied by Weil), that closely resem-

bles ours, was obtained by Hua and Vandiver [7]. However, their result follows

from estimates using characters, while ours is a consequence of a quadratic opti-

mization problem over R. Some experiments show that a much better estimate

could be computed if we were able to solve the optimization problem over the

integers (see Example 3).

In [12], Wang, Wen, and Cao give formulas for the number of points in a

family of hypersurfaces related to the curves C(α, β). However, while they work

in arbitrary dimension, their formulas have more stringent assumption than ours

on the exponent vectors.

In [10], Wan approaches a bigger problem than ours (the computation of the

zeta functions and L-functions for arbitrary hypersurfaces). In Section 2, he gives

a method to do this computations in the case of diagonal hypersurfaces. While it

might be possible to rederive our formulas from his framework, our approach has

the advantage of being more direct, explicit, and entirely self-contained.

In [11], Wan gives an algorithm that can be used to compute the number of

points in the curves C(α, β) modulo pb with complexity O(24(n+b)p), where q = pn.

We do not provide any algorithm in this paper, however, in the case where g̃ = 0,

the formula in Theorem 2.1 becomes a closed formula since Nij = 0 for all i, j.

2. Statement of the results

Let p be a prime and q = pn for some n ≥ 1. Let ρ be a generator of the cyclic

group F∗
q . Consider the curve

Cij = C(ρi, ρj) = {(x, y) ∈ F2
q : ρixa11ya12 + ρjxa21ya22 = xa31ya32},

and let C∗
ij = Cij ∩ (F∗

q)
2.

To avoid a degenerate case, we assume that the exponents vectors (a11, a12),

(a21, a22), (a31, a32) are not collinear, i.e. the matrix

B =

[
b11 b12
b21 b22

]
:=

[
a11 − a31 a12 − a32
a21 − a31 a22 − a32

]
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is invertible. We need the following constants derived from B:

(1)

d = gcd(b11, b12, q − 1),

e = gcd(b21, b22, q − 1),

f = gcd(b11 − b21, b12 − b22, q − 1),

k = gcd((q − 1) gcd(d, e, f),det(B)),

w =

{
0 q even,
q−1
2 q odd,

g̃ =
1

2
(k − d− e− f + 2).

The value k corresponds to |coker(B)|, where B is regarded as a group homo-

morphism B : Z2
q−1 → Z2

q−1 given by the multiplication v 7→ Bv (see Lemma 3.3).

Our goal is to estimate the number of points |Cij | and |C∗
ij | for all i, j. Since

ρq−1 = 1, the indices i and j can be regarded modulo q − 1.

Definition 1. Dℓ(i) =

{
ℓ if ℓ | i,
0 otherwise.

Note that |Cij | = |C∗
ij |+|Cij∩{x = 0, y ̸= 0}|+|Cij∩{y = 0, x ̸= 0}|+|Cij∩{x =

y = 0}|, and that the points in Cij ∩ {x = 0, y ̸= 0} and Cij ∩ {y = 0, x ̸= 0}
correspond to the solutions in F∗

q of a univariate equation with at most two non-

zero terms. Therefore, |Cij ∩ {x = 0, y ̸= 0}| and |Cij ∩ {y = 0, x ̸= 0}| can be

computed exactly with a closed formula in terms of i, j, q, and the exponents

(see Lemma 3.2). Moreover, |Cij ∩ {x = y = 0}| is either 1 or 0, depending on

whether a11 + a12, a21 + a22, and a31 + a32 are all positive or not. This means

that |Cij | and |C∗
ij | can be easily derived from each other. For this reason, and to

avoid discussing several cases depending on the configuration of the exponents,

we present our results only for |C∗
ij |, which can be done with a more uniform

notation.

Theorem 2.1. With the notation given above, we have

(2) |C∗
ij | = q + 1−Dd(i)−De(j)−Df (i− j + w) +Nij

for some integers Nij that satisfy:

(1)

q−2∑
j=0

Nij = 0 for all i,

(2)

q−2∑
i=0

Nij = 0 for all j,
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(3)
∑

i−j=r

Nij = 0 for all r,

(4) Ni+b11,j+b21 = Nij = Ni+b12,j+b22 for all i, j,

(5)

q−2∑
i=0

q−2∑
j=0

N2
ij = 2g̃(q − 1)2q = (q − 1)2q(k − d− e− f + 2).

