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Abstract. In a previous work we have introduced and studied a special kind
of toric resolution, the so-called embedded Q-resolution, which essentially con-

sists in allowing the final ambient space to contain abelian quotient singular-

ities. Here we explicitly compute an embedded Q-resolution of a Yomdin-Lê
surface singularity (V, 0) in terms of a (global) embedded Q-resolution of its

tangent cone by means of just weighted blow-ups at points. The generalized

A’Campo’s formula in this setting is applied so as to compute the character-
istic polynomial. As a consequence, an exceptional divisor in the resolution

of (V, 0), apart from the first one which might be special, contributes to its

complex monodromy if and only if so does the corresponding divisor in the
tangent cone. Thus the resolution obtained is optimal in the sense that the

weights can be chosen so that every exceptional divisor in the Q-resolution of

(V, 0), except perhaps the first one, contributes to its monodromy.

Introduction

Let (V, 0) ⊂ (C3, 0) be a germ of surface singularity in C3. By definition, V is
the zero set of a holomorphic function f : U → C, where U ⊂ C3 is a small neigh-
borhood of the origin and f(0) = 0. Denote also by f the germ at the origin of this
function; it is an element of the local ring C{x, y, z}. Consider the decomposition
of f into homogeneous parts, f(x, y, z) = fm(x, y, z) + fm+1(x, y, z) + · · · , that is,
fi is homogeneous of degree i and fm 6= 0. The integer m is the multiplicity of
the singularity and the order of the series f . Denote by C := V (fm) ⊂ P2 the
projective plane curve defined by the tangent cone of the singularity. The following
two families are considered in this work separately:

(1) Superisolated singularity (or, shortly, SIS): the local equation f satisfies
Sing(C) ∩ V (fm+1) = ∅ as a subset in P2.

(2) Yomdin-Lê singularity (YLS): the decomposition of f into homogeneous
polynomials is of the form f = fm + fm+k + · · · , k ≥ 1, and the condition
Sing(C) ∩ V (fm+k) = ∅ holds in P2.

The study of YLS comes from the papers of Yomdin [18] and Lê [8] about
hypersurfaces with one-dimensional singular locus. Thereafter, these singularities
have been extensively studied by many authors, see for instance the survey [3] where
part of the theory of these singularities and their applications including some new
and recent developments are reviewed. The SIS, i.e. k = 1, were introduced by
Luengo and also appear in a paper by Stevens, where the µ-constant stratum is
considered, see [9] and [17]. Afterward Artal described in his PhD thesis [2] an
embedded resolution of such singularities using blow-ups at points and rational
curves. However, no embedded resolution is found in the literature for YLS with k
greater than or iqual to 2.
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Note that some generalization of YLS have been studied too. For example, Melle-
Hernández [13] obtained a formula for the Milnor number of the surface isolated
singularity f = fm + fm+k ∈ C{x, y, z} in terms of geometric and topological
invariants of the projective plane curves defined by the homogeneous polynomials fi.

In this paper, the new techniques developed in [4, 5, 11] are partially applied to
study these two families of singularities. More precisely, we present here a detailed
explicit description of an embedded Q-resolution for YLS in terms of a (global)
embedded Q-resolution of its tangent cone. It is proven that only weighted blow-
ups at points are needed. By contrast, the final total space produced has abelian
quotient singularities. Note that an embedded Q-resolution can be thought of as a
special kind of toric embedded resolution.

The main result of this paper is a collection of several results that can be sum-
marized as follows, cf. Lemma 3.2, Proposition 3.9, Theorem 3.12 for SIS and
Lemma 6.1, Proposition 6.4, Theorem 6.6 for YLS.

Theorem 0.1. Let %P : Y P → (C2, P ) be an embedded Q-resolution of the curve
(C, P ) for each P ∈ Sing(C). Assume that

(%P )∗(C, P ) = Ĉ +
∑

a∈S(ΓP+)

mP
a EPa

is the total transform of (C, P ), where EPa is the exceptional divisor of the (pPa , q
P
a )-

blow-up at a point Pa belonging to the locus of non-transversality. Denote by νPa
the (pPa , q

P
a )-multiplicity of C at Pa.

