000132843 001__ 132843
000132843 005__ 20240315113108.0
000132843 0247_ $$2doi$$a10.1016/j.renene.2024.120170
000132843 0248_ $$2sideral$$a137721
000132843 037__ $$aART-2024-137721
000132843 041__ $$aeng
000132843 100__ $$0(orcid)0000-0002-4819-3636$$aPallarés Ranz, Javier$$uUniversidad de Zaragoza
000132843 245__ $$aModeling of the evolution of the porous structure during a physical activation process for the production of activated biocarbon: A novel low conversion approach
000132843 260__ $$c2024
000132843 5060_ $$aAccess copy available to the general public$$fUnrestricted
000132843 5203_ $$aMany experimental studies have shown the feasibility of using biomass precursors to produce activated carbon, often improving the properties obtained from traditional materials. However, hardly any models focus on the development of porosity during the process. Among the so-called pore models, the random pore model (RPM) is the most popular and accurately predicts the evolution of the porous structure due to pore growth and coalescence. However, in activation processes with a low degree of conversion, in which pore formation is the dominant mechanism, the RPM does not correctly predict the evolution of the specific surface area since it does not consider the appearance and creation of new porosity. In this work, a new model is proposed that predicts the specific surface area created due to the formation of new pores. Subsequently, it is combined with the determination of the variation of the specific surface area predicted by the RPM due to the growth and coalescence of existing pores. The validation of the new pore evolution model with activated carbon samples obtained at different conversions shows that the model proposed adequately predicts the specific surface area and pore distribution evolution throughout the activation process.
000132843 536__ $$9info:eu-repo/grantAgreement/ES/MICINN/RTI2018-095349-A-I00$$9info:eu-repo/grantAgreement/EUR/TED2021-131397B-I00
000132843 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc$$uhttp://creativecommons.org/licenses/by-nc/3.0/es/
000132843 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000132843 700__ $$0(orcid)0000-0002-0704-4685$$aGil, Antonia$$uUniversidad de Zaragoza
000132843 700__ $$0(orcid)0000-0001-6665-5331$$aCortés, Cristóbal$$uUniversidad de Zaragoza
000132843 700__ $$0(orcid)0000-0001-5473-6919$$aArauzo, Inmaculada$$uUniversidad de Zaragoza
000132843 7102_ $$15004$$2590$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Máquinas y Motores Térmi.
000132843 773__ $$g224 (2024), 120170 [10 pp.]$$pRenew. energy$$tRenewable Energy$$x0960-1481
000132843 8564_ $$s2138686$$uhttps://zaguan.unizar.es/record/132843/files/texto_completo.pdf$$yVersión publicada
000132843 8564_ $$s2506721$$uhttps://zaguan.unizar.es/record/132843/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000132843 909CO $$ooai:zaguan.unizar.es:132843$$particulos$$pdriver
000132843 951__ $$a2024-03-15-08:51:01
000132843 980__ $$aARTICLE