Using (4), the sum of Theorem 2.1(5) can be rewritten taking only one repre-

sentative of each (i, j) modulo the subgroup ⟨(b11, b12), (b21, b22)⟩ ⊆ Z2
q−1,

(3)
∑

(i,j)∈coker(B)

N2
ij = 2g̃kq = kq(k − d− e− f + 2) ≤ k2q.

We immediately obtain the upper bound |Nij | ≤ k
√
q for all i, j. Using a similar

approach, but taking advantage of (1), (2), and (3), it is possible to obtain a

stronger upper bound.

Corollary 2.2. |Nij | ≤ 2g̃
√
q for all i, j.

3. Proof of the main results

Lemma 3.1. For any r ≥ 1,

q−2∑
i=0

Dℓ(i)
r = ℓr−1(q − 1).

Proof. By definition of Dℓ we have:

q−2∑
i=0

Dℓ(i)
r =

∑
ℓ|i

ℓr = ℓr · q − 1

ℓ
= ℓr−1(q − 1),

since the number of indices 0 ≤ i < q−1 that are divisible by ℓ is exactly q−1
ℓ . □

Lemma 3.2. For any a1, . . . , am ∈ Z,∣∣{(x1, . . . , xm) ∈ (F∗
q)

m : ρixa1
1 · · ·xam

m = 1
}∣∣ = (q − 1)m−1Dℓ(i),

where ℓ = gcd(a1, . . . , am, q − 1).

Proof. Consider the group homomorphism φ : (F∗
q)

m → F∗
q given by

(x1, . . . , xm) 7−→ xa1
1 · · ·xam

m .

The image of φ is generated by ρa1 , . . . , ρam , which is also generated by ρℓ since

the group F∗
q is cyclic, and in particular |im(φ)| = q−1

ℓ . When ρ−i ̸∈ ⟨ρℓ⟩, i.e. ℓ ∤ i,
the left-hand side and the right-hand side of the equation in the statement are
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both clearly zero. Otherwise, when ℓ | i, the number of solutions is equal to

|coker(φ)| = (q − 1)m/|im(φ)| = (q − 1)m−1ℓ = (q − 1)m−1Dℓ(i). □

Lemma 3.3. We have

(1) |coker(B)| = k.

(2) The subgroups ⟨(1, 0)⟩, ⟨(0, 1)⟩, ⟨(1, 1)⟩ of coker(B) have orders k
e ,

k
d ,

k
f ,

respectively.

Proof. (1) Define the matrix L =

[
b11 b12 q − 1 0

b21 b22 0 q − 1

]
∈ Z2×4, which

can be regarded as a linear map L : Z4 → Z2, whose cokernel is

coker(B) = Z2
q−1/⟨(b11, b12), (b21, b22)⟩ ∼= Z2/im(L).

Note that |Z2/im(L)| is invariant under elementary row or column operations (on

L). Therefore, we can substitute L by its Smith Normal form, and in particular

|Z2/im(L)| is equal to the greatest common divisor of the determinants of the

2× 2 minors of L, i.e.

|coker(B)| = |Z2/im(L)| = gcd(det(B), (q − 1)d, (q − 1)e) = k.

(2) It is enough to show that |⟨(1, 0)⟩| = k/e, since the other two are analogous.

By definition, the order of (1, 0) is

min{r ≥ 1 : (r, 0) ∈ im(L)} = min
{
r ≥ 1 : |coker(L)| = |coker([L| r0 ])|

}
.

The greatest common divisor of the determinant of the 2×2 minors of the extended

matrix [L| r0 ] that do not appear in L is gcd(r(q − 1), rb21, rb22) = re. Therefore,

|⟨(1, 0)⟩| = min{r ≥ 1 : k = gcd(k, re)} = k/e. □

Proof of Theorem 2.1. We prove (1), since the proofs of (2) and (3) are anal-

ogous. Note that the sets C∗
ij for j = 0, . . . , q − 2 are disjoint, thus

q−2∑
j=0

|C∗
ij | =

∣∣∣∣∣∣
q−2⋃
j=0

C∗
ij

∣∣∣∣∣∣ = |{(x, y) ∈ (F∗
q)

2 : ρixa11−a31ya12−a32 ̸= 1}|

= (q − 1)2 −Dd(i)(q − 1).
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Therefore,

q−2∑
j=0

Nij =

q−2∑
j=0

(
|C∗

ij |+Dd(i) +De(j) +Df (i− j + w)− (q + 1)
)

= (q − 1)2 −Dd(i)(q − 1) +Dd(i)(q − 1) +

q−2∑
j=0

De(j)

+

q−2∑
j=0

Df (i− j + w)− (q + 1)(q − 1)

which is equal to zero by Lemma 3.1.

