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A B S T R A C T   

Secondary growth models from predictive microbiology can describe how the growth rate of microbial pop
ulations varies with environmental conditions. Because these models are built based on time and resource 
consuming experiments, model-based Optimal Experimental Design (OED) can be of interest to reduce the 
experimental load. In this study, we identify optimal experimental designs for two common models (full Rat
kowsky and Cardinal Parameters Model (CPM)) for a different number of experiments (10–30). Calculations are 
also done fixing one or more model parameters, observing that this decision strongly affects the layout of the 
OED. Using in silico experiments, we conclude that OEDs are more informative than conventional (equidistant) 
designs with the same number of experiments. However, OEDs cluster the experiments near the growth limits 
(Xmin and Xmax) resulting in impractical designs with aggregated experimental runs ~10 times longer than 
conventional designs. To mitigate this, we propose a novel optimality criterion (i.e., the objective function) that 
accounts for the aggregated time. The novel criterion provides a reduction in parameter uncertainty with respect 
to the conventional design, without an increase in the experimental load. These results underline that an OED is 
only based on information theory (Fisher information), so the results can be impractical when actual experi
mental limitations are considered. The study also emphasizes that most OED schemes identify where to measure, 
but do not give an indication on how many experiments should be made. In this sense, numerical simulations can 
estimate the parameter uncertainty that would be obtained for a particular experimental design (OED or not). 
These results and methodologies (available in Open Code) can guide the design of future experiments for the 
development of secondary growth models.   

1. Introduction 

The ability to predict the growth of microbial populations using 
mathematical models is of great interest in food microbiology. To 
mention just a few examples, microbial growth is the basis of many food 
fermentations (van Rijswijck et al., 2019) and shelf-life estimation 
(García et al., 2015; Koutsoumanis et al., 2021). However, the molecular 
mechanisms that define microbial growth are highly complex and not 
yet fully understood (Notebaart et al., 2018), making the development 
of mechanistic models impossible in most industrial applications. 
Consequently, applied studies are based on empirical models fitted to 
data obtained under laboratory conditions mimicking production, dis
tribution and storage conditions as closely as possible (Pinon et al., 

2004). The cost of these experiments can be substantial, requiring spe
cific laboratory equipment and consumables, trained personnel and long 
running times (especially near the growth limits of microorganisms). 

Model-based Optimal Experimental Design (OED) can be an effective 
way to reduce the experimental load required for estimating the pa
rameters of growth models. It is a general methodology that uses results 
from information theory (Fisher information) to identify the most 
informative sampling conditions for a given model (Banga and Balsa- 
Canto, 2008). Several studies have used this methodology to ratio
nalize experimental designs for parameter estimation in predictive 
microbiology, for modelling inactivation (Cunha et al., 1997, 1998; 
Frías et al., 1998; Garre et al., 2018b, 2019; Peñalver-Soto et al., 2019; 
Van Derlinden et al., 2010) or growth (Grijspeerdt and Vanrolleghem, 

* Corresponding author. 
E-mail address: alberto.garre@upct.es (A. Garre).  

Contents lists available at ScienceDirect 

International Journal of Food Microbiology 

journal homepage: www.elsevier.com/locate/ijfoodmicro 

https://doi.org/10.1016/j.ijfoodmicro.2024.110604 
Received 20 June 2023; Received in revised form 29 November 2023; Accepted 21 January 2024   

mailto:alberto.garre@upct.es
www.sciencedirect.com/science/journal/01681605
https://www.elsevier.com/locate/ijfoodmicro
https://doi.org/10.1016/j.ijfoodmicro.2024.110604
https://doi.org/10.1016/j.ijfoodmicro.2024.110604
https://doi.org/10.1016/j.ijfoodmicro.2024.110604
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijfoodmicro.2024.110604&domain=pdf
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/


International Journal of Food Microbiology 413 (2024) 110604

2

1999; Longhi et al., 2017; Mertens et al., 2012; Van Derlinden et al., 
2013, 2008; Van Derlinden and Van Impe, 2012; Versyck et al., 1997). 

One main limitation of model-based OED is that the solution is 
calculated considering only statistical aspects (namely, the local sensi
tivity functions and the properties of the Fisher Information Matrix). 
This can result in designs that are impractical when considering prac
tical experimental limitations. For instance, Garre et al. (2018a,b) ob
tained optimal designs for dynamic microbial inactivation with a 
distance between time points too small to be applied in the laboratory. 
Consequently, these authors modified the OED approach introducing a 
penalty function. A second important limitation of OEDs is that they 
identify the most informative areas of the design space (e.g., the most 
informative experiments or sampling points). However, this method is 
generally not able to indicate how many experiments in total are 
required to reach a minimum level of precision for the parameter esti
mates (e.g., standard error). 

In this study, we critically analyse the OED methodology for the 
estimation of parameters of secondary growth models that describe the 
relationship between the storage temperature and the growth rate dur
ing the exponential phase. We expand upon previous studies with a 
similar scope (Mertens et al., 2012; Van Derlinden et al., 2013) by 
calculating the OEDs for a different number of growth experiments and 
applying a numerical simulation scheme to predict the parameter un
certainty of each experimental design. On top of that, we also consider 
the feasibility of the designs, combining Fisher information and practical 
knowledge to compare them against a conventional design where sam
pling conditions are uniformly distributed (uniform design). The cal
culations were done for two secondary growth models commonly used 
to describe microbial growth in predictive microbiology: the Cardinal 
Parameter Model (CPM; also called Cardinal Temperature Model with 
Inflection) (Rosso et al., 1995) and the full Ratkowsky model (Ratkow
sky et al., 1983). 