Then, one can construct an embedded Q-resolution ρ : X → (C3, 0) of the
Yomdin-Lê singularity (V, 0) such that the total transform is

ρ∗(V, 0) = V̂ +mE0 +
∑

P∈Sing(C)

a∈S(ΓP+)

(m+ k) ·mP
a

gcd(k,mP
a )

EPa ,

and EPa appears after the
(

k pPa
gcd(k,νPa )

,
k qPa

gcd(k,νPa )
,

νPa
gcd(k,νPa )

)
-blow-up at the point Pa

(the locus of non-transversality in dimension 2 and 3 are identified).

For k = 1, the main advantage compared with Artal’s resolution [2] is that in the
latter νPa (rather than just one) blow-ups at points and rational curves at each step
are needed to achieve a similar situation. On the other hand, as it is said above, no
embedded resolution for YLS with k ≥ 2 can be found in the literature. The main
difficulty in computing a (usual) embedded resolution of this kind of singularities is
that after several blow-ups at points and rational curves, following the ideas of [2],
one eventually obtains a branch of resolutions depending on k. Thus the study of
this singularities by using the classical tools does not seem to be very helpful.

The generalized A’Campo’s formula [11, Theorem 2.8] is applied and the char-
acteristic polynomial and the Milnor number are calculated as an application, see
Theorem 4.3 and Corollary 4.5 for SIS and Theorem 7.2 and Corollary 7.3 for
YLS. In particular, the formulas by D. Siersma [15] and J. Stevens [17] for the
characteristic polynomial of YLS can be obtained in this way. Other more sophis-
ticated invariants, including the mixed Hodge structure of the cohomology of the
Milnor fiber, are the subjects of our study for the future. Note that Siersma and
Stevens’ formulas above were also calculated in [7] after providing a generalization of
A’Campo’s formula for the monodromy zeta function via partial resolutions, i.e. the
condition about normal crossing divisor in the embedded resolution is removed.
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As a consequence of the previous calculations, we show that an exceptional
divisor EPa in the resolution of (V, 0) contributes to the complex monodromy if and
only if so does the corresponding divisor EPa in the curve C, see Lemmas 4.1 and 7.1.
Thus the weights can be chosen so that every exceptional divisor in the Q-resolution
of (V, 0), except perhaps the first one E0, contributes to its monodromy.

Several proofs presented here are a bit technical which challenge interesting cal-
culations with local equations on charts. Nevertheless the final construction is very
useful and important. In fact, this work can be considered as the first step in the
computation of mixed Hodge structures of YLS together with the monodromy ac-
tion. Note that, following the ideas of [2], these tools can be used in combination
with the generalized Steenbrink’s spectral sequence of [12] to find two YLS hav-
ing the same characteristic polynomials, the same abstract topologies, but different
embedded topologies (it is enough to take a Zariski pairs in the tangent cones). Be-
sides, these techniques can be applied to study superisolated singularities in higher
dimension and the same applies to weighted Yomdin-Lê surface singularities [10,
§VI.4, §VII.3]. Note that the tools developed in [7] can not be used for computing
more involved invariants as the mixed Hodge structure of the Milnor fiber.

Although these two families can be studied simultaneously, for better exposi-
tion they are presented and treated separately. The paper is organized as follows.
In §1, some well-known preliminaries about weighted blow-ups and embedded Q-
resolutions are presented. After recalling the step zero in Artal’s resolution in §2,
the full construction of the embedded Q-resolution for SIS is given in §3 so as to
prove the main theorem for this family. In §4, the Euler characteristic of the strata
needed for applying A’Campo’s formula is calculated and the characteristic polyno-
mial and the Milnor number are obtained as an application. Sections §5, §6, §7 are
the analogous of §2, §3, §4 for YLS showing the corresponding results mentioned
above. Finally, §8 is devoted to a simple example.

Acknowledgments. This is part of my PhD thesis. I am deeply grateful to my
advisors Enrique Artal and José Ignacio Cogolludo for supporting me continuously
with their fruitful conversations and ideas.

1. Preliminaries

Let us sketch some definitions and properties about V -manifolds, weighted pro-
jective spaces, and weighted blow-ups, see [4, 5, 10] for a more detailed exposition.
Also, the generalized A’Campo’s formula for embedded Q-resolutions is recalled,
see [11].

1.1. Embedded Q-resolutions and weighted blow-ups. Classically an em-
bedded resolution of {f = 0} ⊂ Cn+1 is a proper analytic map π : X → (Cn+1, 0)
from a smooth variety X satisfying, among other conditions, that π∗({f = 0}) is a
normal crossing divisor. To weaken the condition on the preimage of the singularity
one studies the following notion.