To prove (4), note that the map C∗
i+b11,j+b21

→ C∗
ij given by (x, y) 7→ (ρx, y) is

a bijection, so |C∗
i+b11,j+b21

| = |C∗
ij |. Moreover, Dd(i+ b11) = Dd(i), De(j+ b21) =

De(j), and Df (i − j + b11 − b21 + w) = Df (i − j + w) since d | b11, e | b21, and
f | b11 − b21 by definition. This implies that Ni+b11,j+b21 = Nij . The proof of

Ni+b12,j+b22 = Nij is analogous.

Now we prove (5),∑
i,j

|C∗
ij |2 =

∑
i,j

(Nij −Dd(i)−De(j)−Df (i− j + w) + q + 1)
2

=
∑
i,j

N2
ij +

∑
i,j

Dd(i)
2 +

∑
i,j

De(j)
2 +

∑
i,j

Df (i− j + w)2 + (q + 1)2(q − 1)2

− 2
∑
i,j

NijDd(i)− 2
∑
i,j

NijDe(j)− 2
∑
i,j

NijDf (i− j + w) + 2(q + 1)
∑
i,j

Nij

+ 2
∑
i,j

Dd(i)De(j) + 2
∑
i,j

Dd(i)Df (i− j + w) + 2
∑
i,j

De(j)Df (i− j + w)

− 2(q + 1)
∑
i,j

Dd(i)− 2(q + 1)
∑
i,j

De(j)− 2(q + 1)
∑
i,j

Df (i− j + w).

By (1), (2), and (3) the sixth, seventh, eighth, and ninth terms vanish. The

other terms can be calculated by Lemma 3.1, thus

(4)
∑
i,j

|C∗
ij |2 =

∑
i,j

N2
ij + (q − 1)2(q2 − 4q + 1 + d+ e+ f).

Note that |C∗
ij |2 = |C∗

ij × C∗
ij |,

C∗
ij × C∗

ij =

{
(x1, y1, x2, y2) ∈ (F∗

q)
4 :

ρixb11
1 yb121 + ρjxb21

1 yb221 = 1

ρixb11
2 yb122 + ρjxb21

2 yb222 = 1

}
.
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Les us define

∆ = det

[
xb11
1 yb121 xb21

1 yb221

xb11
2 yb122 xb21

2 yb222

]
.

The set C∗
ij×C∗

ij can be written as the disjoint union Dij ∪Eij , where Dij = (C∗
ij×

C∗
ij) ∩ {(x1, y1, x2, y2) ∈ (F∗

q)
4 : ∆ ̸= 0} and Eij = (C∗

ij × C∗
ij) ∩ {(x1, y1, x2, y2) ∈

(F∗
q)

4 : ∆ = 0}.
By Cramer’s rule,

Dij =

{
(x1, y1, x2, y2) ∈ (F∗

q)
4 : ∆ ̸= 0,

ρi = (−xb21
1 yb221 + xb21

2 yb222 )/∆

ρj = (xb11
1 yb121 − xb11

2 yb122 )/∆

}
,

which imply that the Dij are disjoint and their union is

⋃
i,j

Dij =

{
(x1, y1, x2, y2) ∈ (F∗

q)
4 : ∆ ̸= 0,

xb21
1 yb221 ̸= xb21

2 yb222

xb11
1 yb121 ̸= xb11

2 yb122

}
.

Introducing the change of variables x = x1/x2 and y = y1/y2, we get

∑
ij

|Dij | =

∣∣∣∣∣∣
⋃
i,j

Dij

∣∣∣∣∣∣ = (q − 1)2

∣∣∣∣∣∣
(x, y) ∈ (F∗

q)
2 :

xb11yb12 ̸= 1

xb21yb22 ̸= 1

xb11yb12 ̸= xb21yb22


∣∣∣∣∣∣ =

(q − 1)2
(
(q − 1)2 −

∣∣∣ {xb11yb12 = 1}
S1

∪{xb21yb22 = 1}
S2

∪{xb11−b21yb12−b22 = 1}
S3

∣∣∣).
Note that S1 ∩ S2 = S1 ∩ S3 = S2 ∩ S3 = S1 ∩ S2 ∩ S3, thus

|S1 ∪ S2 ∪ S3| = |S1|+ |S2|+ |S3| − 2|S1 ∩ S2|.