2. Materials and methods 

2.1. Secondary models for microbial growth 

The CPM describes the relationship between the growth rate during 
the exponential growth phase (μ; considered in log CFU/h [where "log" 
represents the decimal logarithm] although the conclusions are also 
valid when this parameter is defined in terms of the natural logarithm) 
and an environmental factor, X (e.g., temperature), as shown in Eq. (1) 
using four parameters. It assumes that below a minimum value of X 
(Xmin), the microorganism is not able to grow. In a similar way, ac
cording to this model there is no growth when X is greater than Xmax. 
This model also introduces the value of X where the growth rate is 
maximum, Xopt, with the maximum growth rate being defined by μopt. 
Besides the so-called cardinal parameters (Xmin, Xopt and Xmax), the CPM 
includes parameter n, often called the “order of the model”, that de
scribes the curvature of the relationship. This parameter is most often 
not directly estimated from the data, being assigned an integer value 
instead.  

Eq. (2) defines the full Ratkowsky model. This model also introduces 
the maximum and minimum values of X allowing growth (Xmax; Xmin). 
However, instead of defining Xopt and μopt , it introduces parameters b 
and c that describe the slope of the relationship between μ(X) and X for 
values above or below Xopt. Besides convenience, this model is written in 
terms of ̅̅̅μ√ because it is often accepted that this transformation stabi
lizes the variance (McMeekin et al., 2013). 
̅̅̅μ√
(X) = b(X − Xmin)

(
1 − ec(X− Xmax)

)
(2) 

Note that, in this model, the value of Xopt can be calculated by the 
identity shown in Eq. (3), where Wn is the Lambert W function (Garre 
et al., 2023). 

Xopt =
Wn(e− cXmin+cXmax+1) + cXmin − 1

c
(3)  

2.2. Optimal Experimental Design based on the Fisher Information Matrix 

Model-based Optimal Experimental Designs (OEDs) were calculated 
based on the Fisher Information Matrix (FIM), following a similar 
approach to previous studies in the field (e.g. Balsa-Canto et al., 2008; 
Garre et al., 2018b; Mertens et al., 2012). For statistical aspects 
regarding the methods, the reader is referred to those references and the 
citations therein. 

The FIM can be calculated for an experimental design with k sam
pling points as shown in Eq. (4), where ∂y

∂p (Xi) represents the vector of 
local sensitivity functions with respect to parameter p evaluated at Xi. 
The symbol Q represents a weight matrix (in this study, and most often, 
an identity matrix). 

FIM =
∑k

i=1

[(
∂y
∂p

(Xi)

)T

⋅Q⋅
(

∂y
∂p

(Xi)

)]

(4) 

The calculation of the OED is based on the optimization of a measure 
of the FIM with respect to some factors of the experimental design 
(location of the sampling points, temperature etc.). In this study, we 
optimize the temperatures of the growth experiments using two com
mon optimality criteria: D-optimality and modified E-optimality. D- 
optimality consists in the maximization of the determinant of the FIM 
(Eq. (5)). Considering det(FIM) is proportional to the confidence 
hyperellipsoids of the model parameters, this criterion is equivalent to 
minimizing their volume. 

max
Xi

det(FIM) (5) 

On the other hand, the modified E-optimality criterion minimizes the 
ratio between the maximum and minimum eigenvalues (ρ) of the FIM 
(Eq. (6)). It is equivalent to the minimization of the ratio between the 
maximum and minimum axis of the confidence ellipsoids (i.e. the op
timum would be a sphere). 

μ(X) = 0;X ≤ Xmin

μ(X) = 0;X ≥ Xmax

μ(X) = μopt
(X − Xmax)(X − Xmin )

n

(
Xopt − Xmin

)n− 1 ( ( Xopt − Xmin
)(

X − Xopt
)
−
(
Xopt − Xmax

)(
(n − 1) Xopt + Xmin − nX

) );X ∈ (Xmin,Xmax)

(1)   

S. Guillén et al.                                                                                                                                                                                                                                  



International Journal of Food Microbiology 413 (2024) 110604

3

min
Xi

ρmax(FIM)

ρmin(FIM)
(6) 

As shown in the results section below, the application of these 
criteria can result in designs optimal from the point of view of infor
mation theory but requiring impractically long experimental runs. For 
that reason, we introduce in this study a novel OED + penalty criterion, 
where we include a penalty term on the E-optimality (Eq. (7)). 

min
Xi

ρmax(FIM)

ρmin(FIM)
+ψ⋅P(Xi) (7) 

The penalty term (P(Xi)) is defined as the total aggregated time of the 
experiments. As shown in Eq. (8), we assumed that the time required for 
each experiment is calculated as the time to increase the population size 
in six log-units (considering only the exponential phase) with a growth 
rate given by the secondary model (Eqs. (1) or (2), depending on the 
secondary model studied). The weight of the penalty term is defined by 
the multiplicative scaling factor, ψ (which accounts for the different 
units of P and the objective function of E-optimality). Then, a value of 
ψ = 0 would result in the E-optimality criterion and higher values of ψ 
would result in experimental designs with shorter aggregated times. 

P(Xi) =
∑k

i=1
6
/

μ(Xi) (8)  

2.3. In-silico simulations to predict the error of parameter estimates 

Although the OED identifies the most informative combination of 
storage temperatures for the growth experiments, it cannot predict the 
precision of the parameter estimates (e.g., their standard errors). For this 
reason, we used in-silico experiments to estimate the precision of the 
parameters for different designs, adapting a previous numerical algo
rithm (Garre et al., 2019). It can be divided in the following steps: 

For i in 1 to nexperiments  

1. Define the experimental design (i.e., the temperatures included in 
the experimental design)  

2. For each temperature in the design (each value of X), calculate the 
ideal value of ̅̅̅μ√

ideal according to the secondary model (substituting 
in Eqs. (1) or (2) the nominal values of the secondary model 
parameters).  