Definition 1.1. Let H = {f = 0} ⊂ Cn+1. An embedded Q-resolution of (H, 0) ⊂
(Cn+1, 0) is a proper analytic map π : X → (Cn+1, 0) such that:

(1) X is a V -manifold with abelian quotient singularities.
(2) π is an isomorphism over X \ π−1(Sing(H)).
(3) π∗(H) is a hypersurface with Q-normal crossings on X.

To deal with these resolutions, some notation needs to be introduced. Let µd :=
µd0 × · · · × µdr be an arbitrary finite abelian group written as a product of finite
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cyclic groups, that is, µdi is the cyclic group of di-th roots of unity. Consider a
matrix of weight vectors

A := (aij)i,j = [a0 | · · · |an] ∈Mat((r + 1)× (n+ 1),Z)

and the action

(µd0 × · · · × µdr )× Cn+1 −→ Cn+1,
(
ξd,x

)
7→ (ξa00d0

· · · ξar0dr
x0, . . . , ξ

a0n
d0
· · · ξarndr

xn).

The set of all orbits Cn+1/µd is called (cyclic) quotient space of type (d;A) and it
is denoted by

X(d;A) := X




d0 a00 · · · a0n

...
...

. . .
...

dr ar0 · · · arn


 .

The orbit of an element (x0, . . . , xn) under this action is denoted by [(x0, . . . , xn)].
Condition 3 of the previous definition means the total transform π−1(H) = (f ◦
π)−1(0) is locally given by a function of the form xm0

0 · · ·xmkk : X(d;A) → C,
see [16]. The previous numbers mi’s have no intrinsic meaning unless µd induces a
small action on GL(n+ 1,C). This motivates the following.

Definition 1.2. The type (d;A) is said to be normalized if the action is free on
(C∗)n+1 and µd is identified with a small subgroup of GL(n+ 1,C).

As a tool for finding embedded Q-resolutions one uses weighted blow-ups with
smooth center. Special attention is paid to the case of dimension 2 and 3 and
blow-ups at points.

Example 1.3. Assume (d; a, b) is normalized and gcd(ω) = 1, ω := (p, q). Then,
the total space of the ω-blow-up at the origin of X(d; a, b),

(1) π(d;a,b),ω : ̂X(d; a, b)ω −→ X(d; a, b),

can be written as

Û1 ∪ Û2 = X

(
pd

e
; 1,
−q + βpb

e

)
∪X

(
qd

e
;
−p+ µqa

e
, 1

)

and the charts are given by

First chart X

(
pd

e
; 1,
−q + βpb

e

)
−→ Û1,

[
(xe, y)

]
7→
[
((xp, xqy), [1 : y]ω)

]
(d;a,b)

.

Second chart X

(
qd

e
;
−p+ µqa

e
, 1

)
−→ Û2,

[
(x, ye)

]
7→
[
((xyp, yq), [x : 1]ω)

]
(d;a,b)

.

Above, e = gcd(d, pb − qa) and βa ≡ µb ≡ 1 (mod d). Observe that the origins of
the two charts are cyclic quotient singularities; they are located at the exceptional
divisor E which is isomorphic to P1

ω
∼= P1.

Example 1.4. Let πω : Ĉ3
ω → C3 be the ω-weighted blow-up at the origin with

ω = (p, q, r), gcd(ω) = 1. The new space is covered by three open sets

Ĉ3
ω = U1 ∪ U2 ∪ U3 = X(p;−1, q, r) ∪X(q; p,−1, r) ∪X(r; p, q,−1),
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and the charts are given by

(2)

X(p;−1, q, r) −→ U1 : [(x, y, z)] 7→ ((xp, xqy, xrz), [1 : y : z]ω),

X(q; p,−1, r) −→ U2 : [(x, y, z)] 7→ ((xyp, yq, yrz), [x : 1 : z]ω),

X(r; p, q,−1) −→ U3 : [(x, y, z)] 7→ ((xzp, yzq, zr), [x : y : 1]ω).