By Lemma 3.2, |S1| = (q − 1)d, |S2| = (q − 1)e, and |S3| = (q − 1)f . Moreover,

|S1 ∩ S2| = |coker(B)| = k. All together, we get

∑
i,j

|Dij | = (q − 1)2
[
(q − 1)2 − (q − 1)(d+ e+ f) + 2k

]
.

Observe that

Eij =

(x1, y1, x2, y2) ∈ (F∗
q)

4 :

xb11
1 yb121 = xb11

2 yb122

xb21
1 yb221 = xb21

2 yb222

ρixb11
1 yb121 + ρjxb21

1 yb221 = 1

 .
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Then
∑

i,j |Eij | equals∣∣∣∣∣∣
(i, j, x1, y1, x2, y2) ∈ Z2

q−1 × (F∗
q)

4 :

xb11
1 yb121 = xb11

2 yb122

xb21
1 yb221 = xb21

2 yb222

ρixb11
1 yb121 + ρjxb21

1 yb221 = 1


∣∣∣∣∣∣

= (q − 2)

∣∣∣∣{(x1, y1, x2, y2) ∈ (F∗
q)

4 :
xb11
1 yb121 = xb11

2 yb122

xb21
1 yb221 = xb21

2 yb222

}∣∣∣∣
= (q − 2)(q − 1)2

∣∣∣∣{(x, y) ∈ (F∗
q)

2 :
xb11yb12 = 1

xb21yb22 = 1

}∣∣∣∣
= (q − 2)(q − 1)2k.

Now we have∑
i,j

|C∗
ij |2 =

∑
ij

|Dij |+
∑
ij

|Eij | = (q − 1)2
[
(q − 1)2 − (q − 1)(d+ e+ f) + qk

]
.

Finally, using Equation (4), we get
∑

i,j N
2
ij = (q − 1)2q(k − d− e− f + 2). □

Proposition 3.4. Let G be an abelian group and let g1, g2, g3 ∈ G such that

G = ⟨g1, g2⟩ = ⟨g1, g3⟩ = ⟨g2, g3⟩. Let K ≥ 0 and let N : G → R be a function

a 7→ Na := N(a) such that

(1)
∑

a∈g+⟨g1⟩

Na = 0 for all g ∈ G,

(2)
∑

a∈g+⟨g2⟩

Na = 0 for all g ∈ G,

(3)
∑

a∈g+⟨g3⟩

Na = 0 for all g ∈ G,

(4)
∑
a∈G

N2
a = K.

Then

|Ng| ≤

√
K

(
1 +

2

|G|
− 1

n1
− 1

n2
− 1

n3

)
,

for all g ∈ G, where n1, n2, and n3 are the orders of the elements g1, g2, and g3,

respectively.

Proof. Let n12 = |⟨g1⟩ ∩ ⟨g2⟩|. The isomorphism

G/⟨g1⟩ ∼= ⟨g2⟩/⟨g1⟩ ∩ ⟨g2⟩
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implies that n12 = n1n2

|G| . Similarly, we define n13 and n23.

We study first the case when 1+ 2
|G| =

1
n1

+ 1
n2

+ 1
n3

. Assuming without loss of

generality that n1 ≤ n2 ≤ n3, the previous equality implies that n1 < 3. The case

n1 = 1 can only happen when g1 is the neutral element of G, and then (1) reduces

to Ng = 0 for all g ∈ G. In the case n1 = 2, we have |G| = |⟨g1, g2⟩| ≤ 2n2, hence

1

2
+

1

n2
+

1

n3
= 1 +

2

|G|
≥ 1 +

1

n2
,

and in particular n3 ≤ 2. Therefore n1 = n2 = n3 = 2 and G is a group of order

|G| = 4. The elements g1, g2, g3 are pairwise distinct, since each pair of them

generates the group, so G = {0, g1, g2, g3} ≃ Z2 ⊕ Z2.

Items (1), (2), (3) yield the following identities:

N0 +Ng1 =Ng2 +Ng3 = 0

N0 +Ng2 =Ng1 +Ng3 = 0

N0 +Ng3 =Ng1 +Ng2 = 0,

which imply Ng = 0 for all g ∈ G, and the claim follows.

Now we assume that 1 + 2
|G| ̸=

1
n1

+ 1
n2

+ 1
n3

. We use Lagrange multipliers to

get the desired upper bound for Ng. By the symmetry of the problem, we can

restrict to the case N0. Define the auxiliary function

F = N0 +
∑

ḡ∈G/⟨g1⟩

λḡ

 ∑
a∈g+⟨g1⟩

Na

+
∑

ḡ∈G/⟨g2⟩

µḡ

 ∑
a∈g+⟨g2⟩

Na


+

∑
ḡ∈G/⟨g3⟩

εḡ

 ∑
a∈g+⟨g3⟩

Na

+ γ

(
−K +

∑
a∈G

N2
a

)

with Na, λḡ, µḡ, εḡ, and γ as independent variables. The critical points of F

correspond with the local extrema of N0 subject to the restrictions stated in the

theorem.