3. Duplicate the ideal values according to the number of repetitions of 
the experiment.  

4. Calculate the experimental error (ε) as a random value from a normal 
distribution with mean zero and standard deviation σ ̅̅μ√ (defined as 
an input parameter).  

5. Calculate the “observation” as ̅̅̅̅̅̅̅̅μobs
√

=
̅̅̅̅̅̅̅̅̅̅̅μideal

√
+ ε.  

6. Fit the secondary model to the “observed” data generated in step 5. 

This algorithm generates an array of models (i.e., their model pa
rameters) of length nexperiments. The distribution of the parameter esti
mates and their standard errors can be used to analyse how the 
experimental error and the experimental designs affect the precision of 
the parameter estimates and their uncertainty (Garre et al., 2019). In 
this study, we analysed the distribution of the parameter estimates to 
assess the accuracy of the estimators, as well as the presence of any 
parameter correlation that is an artifact of the experimental error. 
Furthermore, we used the median of the coefficient of variation (stan
dard error divided by estimated value) as an estimator of the parameter 
uncertainty for a given experimental design. 

The convergence of these measures depends on the value of nexperi

ments. It was defined by repeating the simulations for different values of 
this factor until the quantities of relevance converged (i.e., there were no 
relevant differences if the calculations were repeated). This resulted in 
8000 simulations. The seed of the pseudo-random number generator 
was set before performing the calculations reported here for 

reproducibility. 

2.4. Computer implementation and numerical methods 

All the calculations were implemented in R version 4.2.3 (R Core 
Team, 2016). Local sensitivity functions were calculated using the 
sensFun function from FME (Soetaert and Petzoldt, 2010), which uses 
finite differences. Model fitting was done using modFit from the same 
package, based on nonlinear regression using the Levenberg-Marquardt 
algorithm. 

The optimization problem for the calculation of the OED was 
resolved using the scatter search optimization algorithm (Egea et al., 
2010) implemented in the R package MEIGO (Egea et al., 2014). To 
avoid singularities in the calculations, the upper and lower bounds for 
the experimental temperature were fixed to 1 ◦C above and below Xmin 
and Xmax, respectively. 

The model-based OED approach followed in this study requires the 
definition of “nominal values” for the parameter estimates. The values 
reported by Nunes Silva et al. (2020) for Listeria monocytogenes were 
used for the CPM (Xmin = − 1.425 ◦C; Xopt = 38.17 ◦C; Xmax = 44.36 ◦C; 
μopt = 0.976 log CFU/h; n = 2). For the full Ratkowsky model, we used 
the same values of Xmin and Xopt and modified b and c to obtain values 
(b = 0.027 log CFU/h/◦C; c = 0.4 1/◦C) that resulted in a similar sec
ondary model. This was checked by plotting both secondary models 
(supp. Fig. 1) and checking the value of Xopt using Eq. (3). The in-silico 
experiments were done considering two repetitions of each experiment. 
The calculations were repeated for different values of the model pa
rameters, obtaining similar results. The code is available from the 
GitHub page of one of the co-authors (https://github.com/alb 
garre/OED_secondary). 

The coefficient weighting the penalty function for the OED + penalty 
method (ψ) was defined iteratively. The OED was first calculated setting 
ψ = 0, checking that the result was equivalent to the one calculated 
using the modified E-criterion. Then, the calculations were repeated 
increasing ψ , until the aggregated time of the experimental design was 
lower than the one of the uniform (conventional, equidistant) experi
mental design. This resulted in values of ψ = 10 and ψ = 50 for the CPM 
and full Ratkowsky models, respectively. This difference between both 
models is reasonable. As illustrated in Eq. (8), this coefficient weights 
the aggregated time against the amount of information according to the 
E-criterion. The latter is dependent on the model equation, so different 
models should need different weightings. Furthermore, the amount of 
information according to the E-criterion also depends on the parameter 
values. Hence, one cannot ensure that the values used here (10,50) will 
be suitable for other studies. Instead, the value of the weighting coeffi
cient should be determined for each study using a method like the one 
used here. 

3. Results and discussion 

3.1. Optimal Experimental Designs (OEDs) for different optimality 
criteria 

The OEDs calculated for the full Ratkowsky and CPM are illustrated 
in Figs. 1 and 2. In these figures, the y-axis represents the number of 
growth experiments included in the experimental design (from 10 to 
30), whereas the x-axis indicates the optimal combination of growth 
temperatures according to the experimental design. Regardless of the 
optimality criteria and the number of sampling temperatures, the OED 
algorithm “clusters” the growth experiments at a few temperatures. 
Namely, depending on the condition, they are grouped in two to four 
temperatures. This concentration of the design in a few, very informa
tive, conditions is a common result of model-based OED (Grijspeerdt and 
Vanrolleghem, 1999; Peñalver-Soto et al., 2019; Van Derlinden et al., 
2008). 
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Fig. 1 depicts the results for the full Ratkowsky model, showing that 
there are several similarities between the OED calculated based on the 
D-optimality criterion and the modified E-criterion. The most striking 
result is that the design is focused on temperatures close to Xmin and 
Xmax. This reflects the shape of the local sensitivity functions for the 
model parameters, which are practically flat except for the areas close to 
these limits (illustrated in Supp. Fig. 2). Nonetheless, there are also 
differences between the designs calculated using either criterion. The 
modified E-criterion includes more growth experiments close to Xmin 
than to Xmax, with only a single experiment at an intermediate temper
ature. On the other hand, the D-criterion results in more balanced 

designs with almost the same number of experiments at each tempera
ture included in the design. Furthermore, the location of the interme
diate temperature varies depending on the experimental design (~10 ◦C 
for the modified E, ~30 ◦C for D). 