In general Ĉ3
ω has three lines of (cyclic quotient) singular points located at the

three axes of the exceptional divisor π−1
ω (0) ' P2

ω. For instance, a generic point
in x = 0 is a cyclic point of type C ×X(gcd(q, r); p,−1). Note that although the
quotient spaces are represented by normalized types, the exceptional divisor can
still be simplified:

(3)
P2(p, q, r) −→ P2

(
p

(p, r) · (p, q) ,
q

(q, p) · (q, r) ,
r

(r, p) · (r, q)

)
,

[x : y : z] 7→ [xgcd(q,r) : ygcd(p,r) : zgcd(p,q)].

However, this simplification may be not useful when working with the whole

ambient space because its charts are not compatible with Ĉ3
ω. Thus the natural

covering of the exceptional divisor is

P2
ω = V1 ∪ V2 ∪ V3 = X(p; q, r) ∪X(q; p, r) ∪X(r; p, q),

and the charts are given by the restrictions of the maps in (2) to x = 0, y = 0, and
z = 0 respectively.

Example 1.5. Assume (d; a, b, c) is normalized and gcd(ω) = 1, ω := (p, q, r).
Then, the total space of the ω-blow-up at the origin of X(d; a, b, c),

π = π(d;a,b,c),ω : ̂X(d; a, b, c)ω −→ X(d; a, b, c)

can be covered by three open sets as

̂X(d; a, b, c)ω =
Ĉ3
ω

µd
=
U1 ∪ U2 ∪ U3

µd
= Û1 ∪ Û2 ∪ Û3,

where

Û1 =
U1

µd
=
X(p;−1, q, r)

µd
= X

(
p −1 q r
pd a pb− qa pc− ra

)
,

Û2 =
U2

µd
=
X(q; p,−1, r)

µd
= X

(
q p −1 r
qd qa− pb b qc− rb

)
,

Û3 =
U3

µd
=
X(r; p, q,−1)

µd
= X

(
r p q −1
rd ra− pc rb− qc c

)
.

The charts are given by the induced maps on the corresponding quotient spaces,
see Equation (2). The exceptional divisor E = π−1

(d;a,b,c),ω(0) is identified with the

quotient

P2
ω(d; a, b, c) :=

P2
ω

µd
.

There are three lines of quotient singular points in E and outside E the map
π(d;a,b,c),ω is an isomorphism.

The expression of the quotient spaces can be modified as follows. Let α and
β be two integers such that αd + βa = gcd(d, a), then one has that the space
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X
(
p; −1 q r
pd; a pb−qa pc−ar

)
equals

X

(
pd (d, a) −q(d, a) + βpb −r(d, a) + βpc

(d, a) 0 b c

)
.

Note that in general the previous space is not represented by a normalized type.
To obtain its normalized one, follow the processes described in (I.1.3) and (I.1.9)
of [10].

1.2. Intersection theory on V-manifolds. The notion of Cartier and Weil Q-
divisors coincide on V -manifolds and thus a rational intersection theory can be
developed for Q-Weil divisors using the theory of line bundles. This intersection
multiplicity was first introduced by Mumford for normal surfaces, see [14]. Recently
in [5] explicit formulas for weighted blow-ups and weighted projective planes was
calculated.

Proposition 1.6. Let π : X̂ → X be the (p, q)-blow-up at a point of type (d; a, b)
as in (1). Consider two Q-divisors C and D on X(d; a, b). Then,

(1) E · π∗(C) = 0, (4) E2 = − e2

dpq
,

(2) π∗(C) = Ĉ +
ν

e
E, (5) Ĉ · D̂ = C ·D − νµ

dpq
,

(3) E · Ĉ =
eν

dpq
, (6) D̂2 = D2 − µ2

dpq
(D compact),

where ν and µ denote the (p, q)-multiplicities of C and D at P , i.e. x (resp. y) has
(p, q)-multiplicity p (resp. q).

Proposition 1.7. Let us denote by m1, m2, m3 the determinants of the three
minors of order 2 of the matrix

( p q r
a b c

)
. Assume gcd(p, q, r) = 1 and denote e =

gcd(d,m1,m2,m3). Consider P2
ω the weighted projective plane with ω = (p, q, r).

Then, the intersection number of two Q-divisors on the quotient P2
ω(d; a, b, c) :=

P2
ω/µd is D1 ·D2 = e

dpqr degω(D1) degω(D2). Moreover, if |D1| * |D2|, then D1 ·
D2 =

∑
P∈|D1|∩|D2|(D1 ·D2)P .