Now, we calculate the partial derivatives of F with respect to each variable.

With respect to λḡ, µḡ, εḡ, and γ, we get the assumptions of the proposition.

With respect to Na, we get

(5)
∂F

∂Na
= δa,0 + λā + µā + εā + 2γNa = 0

for all a ∈ G, where δa,0 stands for the Kronecker delta.
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For any element g ∈ G, we have∑
a∈g+⟨g1⟩

(
δa,0 + λā + µā + εā + 2γNa

)
= χ⟨g1⟩(g) + n1λḡ +

∑
a∈g+⟨g1⟩

µā +
∑

a∈g+⟨g1⟩

εā

= χ⟨g1⟩(g) + n1λḡ + n12

∑
ā∈G/⟨g2⟩

µā + n13

∑
ā∈G/⟨g3⟩

εā = 0.

Define

λ = −n12

n1

∑
ā∈G/⟨g2⟩

µā −
n13

n1

∑
ā∈G/⟨g3⟩

εā.

The previous identity shows that λ0̄ = λ− 1
n1

and λḡ = λ for all ḡ ̸= 0̄. Similarly,

we define

µ = −n12

n2

∑
ā∈G/⟨g1⟩

λā −
n23

n2

∑
ā∈G/⟨g3⟩

εā,

and then µ0̄ = µ− 1
n2

and µḡ = µ for all ḡ ̸= 0̄. Analogously, we define

ε = −n13

n3

∑
ā∈G/⟨g1⟩

λā −
n23

n3

∑
ā∈G/⟨g2⟩

µā,

and then ε0̄ = ε− 1
n3

and εḡ = ε for all ḡ ̸= 0̄.

By construction of ε, we have

ε = −n13

n3

∑
ā∈G/⟨g1⟩

λā −
n23

n3

∑
ā∈G/⟨g2⟩

µā

= −n13

n3

(
|G|
n1

λ− 1

n1

)
− n23

n3

(
|G|
n2

µ− 1

n2

)
.

Therefore λ+ µ+ ε = 2
|G| , and Equation (5) can be rewritten as follows:

(6) 2γNa = −δa,0 −
2

|G|
+

χ⟨g1⟩(a)

n1
+

χ⟨g2⟩(a)

n2
+

χ⟨g3⟩(a)

n3
.

Squaring the previous equation and summing over all a ∈ G, we get

4γ2
∑
a∈G

N2
a = 1 +

2

|G|
− 1

n1
− 1

n2
− 1

n3
̸= 0.

This allows us to get γ ̸= 0, and together with Equation (6) for a = 0, concludes

the proof. □
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Proof of Corollary 2.2. Consider G = Z2
q−1/⟨(b11, b12), (b21, b22)⟩ which is

equal to coker(B). By Theorem 2.1(4), the map N : G → R such that (i, j) 7→ Nij

is well defined. Let g1 = (1, 0) ∈ G, g2 = (0, 1) ∈ G, and g3 = (1, 1) ∈ G. With

this notation, the hypotheses of Proposition 3.4 with K = kq(k − d− e− f + 2)

follow from Theorem 2.1 and Equation (3). By Lemma 3.3, we have n1 = k/e,

n2 = k/d, and n3 = k/f . The only thing left to do is to substitute these values

in Proposition 3.4 and a suitable rearrangement of the terms. □

4. Gauss’ theorem

We devote this section entirely to showing how to derive Theorem 1.1 as a

consequence of Theorem 2.1. We consider the family of curves

Cij = {(x, y) ∈ F2
p : ρix3 + ρjy3 = 1}

for 0 ≤ i, j < p− 1. Removing the extra points on the lines x = 0, y = 0, z = 0,

Gauss’ curve corresponds to {(x, y) ∈ (F∗
p)

2 : x3 + y3 = −1} that has the same

number of points as C∗
00. The number of points on each of those lines is equal to

the number of cubic roots of the unity in Fp, which is equal to gcd(3, p − 1) by

Lemma 3.2. Therefore, Mp = |C∗
00|+ 3gcd(3, p− 1). By Theorem 2.1, we get

Mp = p+ 1−Dd(0)−De(0)−Df (w) +N00 + 3gcd(3, p− 1),

where d = e = f = gcd(3, p− 1) and w = p−1
2 . Then Mp = p+ 1 +N00.