Fig. 2 illustrates the OED scheme for the CPM. The results have 
several similarities with the ones calculated for the full Ratkowsky 
model (Fig. 1). Regardless of the optimality criteria, the OED also groups 
the growth experiments at temperatures close to Xmin and Xmax, with just 
a few experiments at intermediate temperatures. However, unlike for 
the full Ratkowsky model, the OED for the CPM uses two intermediate 
temperatures. The first one is located near the optimum of the local 

Fig. 1. Illustration of the experimental design for the full Ratkowsky model (b = 0.027 log CFU/h/◦C; c = 0.4 1/◦C; Xmin = − 1.425 ◦C; Xmax = 44.36 ◦C) according to 
the D-optimality criteria, the E-optimality criteria and the OED with the penalty function. The numbers within brackets indicate the number of samples at the given 
point, with darker labels indicating more experiments at a particular temperature. The designs were calculated fitting every model parameter, fixing Xmax and fixing 
both Xmax and c (subplots). The vertical, black lines illustrate the values of Xmax and Xmin. 
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sensitivity function for parameter n (supp. Fig. 3), whereas the second 
one is located at the sub-optimal temperature range, close to Xopt. 
Moreover, in a similar way as in the full Ratkowsky model, the OED 
based on the E-optimality criterion tilts the design towards Xmin, whereas 
the D-optimal criterion results in a more balanced design for the CPM. 

Although these experimental designs calculated for the full Rat
kowsky and CPM models are optimal from the point of view of infor
mation theory (Fisher information), there are several known issues with 
this approach. They are mainly because the solution of a model-based 
OED is only valid if the model is “true”. In this case, that means that 
the growth of the microbial population can be described perfectly by the 

model equation (full Ratkowsky or CPM model), that the model pa
rameters are correct (i.e., the nominal parameter values describe the 
bacterial response without any uncertainty) and that the variance be
haves according to the model hypotheses (in this case, that ̅̅̅μ√ is ho
moscedastic). This is problematic because these hypotheses are hard to 
verify without actually doing the experimental work. These problems 
are aggravated by the tendency of OEDs to group sampling points in a 
few locations. This makes validating these hypotheses practically 
impossible when a design is based solely on the results on a model-based 
OED. For that reason, it is often recommended to combine an OED with 
other types of designs to ensure that the microbial response does not 

Fig. 2. Illustration of the experimental design for the CPM (Xmin = − 1.425 ◦C; Xopt = 38.17 ◦C; Xmax = 44.36 ◦C; μopt = 0.976 log CFU/h; n = 2) according to the D- 
optimality criteria, the E-optimality criteria and the OED + penalty. The numbers within brackets indicate the number of samples at the given point. The designs were 
calculated fitting every model parameter, fixing n and fixing both n and Xmax (subplot6s). The vertical, black lines illustrate the values of Xmax and Xmin, whereas the 
vertical, dashed line represents the value of Xopt. 
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deviate largely from the model hypotheses (Peñalver-Soto et al., 2019). 
Apart from these well-known limitations of OEDs, we also observe an 

additional problem that may make this type of experiment impractical 
for secondary growth models. As already mentioned, the OEDs cluster 
the conditions of the growth experiments near Xmin and Xmax. Consid
ering that microbial growth in the vicinity of these temperatures is very 
slow (i.e., several weeks are required to reach stationary growth phase), 
this results in extremely long experimental runs. This is illustrated in 

Figs. 3 and 4, where the aggregated time of the experimental design is 
shown (i.e., the sum of the time required for each individual experi
ment). Although this is not a realistic representation of the total time 
required for the experiment (repetitions can be done in parallel), it 
serves as an assessment of the experimental load of the experimental 
design. For the full Ratkowsky model (Fig. 3), the uniform experimental 
design has an aggregated time slightly higher than 300 days when the 
design comprises between 10 and 30 experiments. This value is one 

Fig. 3. Aggregated experimental time as a function of the number of growth experiments included in the design for the full Ratkowsky model for four different types 
of experimental designs: D-optimal OED, E-optimal OED, OED with penalty term and uniform design (colors). The designs were calculated fitting every parameter, 
fixing Xmax and fixing both Xmax and c (subplots). 

Fig. 4. Aggregated experimental time as a function of the number of temperatures included in the design for the CPM for three different experimental designs: D- 
optimal OED, E-optimal OED, OED with penalty term and uniform design (colors). The designs were calculated fitting every parameter, fixing n and fixing both n 
and Xmax. 

S. Guillén et al.                                                                                                                                                                                                                                  



International Journal of Food Microbiology 413 (2024) 110604

7

order of magnitude lower than the ones corresponding to the E-optimal 
(~3000 days) and D-optimal (~1000 days) designs. The E-optimal 
design has shown to need the most resources since the aggregated time 
steadily increased up to ~10,000 days. Similar results are observed for 
the CPM (Fig. 4). 

This result is very relevant because the main purpose for an OED is to 
obtain similar precision in the parameter estimates with a reduced 
experimental effort. Although the design schemes are more informative 
based on the FIM, this statistical index only considers how much infor
mation is provided by the experiments; it does not account for other 
nuances of the experimental design. As illustrated in Figs. 3 and 4, when 
the experimental load is accounted for (represented as the aggregated 
time), the main principle of the OED may no longer be true, with the 
OED actually requiring more experimental effort than conventional 
(suboptimal) designs. 