Remark 1.8. To calculate (D1 · D2)[(0,0)] the intersection multiplicity of two Q-

divisors on X(d; a, b), gcd(d, a, b) = 1, consider pr : C2 → X(d; a, b) and apply the

classical local pull-back formula. Denote by D̃i the pull-back divisor of Di under

the projection. Then, (D1 ·D2)[(0,0)] = 1
d (D̃1 · D̃2)(0,0).

Note that the exceptional divisor of the (p, q, r)-weighted blow-up at a point of
type (d; a, b, c) is naturally isomorphic to P2

ω(d; a, b, c). Hence this result will help
us describe embedded Q-resolutions for YLS.

1.3. A’Campo’s formula for embedded Q-resolutions. Let f : (Cn+1, 0) →
(C, 0) be a non-constant analytic function germ defining an isolated singularity and
let H = {f = 0}. Given π : X → (Cn+1, 0) an embedded Q-resolution of (H, 0),

consider E1, . . . , Es the irreducible components of the exceptional divisor and Ĥ
the strict transform.

One writes E0 = Ĥ and S = {0, 1, . . . , s} so that the stratification of X associ-
ated with the Q-normal crossing divisor π−1(H) =

⋃
i∈S Ei is defined by setting

E◦I :=
(
∩i∈I Ei

)
\
(
∪i/∈I Ei

)
,

for a given possibly empty set I ⊆ S.
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Let X =
⊔
j∈J Qj be a finite stratification on X given by its quotient singularities

such that the local equation of g := f ◦ π at P ∈ E◦I ∩Qj is of the form

xm0
0 · . . . · xmkk : X(d;A) := Cn+1/µd −→ C, (0 ≤ k ≤ n)

and the multiplicities mi’s and the action µd are the same along each stratum E◦I ∩
Qj , i.e. they do not depend on the chosen point P ∈ E◦I ∩Qj .

Definition 1.9. Using the previous notation the multiplicity of E◦{i}∩Qj is defined
as

m(E◦{i} ∩Qj) =
m

L
∈ N,

where L = lcm
(

d0
gcd(d0,a00) , . . . ,

dr
gcd(dr,ar0)

)
and xm0 : X(d;A) → C is the equation

of the exceptional divisor at any point P ∈ E◦{i} ∩Qj .

Let us denote Ěi,j := E◦{i} ∩ Qj and mi,j := m(Ěi,j). The following result is

nothing but the generalization of A’Campo’s formula in this setting [11].

Theorem 1.10. The characteristic polynomial of the monodromy of (H, 0) ⊂
(Cn+1, 0) is (i = 1, . . . , s, j ∈ J)

∆(t) =


 1

t− 1

∏

i,j

(tmi,j − 1)
χ(Ěi,j)




(−1)n

and thus the Milnor number is µ = (−1)n
[
− 1 +

∑

i,j

mi,j · χ(Ěi,j)
]
.

2. Preparations for the Q-Resolution of SIS

These singularities have been introduced by Luengo and also appear in a paper
by Stevens, where the µ-constant stratum is studied, see [9] and [17] respectively.
Afterward Artal described in his PhD thesis [2] an embedded resolution of such
singularities using blow-ups at points and rational curves.

Here an embedded Q-resolution is given and particularly it is proven that only
weighted blow-ups at points are needed. By contrast, the final ambient space
obtained has abelian quotient singularities.

Let (V, 0) be a SIS in (C3, 0) defined by a holomorphic function f : U → C.
As in the introduction, denote by m the multiplicity of V , and C = V (fm) ⊂ P2.

Let π0 : Û → U be the blow-up at the origin. Recall that the total transform is

the divisor π∗0(V ) = V̂ + mE0, where V̂ is the strict transform of V , and E0 is

the exceptional divisor of π0. The intersection V̂ ∩ E0 is identified with the plane
curve C, see Figure 1.

E0

V̂

C

π∗
0(V ) = V̂ +mE0

V̂ ∩ E0 = C
NT (π∗

0(V )) = Sing(C)

Figure 1. Step 0 in the embedded Q-resolution of (V, 0).
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Let us consider P ∈ V̂ ∩ E0 = C. After linear change of coordinates we can

assume that P = ((0, 0, 0), [0 : 0 : 1]) ≡ [0 : 0 : 1] ∈ C. Take a chart of Û around P
where z = 0 is the equation of E0 and the blowing-up takes the form

(x, y, z)
π07−→ (xz, yz, z).