Case p ̸≡ 1 (mod 3): Here we have d = e = f = 1, k = gcd(p − 1, 9) = 1,

then g̃ = 0 and Nij = 0 for all 0 ≤ i, j < p− 1 by Theorem 2.1(5). In particular

N00 = 0 and Mp = p+ 1, as expected.

Case p ≡ 1 (mod 3): Here we have d = e = f = 3, k = gcd(3(p − 1), 9) = 9

and g̃ = 1
2 (k − d − e − f + 2) = 1. The cokernel of the matrix B =

[
3 0

0 3

]
is

Z3 ⊕ Z3, so the numbers Nij reduce to only nine possibilities

A =

N00 N01 N02

N10 N11 N12

N20 N21 N22


depending on the class of (i, j) in coker(B) by Theorem 2.1(4). Due to Theo-

rem 2.1(1)(2)(3), each of the rows, columns and diagonals of the matrix A above
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adds up to zero. This proves that

A =

 u v −u− v

v −u− v u

−u− v u v


for some u, v ∈ Z. Moreover, by Equation (3), the sum of the squares of the

entries of A is 3(u2 + v2 + (u+ v)2) = 18p, so

(7) u2 + v2 + uv = 3p.

Let ξ3 ∈ Fp be a cubic root of the unity. Note that |C∗
ij | is divisible by 9, since for

each point (x, y) ∈ C∗
ij , its conjugates (ξ

r
3x, ξ

s
3y) are also in C∗

ij for any 0 ≤ r, s < 3.

By Equation (2),

u = N00 = |C∗
00| − (p+ 1) +D3(0) +D3(0) +D3(w) = |C∗

00| − p+ 8,

v = N01 = |C∗
01| − (p+ 1) +D3(0) +D3(1) +D3(w − 1) = |C∗

01| − p+ 2.

Therefore 2v+v = 2|C∗
01|+|C∗

00|−3(p−4) is divisible by 9. Denoting v̄ = 2v+u
9 ∈ Z,

Equation (7) becomes u2 + 27v̄2 = 4p. Moreover, u = |C∗
00| − p+ 8 ≡ 1 (mod 3).

The uniqueness of the solution of u2+27v̄2 = 4p with u ≡ 1 (mod 3) follows from

the fact that Z
[
−1+

√
−3

2

]
is a UFD.

5. Genus of a trinomial curve

The aim of this section is to calculate the genus of the projective closure Cij
of the curve Cij in P2(Fq) in the irreducible case. In order to do so, we use the

standard formula that relates the genus of a curve with the delta invariant δP at

each of its singularities, see formula (8) below. The delta invariants are computed

using the techniques shown in [1, Chapter 3 and 6]. The final formula obtained

in Proposition 5.2 should be compared term by term to the definition of g̃ given

in Equation (1).

Lemma 5.1. Let C ⊆ P2(Fq) be a curve such that its local equation at P is given

by αxr + βys + γxuyv = 0 with αβ ̸= 0 and r, s ≥ 1. If either γ = 0 or (u, v) is

above the segment that joins (r, 0) and (0, s), then

δP =
1

2

(
rs− r − s+ gcd(r, s)

)
.

If γ ̸= 0 and (u, v) is below the segment, then

δP =
1

2

(
rv + su− r − s+ gcd(u, s− v) + gcd(v, r − u)

)
.
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The formula of the first case is valid even if r = 0 or s = 0. Also, the formula

of the second case is valid when either r = u = 0 or s = v = 0. In both situations,

the point P does not belong to the curve and δP = 0.

Proof. In the first case, the term γxuyv can be removed from the local equation

without changing the topology (since the point is above the Newton polygon).

It is clear that the Milnor number at P is µP = (r − 1)(s − 1) and that the

number of local branches at P is rP = gcd(r, s). Therefore 2δP = µP + rP − 1 =

rs− r − s+ gcd(r, s).