Due to the impracticality of the OEDs calculated (the excessive 
aggregated time), this study proposes a modified OED criterion that 
introduces a penalty term on the calculation, balancing amount of in
formation and experimental load. Figs. 1 and 2 illustrate the experi
mental design resulting from this optimality criterion for the two 
secondary growth models considered. The criterion is derived from E- 
optimality, so it has some similarities with it, such as clustering the 
experimental design at a few temperatures. Nevertheless, it also shifts 
the sampling temperatures away from Xmin, towards conditions more 
favourable for microbial growth (i.e. with higher μ), also including 
additional experiments at intermediate temperatures. This results in a 
very substantial reduction of the aggregated experimental time, espe
cially for the CPM model. Indeed, as illustrated in Figs. 3 and 4, the 
aggregated experimental time is one to two orders of magnitude lower 
than for the conventional OEDs (~100 days for the full Ratkowsky 
model, ~50 days for the CPM). 

On the other hand, our modified OED still suffers from some of the 
common limitations for model-based OEDs. The design clusters the 
growth conditions in a few locations (Figs. 1 & 2), making it practically 
impossible to test the suitability of the secondary model (model equa
tion, nominal parameter values, and variance model) used to calculate 
the OED. Consequently, although the modified OED mitigates the issues 
of an excessive aggregated experimental time, it is advisable to combine 
it with other methods (e.g., uniform design) to test the suitability of the 
model, as generally recommended for model based OED (Peñalver-Soto 
et al., 2019). 

3.2. Optimal Experimental Design for a reduced parameter space (fixing 
parameters) 

The OED calculations in the previous section assumed that every 
model parameter was estimated from the data. However, this is often not 
the case when fitting secondary growth models (Muramatsu et al., 
2019). A typical example is the order of the CPM (parameter n), which is 
often considered known (typically, 1 or 2). Alternatively, many studies 
are focused in sub-optimal conditions (e.g. temperatures below Xopt), so 
Xmax (and also c in the full Ratkowsky model) would be a relatively 
unimportant parameter that could be fixed to an approximate value. 

This reduction in the dimension of the parameter space has a strong 
influence in the layout of the OED for both models. In the case of the full 
Ratkowsky model (Fig. 1), fixing Xmax does not have a big impact on the 
position of the sampling points, but it changes the distribution of the 
growth experiments. Namely, it reduces the number of experiments at 
temperatures close to Xmax, increasing the number of experiments at 
temperatures close to Xmin. If both Xmax and c are fixed, the layout of the 
OED is modified both qualitatively and quantitatively. In this case, the 
temperatures included in the experimental design are reduced to two. 
Furthermore, the layout of the experiment is focused on low tempera
tures, close to Xmin. 

Fixing one or more parameters before model fitting also affects the 
OED for the CPM (Fig. 2). Fixing n removes one of the intermediate 

sampling temperature located close to the optimum for the local sensi
tivity function with respect to n. This emphasizes the association be
tween the local sensitivity functions and the OED. It also shifts the 
location of the other intermediate temperature, bringing it closer to Xopt. 
Fixing Xmax, as well as n, further influences the experimental design. 
Although the location of the sampling points does not vary much, the 
design is more focused on temperatures below Xopt, increasing the 
number of growth experiments on this area at the expense of tempera
tures above Xopt. 

These results demonstrate that fixing one or more model parameters 
has a very strong influence in the statistical properties of a model. Fixing 
Xmax and c in the full Ratkowsky model practically defines the shape of 
the secondary model for temperatures above the maximum temperature 
for growth. As a result, experiments at high temperatures provide little 
information on the values of the unknown model parameters, so they are 
avoided by the OED method. A similar situation takes place when n and 
Xmax are fixed in the CPM model. This result is in line with previous 
studies that emphasized the risks associated with fixing model param
eters before model fitting (Schmidt et al., 2019). Although this approach 
can facilitate the convergence of the fitting algorithm, it also changes the 
statistical properties of the model, so a model with fixed parameters 
should be considered as a novel model. This implies that the hypotheses 
that justify that a parameter is known (i.e., it has no uncertainty) should 
always be enunciated and justified in detail. 

3.3. Correlations between parameter estimates as artifacts of the 
experimental error 

Fig. 5 shows a pairs plot of the parameter estimates obtained for the 
full Ratkowsky model in 8000 numerical simulations for the uniform 
experimental design. It shows a clear correlation between parameters 
Xmax and c, as well as between Xmin and b. Although this information 
could be partly inferred by a correlation analysis of the local sensitivity 
functions (supp. Figs. 2 & 3), that type of analysis provides only limited 
information when compared to Monte Carlo analysis. For instance, it 
cannot identify bimodality in the parameter estimates, whether the 
correlations are nonlinear and higher order correlations (i.e., more than 
two parameters being related). This result had already been reported by 
other authors (Baranyi et al., 2017; Rosso et al., 1993), although its 
causes had not been clearly enunciated. Both studies pointed at a 
possible biological link between both parameters, with Baranyi et al. 
(2017) stating that “It is vital to see that Eq. (6) [a linear relationship 
between b and Tmin] describes a biological relationship and not a 
regression-related correlation between the b and Tmin parameters.” In 
this study, we have observed this correlation between parameters b and 
Xmin (as well as between c and Xmax) by simulating a dataset that only 
considers a random error on ̅̅̅μ√ normally distributed with mean zero. 
That is, an empirical artifact without any biological relationship. 
Considering that experimental error is unavoidable in empirical studies 
and that parameter identifiability issues cannot be erased when fitting a 
model, it is highly unlikely that the correlations observed empirically 
are just a reflection of a biological link. Instead, they would (at least 
partly) be a “regression-related” artifact caused by structural identifi
ability issues (parameter correlation) of the full Ratkowsky model. 