Then the equation of V̂ is

V̂ : fm(x, y, 1) + z
[
fm+1(x, y, 1) + zfm+2(x, y, 1) + · · ·

]
= 0.

Two cases arise: if P is smooth in C, then V̂ is also smooth at P and the
intersection with E0 at that point is transverse; otherwise, i.e P ∈ Sing(C), the SIS
condition Sing(C) ∩ V (fm+1) = ∅ implies that the previous expression in brackets

is a unit in the local ring C{x, y, z} and, in particular, V̂ is still smooth. Now the

order of fm(x, y, 1) is greater than or equal to 2 and the intersection V̂ ∩E0 is not
transverse at P .

We summarize the previous discussion in the following result, which is actually
the step zero in the resolution of [2].

Lemma 2.1 (Step 0). Let P an arbitrary point in C. Then V̂ is smooth in a
neighborhood of P .

Moreover, the surfaces V̂ and E0 intersect transversely at P if and only if P
is a smooth point in C. Otherwise, i.e. P ∈ Sing(C), there exist local analytic
coordinates around P such that the equations of the exceptional divisor and the
strict transform are of the form

E0 : z = 0 ;

V̂ : z + h(x, y) = 0 ,

where h(x, y) = 0 is an equation of C and its order is at least 2.

3. Construction of the Embedded Q-Resolution

Now we proceed to construct the full Q-resolution of (V, 0). By the preceding
lemma, the set of points where π∗0(V ) is not a normal crossing divisor is finite,
namely Sing(C). Therefore the next step in the resolution of (V, 0) is to blow up
those points. Let us fix P ∈ Sing(C) and consider local coordinates as in Lemma
2.1. Even though many objects that appear in this section depend on P , to simplify
notation, it is omitted if no confusion seems likely to arise.

Definition 3.1. Given a divisor D, the set of points where D is not a normal
crossing divisor is called the locus of non-transversality of D and it is denote by
NT (D).

In our case, the locus of non-transversality after the blowing-up at the origin of
(V, 0) is NT (π∗0(V )) = Sing(C).

The following result is the first step in a sequence of blow-ups. We adopt the
convention to write the exceptional divisors appearing in the curve C in calligraphy
letter, while normal letter is used for the divisors in the resolution of (V, 0).

Also, the objects coming from the blowing-up at Pa 6= P (resp. P ) are indexed
by the corresponding subindex a (resp. the number 1). Finally, recall that the strict
transform of a divisor is denoted again by the same letter as the own divisor.

Lemma 3.2 (Step 1). Let (p1, q1) ∈ N2 be two positive coprime numbers. Let $1 be
the weighted blow-up at P ∈ C with respect to (p1, q1). Denote by E1 its exceptional
divisor and by ν1 the (p1, q1)-multiplicity of C at P .

Consider π1 the (p1, q1, ν1)-weighted blow-up at P in dimension 3 and E1 the
corresponding exceptional divisor. Then, the total transform of π∗0(V ) verifies:
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(1) π∗1π
∗
0(V ) = V̂ +mE0 + (m+ 1)ν1E1,

(2) NT (π∗1π
∗
0(V )) = NT ($∗1(C)).

Proof. Let us start by blowing up the point P ∈ C with respect to the weight vector
(p1, q1), gcd(p1, q1) = 1. Consider the local coordinates of Lemma 2.1 around P so
that the equation of C is h(x, y) = 0; thus ν1 = ord(p1,q1) h(x, y).

The ambient space obtained has two cyclic quotient singular points correspond-
ing to the origin of each chart and located at the exceptional divisor E1. The latter
can be identified with the usual projective line P1(p1, q1) ' P1 under the map
[x : y] 7→ [xq1 : xp1 ], and it has self-intersection −1

p1q1
by Proposition 1.6.

Using the charts described in Example 1.3,

1st chart X(p1;−1, q1) −→ Ĉ2(p1, q1),

[(x, y)] 7→
(
(xp1 , xq1y), [1 : y](p1,q1)

)
;

2nd chart X(q1; p1,−1) −→ Ĉ2(p1, q1),

[(x, y)] 7→
(
(xyp1 , yq1), [x : 1](p1,q1)

)
;

one obtains the following equations for the divisor $∗1(C) = C+ν1E1, see Figure 2.