In the other case, the local equation can be changed by αxr + βys + γxuyv +
αβ
γ xr−uys−v, since the extra term is above the Newton polygon. Doing so, we

get an expression that factorizes as (αxu + αβ
γ ys−v)(xr−u + γ

αy
v). Applying the

formula of the δ-invariant of a product, we get:

δP (αx
r + βys + γxuyv) = δP (αx

u +
αβ

γ
ys−v) + δP (x

r−u +
γ

α
yv)

+ iP (αx
u +

αβ

γ
ys−v, xr−u +

γ

α
yv),

where iP denotes the intersection multiplicity at P . The values of δP of each

factor can be computed as in the first case. Using Noether’s formula (see [2,

p. 3568]), the intersection multiplicity is uv. We conclude by simply adding these

three values. □

Proposition 5.2. If the projective closure Cij of the curve Cij is irreducible in

P2(Fq), the genus of Cij is

1

2

(
|det(B)| − gcd(b11, b12)− gcd(b21, b22)− gcd(b11 − b21, b12 − b22) + 2

)
.

Proof. By using the irreducibility of the curve, we can reduce the proof to the

case a12 = a21 = 0 and a11 ≥ a22. In this case, the genus can be computed using

the following formula:

(8) g(Cij) =
(m− 1)(m− 2)

2
−
∑
P

δP ,

where m is the degree of the curve, P ranges over all singular points of Cij , and
δP is the δ-invariant of Cij at P . Since we are assuming det(B) ̸= 0, the set of

singular points is contained in {[1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1]}.
We have to consider two cases: (1)m = a11 > a31+a32, (2)m = a31+a32 ≥ a11.

Case (1): The projective closure of Cij is given by the homogeneous polynomial

F (x, y, z) = ρixa11 + ρjya22za11−a22 − xa31ya32za11−a31−a32 .
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We can further assume without loss of generality that the point (a31, a32) is below

the line that connects the points (a11, 0) and (0, a22), i.e. the Newton polygon of F

has two edges. Otherwise, we would simply exchange y by z and start over. Note

that in the exceptional case when a11 = 0 (a22 = 0), we should also have a31 = 0

(a32 = 0), respectively. The singular points are [0 : 1 : 0] and [0 : 0 : 1], and the

local equations of Cij at those points are ρixa11 + ρjza11−a22 − xa31za11−a31−a32

and ρixa11 + ρjya22 − xa31ya32 , respectively. By Lemma 5.1, we have

δ[0:1:0] =
1

2

(
a11(a11 − a22)− a11 − (a11 − a22) + gcd(a11, a11 − a22)

)
and

δ[0:0:1] =
1

2

(
a11a32 + a22a31 − a11 − a22 + gcd(a31, a22 − a32)

+ gcd(a32, a11 − a31)
)
.

Finally, using (8), we get the desired formula.

Case (2): The projective closure of Cij is given by the homogeneous polynomial

F (x, y, z) = ρixa11za31+a32−a11 + ρjya22za31+a32−a22 − xa31ya32 .

The local equations of Cij at [1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1] are ρiza31+a32−a11 +

ρjya22za31+a32−a22 −ya32 , ρixa11za31+a32−a11 +ρjza31+a32−a22 −xa31 , and ρixa11 +

ρjya22 − xa31ya32 , respectively. By Lemma 5.1,

δ[1:0:0] =
1

2
(a32(a31 + a32 − a11)− a32 − (a31 + a32 − a11) + gcd(a32, a31 − a11)) ,

δ[0:1:0] =
1

2
(a31(a31 + a32 − a22)− a31 − (a31 + a32 − a22) + gcd(a31, a32 − a22)) ,

δ[0:0:1] =
1

2
(a11a22 − a11 − a22 + gcd(a11, a22)) .

The conclusion follows from formula (8). □

6. Examples

We study some particular cases of Theorem 2.1 and Corollary 2.2 which have

special significance by themselves.

Example 1 (Diagonal case). The curve Cij = {(x, y) ∈ (F∗
q)

2 : ρixa11 +ρjya22 =

1} has d = gcd(a11, q − 1), e = gcd(a22, q − 1), f = gcd(d, e), and w = (q − 1)/2

for q odd, and w = 0 otherwise. Moreover,

coker(B) = Z2
q−1/⟨(a11, 0), (0, a22)⟩ ∼= Zd ⊕ Ze,
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hence k = |coker(B)| = de. By Theorem 2.1(4), we have Ni+d,j = Nij = Ni,j+e,

so the matrix [Nij ]0≤i,j<q−1 has its upper-left block of size d×e repeated (q−1)2/de

times. As multisets, we can write:

{Nij : 0 ≤ i, j < q − 1} =
(q − 1)2

de
· {Nij : 0 ≤ i < d, 0 ≤ j < e}.

Moreover, the sum in Theorem 2.1(1) can be taken from j = 0 to j = e − 1.