Regarding the CPM, Fig. 6 illustrates this correlation for a uniform 
experimental design fitting the model after fixing the parameter n. The 
numerical simulations also show parameter correlation, although the 
magnitude of the correlation is lower than for the full Ratkowsky model. 
This result is in agreement with Rosso et al. (1993), who observed higher 
correlations between the parameters of the full Ratkowsky model than 
for the CPM. This is an additional argument against the hypothesis that 
the relationship between b and Xmin (or c and Tmax) is the reflection of a 
biological mechanism. Parameters b of the full Ratkowsky model and 
μopt of the CPM are closely related (Equation (3) of this manuscript, as 
derived in Garre et al., 2023). Hence, if the cause of this relationship was 
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biological, one would expect a similar one between μopt and Xmin. The 
calculations were repeated considering n as a parameter to estimate 
from the data. The results (supp. Fig. 4) also show a high correlation 
between parameters n and Xmin, and n and Xopt. Furthermore, estimating 
n from the data also results in a slight increase in the correlation between 
Xmax and Xopt. 

These differences in the correlations between model parameters also 

have implications for the inclusion of parameter uncertainty in growth 
predictions in the context of microbial risk assessment or shelf-life 
estimation. Currently, the most common approach is to define proba
bility distributions for the model parameters and estimate the distribu
tion of the output by forward uncertainty propagation (Akkermans et al., 
2018; Garre et al., 2017). However, these distributions are often defined 
independently, without considering parameter correlation. As observed 

Fig. 5. Pairs plot for parameters Xmin and b; Spearman correlation of 0.85 (A) and Xmax and c; Spearman correlation of − 0.82 (B) of the full Ratkowsky model with a 
uniform design with 12 growth experiments for 500 simulations. The yellow line represents a trend line calculated using local regression. Similar results were 
obtained for designs with a different number of experiments (not shown). 

Fig. 6. Pairs plot for parameters Xopt and Xmax (A), Spearman correlation of − 0.72; Xmax and μopt (B), Spearman correlation of − 0.64; of the CPM when parameter n is 
fixed with a uniform design with 20 data points for 8000 simulated experiments. The yellow line represents a trend line calculated using local regression. Similar 
results were obtained for different designs (not shown). 
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Fig. 7. Predicted precision of the parameter estimates for the full Ratkowsky model (median of 8000 MC simulations) as a function of number of growth experiments 
included in the design for four different types of experimental design (uniform, D-optimal, E-optimal and OED + penalty). The designs were calculated fitting every 
model parameter (A), fixing Xmax (B) and fixing both Tmax and c (C). Calculations were made assuming a standard deviation for the observed value of ̅̅̅μ√ of 0.08 log 
CFU/h and two independent replicates. 
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Fig. 8. Predicted precision of the parameter estimates for the CPM (median of 500 MC simulations) as a function of number of experiments (i.e. number of tem
peratures) included in the design for a uniform design ( ), D-optimal design ( ), E-optimal design ( ) and OED + penalty ( ). The designs were calculated 
fitting every model parameter (A), fixing n (B) and fixing both n and Tmax (C). Calculations were made assuming a standard error for the observed value of ̅̅̅μ√ of 0.08 
log CFU/h and two independent replicates. 

S. Guillén et al.                                                                                                                                                                                                                                  



International Journal of Food Microbiology 413 (2024) 110604

11

here, these correlations are most likely a reflection of structural identi
fiability, so parameter uncertainty should be defined using multivariate 
normal distributions (or similar multivariate distributions). Further
more, these correlations would also be model dependent, so correlations 
estimated using a particular model (e.g., CPM) should be considered as 
generally not applicable to other models (e.g., Ratkowsky). 

3.4. Predicting the uncertainty of the parameter estimates 

The application of OED in the previous sections has allowed the 
identification of the most informative growth conditions for different 
parameters of the design (number of growth experiments, type of OED 
and fixing model parameters). However, the OED methodology used 
there does not provide much information about the uncertainty of the 
parameter estimates for a given design. Hence, we used in silico ex
periments to complement the OED, providing further information to aid 
in experimental design. This allows an estimation of the uncertainty 
(represented as the coefficient of variation; CV) of each parameter for 
different experimental designs. The results are illustrated in Fig. 7 for 
the full Ratkowsky model and in Fig. 8 for the CPM. 

As expected, an increase in the number of growth experiments (x- 
axis) generally reduces parameter uncertainty of every model parameter 
for the uniform experimental design. However, the magnitude of the 
reduction in uncertainty is parameter-dependent and it also varies be
tween models and experimental designs. The results show a “law of 
diminishing returns” in this relationship, with the uncertainty reduction 
seeming to converge towards a horizontal asymptote. This is especially 
evident for parameter Xmax of the full Ratkowsky model when every 
model parameter is fitted (Fig. 7A). This result, which was also observed 
for microbial inactivation models (Garre et al., 2018a), points out that 
parameter uncertainty cannot be reduced entirely when there is some 
noise in the data, especially for nonlinear models. 

The results also show that some model parameters are easier to 
identify than others. For instance, parameter Xmax is easier to estimate 
than b in the full Ratkowsky model (Fig. 7A). Although this can be 
assessed by comparing the local sensitivity functions, it can only be 
concluded quantitatively using numerical simulations (or other quanti
tative approaches). This result is directly applicable for experimental 
design, which often tries to obtain the parameter estimates with a 
maximum uncertainty. As shown in Fig. 7, reducing the CV of parameter 
Xmin below the 50 % is practically impossible with a uniform experi
mental design. This result is also reasonable, because the nominal value 
of this parameter is Xmin = − 1.425 ◦C, so a 50 % CV is equal to a standard 
error of 0.7 ◦C (a temperature that can hardly be measured 
experimentally). 

