000132846 001__ 132846
000132846 005__ 20240315113108.0
000132846 0247_ $$2doi$$a10.1016/j.fuproc.2024.108064
000132846 0248_ $$2sideral$$a137737
000132846 037__ $$aART-2024-137737
000132846 041__ $$aeng
000132846 100__ $$aGracia, J.
000132846 245__ $$aHighly selective catalytic hydrodeoxygenation of guaiacol to benzene in continuous operation mode
000132846 260__ $$c2024
000132846 5060_ $$aAccess copy available to the general public$$fUnrestricted
000132846 5203_ $$aBenzene, mostly produced from fossil fuel sources, is an essential chemical to many modern industries. Alternatively to non-renewable methods currently used, the present work explores using fast pyrolysis biomass-derived bio-oils to furnish this valuable platform molecule. Notably, we report for the first time the impact of different operational parameters on the highly selective continuous catalytic hydrodeoxygenation of guaiacol, a bio-oil model compound, into benzene using a Mo2C/CNF-based catalyst. The parametric study includes a first evaluation of the effect of the hydrogen pressure (25, 50 and 75 bar), temperature (300, 325 and 350 °C) and weight hourly space velocity (4 and 10 gorg gcat−1 h−1) on the guaiacol conversion and product distribution, and a subsequent long-term evaluation (30 h on stream) of the catalyst under appropriate processing conditions The experimental results revelated that our Mo2C/CNF was able to achieve a conversion of 90–98% with a relative amount of benzene in the liquid product up to 81% for at least 30 h without any sign of deactivation at 75 bar of H2 and 350 °C, which is a landmark achievement in the conversion of bio-oil derived molecules into platform chemicals.
000132846 536__ $$9info:eu-repo/grantAgreement/ES/AEI/RYC2021-033368-I$$9info:eu-repo/grantAgreement/ES/DGA-FEDER/T22-23R$$9info:eu-repo/grantAgreement/ES/DGA/T06-23R$$9info:eu-repo/grantAgreement/ES/MICINN/IJC-2018-037110-I$$9info:eu-repo/grantAgreement/ES/MICINN/IJC-2020-045553-I$$9info:eu-repo/grantAgreement/ES/MICINN/JDC2022-048765-I$$9info:eu-repo/grantAgreement/ES/MICINN/PID2020-115053RB-I00/AEI/10.13039/501100011033$$9info:eu-repo/grantAgreement/ES/MICIU/PRE2018-085182$$9info:eu-repo/grantAgreement/ES/MINECO/ENE2017-83854-R
000132846 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc$$uhttp://creativecommons.org/licenses/by-nc/3.0/es/
000132846 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000132846 700__ $$aAyala-Cortés, A.
000132846 700__ $$aDi Stasi, C.
000132846 700__ $$0(orcid)0000-0003-3315-5933$$aRemón, J.$$uUniversidad de Zaragoza
000132846 700__ $$aTorres, D.
000132846 700__ $$aPinilla, J.L.
000132846 700__ $$aSuelves, I.
000132846 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000132846 773__ $$g255 (2024), 108064 [10 pp.]$$pFuel process. technol.$$tFuel Processing Technology$$x0378-3820
000132846 8564_ $$s1708078$$uhttps://zaguan.unizar.es/record/132846/files/texto_completo.pdf$$yVersión publicada
000132846 8564_ $$s2679594$$uhttps://zaguan.unizar.es/record/132846/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000132846 909CO $$ooai:zaguan.unizar.es:132846$$particulos$$pdriver
000132846 951__ $$a2024-03-15-08:51:04
000132846 980__ $$aARTICLE