Similarly, the sum (2) can be taken from i = 0 to i = d− 1.

Example 2. We consider the subcase of Example 1 when a11 is odd, a22 = 2,

and q is odd. The constants d, e, f , k, w reduce to d = gcd(a11, q − 1), e = 2,

f = 1, k = 2d, w = (q − 1)/2, and the upper-left block is of size d× 2. Since the

second column of this block is the additive inverse of the first one, we have, as

multisets:

{Nij : 0 ≤ i, j < q − 1} =
(q − 1)2

2d
· {±α0,±α1, . . . ,±αd−1}

where αi = Ni0. Moreover,

α0 + α1 + · · ·+ αd−1 = 0,

α2
0 + α2

1 + · · ·+ α2
d−1 = d(d− 1)q.

The vector (α0, . . . , αd−1) is in the intersection of a sphere and a hyperplane in

Rd, i.e. the vector (α1, . . . , αd−1) belongs to a conic in Rd−1. Of course, when

d = 1, the sphere reduces to a point.

Example 3. Now, we consider the curves Cij = {(x, y) ∈ (F∗
q)

2 : ρix3 + ρjy2 =

1}, which is a particular case of the previous example. Clearly, when q ̸≡ 1

(mod 3), we have d = 1 and all the Nij are zero. For this reason, we only

consider q ≡ 1 (mod 3), in which case d = 3:

{Nij : 0 ≤ i, j < q − 1} =
(q − 1)2

6
· {±α0,±α1,±α2},

where α0 + α1 + α2 = 0 and α2
0 + α2

1 + α2
2 = 6q.

• If q = p2n for some p ≡ 2 (mod 3), then α0 = pnβ0, α1 = pnβ1, and

α2 = pnβ2, for some β0, β1, β2 ∈ Z such that β0 + β1 + β2 = 0 and

β2
0 + β2

1 + β2
2 = 6. This implies that, as multisets:

{Nij : 0 ≤ i, j < q − 1} =
(q − 1)2

6
· {±pn,±pn,∓2pn}.

In particular, Nij ̸= 0 for all i, j and the upper bound of Theorem 2.1 is

sharp for this family.



BIVARIATE TRINOMIALS OVER FINITE FIELDS 551

• In constrast, for p ≡ 1 (mod 3), the upper bound is not sharp. For in-

stance, when q = p = 997, we have α0 = 10, α1 = 49, α2 = −59, but the

integer part of the upper bound is ⌊(k − d − e − f + 2)
√
q⌋ = 63. Note,

however, that

(9) max

x :

x, y, z ∈ Z
x+ y + z = 0

x2 + y2 + z2 = 6q

 = 59,

so one may think that the largest Nij can be obtained always by solving

optimization problem in Proposition 3.4 for a function f : G → Z.

• In the case q = 72, we have {Nij : 0 ≤ i, j < 48} = 384 · {∓2,∓11,±13},
so the largest Nij is 13. However, the integer optimization problem (9)

gives 14. This highlights the fact that the relations given in Theorem 2.1

are not always enough to characterize the maximum Nij.

Example 4. When a22 = 2, q is odd, and a11 is even, the situation is similar,

but f = 2, and item (3) of Theorem 2.1, gives the additional relation α0 − α1 +

· · ·+ αd−2 − αd−1 = 0. All together this gives

α0 + α2 + · · ·+ αd−2 = 0,

α1 + α3 + · · ·+ αd−1 = 0,

α2
0 + α2

1 + · · ·+ α2
d−1 = d(d− 2)q.

Example 5. The curve Cij = {(x, y) ∈ (F∗
q)

2 : ρix3 + ρjy2 = x} with odd q, has

d = 2, e = f = 1, k = gcd(q − 1, 4), and w = (q − 1)/2. When q ≡ 3 (mod 4),

we have k = 2, so k − d − e − f + 2 = 0, and in particular Nij = 0 for all i, j.

The other case, i.e. q ≡ 1 (mod 4), is more interesting. Here k = 4, and

coker(B) = Z2
q−1/⟨(2, 0), (−1, 2)⟩ = {(0, 0), (1, 0), (0, 1), (1, 1)}.

By Theorem 2.1(4), Ni+2,j = Nij = Ni−1,j+2, so as multisets

{Nij : 0 ≤ i, j < q − 1} =
(q − 1)2

4
· {±α,±β},

where α = N00, β = N01, and α2 + β2 = 4q. If, we also have p ≡ 3 (mod 4),

then q = p2n and the multiset is (q−1)2

4 · {±2pn, 0}.
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