Although this information could be inferred from the analysis of local 
sensitivity functions (e.g., defining a minimum value for the local 
sensitivity for a given parameter), the conclusions of that type of anal
ysis would be quite limited. First, parameter identifiability is closely 
linked to the experimental design (e.g., Fig. 7). Therefore, a parameter 
that is theoretically identifiable based on its local sensitivities may be 
practically non-identifiable for some experimental designs. Further
more, analyses based on local sensitivities are often based on arbitrary 
thresholds (e.g., 10 %), so they do not consider how much precision is 
desirable for each parameter (i.e., how “critical” it is) or the precision of 
the experimental technique (parameters with 10 % sensitivity may be 
identifiable or not depending on the error of the experimental method). 

Regarding the OEDs, the D-optimal design has lower CV than the 
uniform design in every situation. This is not the case for the E-optimal 
OED, where some model parameters have higher uncertainty than for 
the uniform design, whereas others have much lower uncertainty (even 
lower than for the D-optimal OED). This reflects the different objective 
functions used by both criteria. The D-optimal OED aims at minimizing 
the volume of the confidence ellipsoids, resulting in a “homogeneous” 
reduction of parameter uncertainty with respect to the uniform design. 
The modified E-criterion, on the other hand, tries to generate confidence 

ellipsoids that are as close to spheres as possible (i.e., every model 
parameter having the same uncertainty and no correlation). Conse
quently, the uncertainty of the parameters with poor identifiability 
might be reduced at the expense of an increase in the uncertainty of the 
more identifiable parameters. This result can be clearly visualized for 
the full Ratkowsky model when Xmax is fixed (Fig. 7B). The modified E- 
criterion results in the lowest uncertainty among all the designs tested 
for the parameter with the poorest identifiability Xmin and the highest 
uncertainty for the other two parameters (b and c). As a result, the three 
parameters have a similar CV, resulting in almost spherical confidence 
ellipsoids. 

Another result that can be considered striking is that the trend lines 
for the OEDs illustrated in Figs. 7 and 8 have some “noise”, whereas the 
ones for the uniform experimental design are uniform. This is likely due 
to the principles of the model-based OED methodology. As illustrated in 
Figs. 1 and 2, the OEDs algorithm identifies between two and four 
discrete temperatures as the most informative ones. Then, adding one 
experiment to the design introduces an additional experiment in one of 
these discrete locations. Because the local sensitivity functions for the 
secondary models studied (CPM and full Ratkowsky) are zero in a 
relatively large temperature range (e.g., Xmax is practically zero for 
temperatures below Xopt; supp. Fig. 2), adding an additional data point 
results in a large reduction in the uncertainty of one parameter but not 
for the rest. This is not the case for the uniform experimental design, 
where additional experiments are added homogeneously along the 
temperature range, so parameter uncertainty is reduced gradually for 
every parameter (except in particular situations; see Garre et al., 2019). 

As a final remark regarding these results, Figs. 7 and 8 illustrate that 
fixing some model parameters reduces the uncertainty of the parameters 
estimated from the data, especially for the uniform experimental design. 
Although this reduction in parameter uncertainty can be seen as an 
argument supporting fixing model parameters, this must be done with 
care. Due to the existence of correlations between the model parameters 
(Figs. 6 and 7), fixing some model parameters can introduce a bias in the 
ones that are fitted (Schmidt et al., 2019). Hence, as a general rule, 
model parameters should be fixed only when they are not relevant for 
the data (e.g., Xmax for data with temperatures much lower than Xopt) or 
when there is a very strong biological basis to support this decision. 

It is worth emphasizing that the results in Figs. 7 and 8 are a rough 
estimation of the precision of an experimental design based on very 
simple hypotheses regarding the noise of experimental data. Namely, we 
assume that residuals with respect to ̅̅̅μ√ will be independent draws from 
normal distributions with mean zero and constant variance. In this 
study, we have used a value of σ√μ=0.08 (log CFU/h)½ based on liter
ature data. However, this value will depend on several aspects of the 
experimental design, such as the type of experiment (e.g., plate count vs 
absorbance-based methods), the experimental design (e.g., number of 
time points) and internal sources of variability (e.g., combination of 
biological and/or technical replicates, variability in the media). For this 
same reason, we advise against the definition of a “universal standard” 
for this standard deviation, as it would be unreasonable to expect the 
same precision for a growth experiment on a liquid laboratory media 
(easy to control; low variability) than in a food product such as a fer
mented sausage (many uncontrollable sources of error; high variability). 
Consequently, this value should be reconsidered for each case study. 

Furthermore, the hypothesis of independent errors with constant 
variance is also questionable. For instance, experiments at temperatures 
close to the growth boundary are harder to control, so it is likely that 
they have larger errors than experiments near optimal growth condi
tions. This result is not simple to describe reasonably in mathematical 
terms, so it is not considered in the simulations. Finally, due to random 
chance, different replications of the exact same experiment will result in 
different experimental results (Garre et al., 2021). This implies that in
dependent repetitions of an experimental design will always result in 
different parameter estimates and parameter uncertainties. Therefore, it 
is impossible to predict the parameter uncertainty that will be estimated 
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in a particular repetition of an experiment. Despite these limitations, this 
methodology based on in silico simulations provides and estimation of 
the parameter uncertainty that will be obtained before doing any 
experimental work. This is a valuable source of information that can aid 
rationalizing experimental design, as will be illustrated in the next 
section. 

3.5. Application of the OED results to practical cases 

The diagrams illustrated in Figs. 7 and 8 provide a convenient sup
port for the design of growth experiments to characterize secondary 
growth models. The diagrams show the variation of the CV as a function 
of the number of growth experiments for each experimental design. The 
CVs have been selected because they are unitless, so they facilitate the 
comparison between model parameters. Therefore, they are used here to 
illustrate how numerical simulations can guide experimental design, 
although there are some situations where alternative statistical indexes 
(e.g., absolute error of the parameter) may be more informative than 
CVs. 

As an illustration, let’s assume that we aim at estimating the pa
rameters of the CPM model for the growth of L. monocytogenes as a 
function of temperature. Traditionally, the number of growth experi
ments is often based on previous experience or data from the literature, 
an approach that is highly uncertain and prone to bias. The numerical 
results of this investigation open the gate for an innovative approach for 
experimental design, enabling the definition of a target uncertainty for a 
model parameter. For instance, we will define as a target for the 
experimental design having a 6 % CV for μopt. As is often the case in 
predictive microbiology, we assume that the order of the model is 
known, so the design is based on Fig. 8B. The left hand side panel shows 
that a uniform design with 19 growth experiments would provide the 
target parameter uncertainty. It is expected that this design would result 
in a CV < 1.25 % for Xmax, <75 % for Xmin and <2.5 % for Xopt. The di
agram also shows that it is unlikely to attain this precision for an E- 
optimal design, and that the use of a D-optimal design would reduce the 
number of growth experiments to 12. However, due to the location of 
most experiments at the vicinity of Xmin (Fig. 2), the OED with 12 ex
periments would have a greater elapsed duration (~10 times longer) 
than the uniform design with 19 experiments (Fig. 4). Then, it would be 
a question for the experimenter to decide if these experiments provide 
enough information, if the target parameter uncertainty should be 
revised or if the number of replicates (Figs. 7 and 8 show the expected 
CV for 2 replicates) should be modified. 

On the light of these results, it can be questioned whether optimal 
experimental designs are still optimal from outside the narrow 
perspective of information theory. OEDs are calculated based only on 
the properties of the FIM, so they do not account for empirical limita
tions not included in the local sensitivity functions. These empirical 
limitations are often hard to quantify and are dependent on the exper
imental protocol. For instance, in the case of microbial inactivation 
under dynamic conditions, the main experimental limitation not 
included in FIM is the impossibility to sample time points that are too 
close (Garre et al., 2018b). In that particular case, the OED was still 
advantageous even when considering this limitation, with an OED with 
10 sampling points having similar precision as a uniform design with 40 
time points (Garre et al., 2019). However, this does not seem to be the 
case for secondary growth models, where OEDs are optimal from a 
theoretical point of view, but may not be optimal from a practical 
perspective. This is due to the OED focusing on temperatures close to the 
growth limits of the microorganism, where growth occurs at a very slow 
rate requiring excessively long experimental runs. To enhance this 
aspect, this study defines a modified OED criterion that includes a 
penalty term in the calculation. This criterion balances the information 
of the temperatures included in the design with the experimental load, 
resulting in an aggregate time reduction of up to 10 times with respect to 
the uniform design (Figs. 3 and 4). 

However, it should be noted that the modified OED criterion pro
posed here also has some drawbacks. Because it is a modification of the 
modified E-criterion, it results in an increase in the uncertainty of some 
parameters with respect to the uniform design (Figs. 7 and 8). 
Furthermore, although it is not as extreme as the OED, it still focuses the 
experiments at temperatures relatively close to the growth limits; and 
these conditions present additional challenges that are not easy to 
quantify in mathematical terms. The longer the experiment, the more 
likely it is to face challenges that could compromise the validity and 
reliability of the results obtained, such as maintaining the environ
mental conditions (temperature, pH etc.), avoiding contamination, and 
ensuring the stability of the experimental system. Further, the resolution 
of analytical methods should increase because at these limiting condi
tions there could be injured cells which may not grow in selective media, 
thus adding another source of uncertainty (Arvaniti and Skandamis, 
2022). Hence, it is important to carefully consider the balance between 
time and experimental quality in the design of an optimal experiment, 
and to choose an experimental design that adequately balances both 
factors. 

4. Conclusions 

The computational methodology presented in this article can be a 
valuable tool to support the design of experiments for the estimation of 
parameters of secondary growth models. Local sensitivity functions can 
be used as a first step to provide qualitative information on the experi
mental design, but the definition of an OED requires the optimization of 
some measure of the FIM. Even then, OEDs do not directly provide an 
estimate of the expected uncertainty of a particular model parameter, 
requiring an additional step involving numerical simulations (or 
equivalent methods). 

Our calculations show that OEDs for secondary growth models de
pends on the secondary model (full Ratkowsky or CPM), the optimality 
criterion (D or modified E), whether model parameters were fixed, and 
the number of growth experiments in the design. Our results also show 
that it may be questioned whether an OED is really justified for sec
ondary growth models, since they focus on growth temperatures close to 
the growth limits. Therefore, OEDs require significantly longer experi
mental runs, making it necessary to weigh the potential benefits of the 
OED against the cost and feasibility of such a time-consuming experi
mental design. This motivated the derivation of a novel optimality cri
terion that combines information theory (Fisher information) with 
practical feasibility. The inclusion of a penalty term in the E-optimality 
criterion may be helpful to balance the number of experiments across 
the temperature range, reducing the aggregated time of analysis and the 
uncertainty of those less identifiable model parameters. These conclu
sions, as well as the computational methodology developed here, can 
inform future studies aiming at characterizing the growth of pop
ulations, helping rationalize the experimental design. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.ijfoodmicro.2024.110604. 
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