X(p1;−1, q1) ⊇
{
E1 : x = 0;

C : h1(x, y) = 0,

X(q1; p1,−1) ⊇
{
E1 : y = 0;

C : h2(x, y) = 0.

Note that h1(x, y) and h2(x, y) are not functions on the previous quotient spaces
but they define a zero set, since they satisfy

(4) h1(ξ−1
p1 x, ξ

q1
p1y) = ξν1p1h1(x, y), h2(ξp1q1 x, ξ

−1
q1 y) = ξν1q1 h2(x, y).

(q1) (p1)

[0 : 1] [1 : 0][γi : 1]

E1
a = 0

b 6= 0

Figure 2. Step 1 in the embedded Q-resolution of (C, P ).

Also, if the sum h = hν1 +hν1+l+· · · is the decomposition of h(x, y) into (p1, q1)-
homogeneous parts, then h1(0, y) = hν1(1, y), h2(x, 0) = hν1(x, 1), and the (global)
equation of C ∩ E1 ⊂ P1(p1, q1) is of the form

hν1(x, y) = xayb
∏

i

(xq1 − γq1i yp1)ei = 0.

Thus the intersection multiplicity of E1 and C at the point [γi : 1] is ei, while it is
a
q1

(resp. b
p1

), not necessarily an integer, at the singular point [0 : 1] (resp. [1 : 0]),

see Remark 3.3 below.
Now describe the weighted blow-up at P with respect to (p1, q1, ν1) in dimen-

sion 3. The new space has in general two (not three because p1 and q1 are coprime)
cyclic quotient singular lines, each of them isomorphic to P1, and located at the
new exceptional divisor E1. They correspond to the lines at infinity x = 0 and
y = 0 of E1 = P2(p1, q1, ν1).



10 J. MARTÍN-MORALES

As an abstract space, E1 contains two singular points and it is isomorphic to an-
other weighted projective plane as the following expression shows, see Equation (3),

P2(p1, q1, ν1) −→ P2
(

p1
(p1,ν1) ,

q1
(q1,ν1) ,

ν1
(p1,ν1)(q1,ν1)

)
,

[x : y : z] 7→ [x(q1,ν1) : y(p1,ν1) : z].

The multiplicity of E1 is the sum of the (p1, q1, ν1)-multiplicities, in our local
coordinates, of the components of the divisor π∗0(V ) that pass through P , that is
ν1m+ ν1 = (m+ 1)ν1. Hence the total transform is the divisor

π∗1π
∗
0(V ) = V̂ +mE0 + (m+ 1)ν1E1.

The equations in the three charts are given in the table below. Note that the
cyclic quotient spaces are represented by normalized types, since gcd(p1, q1, ν1) = 1,
see Example 1.4.

X(p1;−1, q1, ν1) X(q1; p1,−1, ν1)

(x, y, z)
π17−→ (xp1 , xq1y, xν1z) (xyp1 , yq1 , yν1z)

E0 z = 0 z = 0
E1 x = 0 y = 0

V̂ z + h1(x, y) = 0 z + h2(x, y) = 0

X(ν1; p1, q1,−1)

(x, y, z)
π17−→ (xzp1 , yzq1 , zν1)

E0 −
E1 z = 0

V̂ 1 + hν1(x, y) + zlhν1+l(x, y) + · · · = 0

Using the automorphism on X(p1;−1, q1, ν1) defined by [(x, y, z)] 7→ [(x, y, z +

h1(x, y))], which is well defined due to (4), one sees that both E0 and V̂ intersect
transversely E1. The equations of these intersections are given by

E0 ∩ E1 = {z = 0},
V̂ ∩ E1 = {z + hν1(x, y) = 0},

as projective subvarieties in E1 = P2(p1, q1, ν1).

(ν1)

(q1) (p1)

x = 0 y = 0

E1

E0 ∩ E1

V̂ ∩ E1

[γi : 1 : 0]

[0 : 0 : 1]

(p1)

(q1)

E0

E1 ∩ E0

V̂ ∩ E0

[γi : 1]

Figure 3. Step 1 in the Q-resolution of (V, 0).

By Proposition 1.7, these smooth projective curves are two sections of E1 with
self-intersection ν1

p1q1
. They meet at #(C ∩ E1) points with exactly the same inter-

section number as in C ∩ E1, that is, for P ∈ C ∩ E1 ≡ V̂ ∩ E0 ∩ E1, one has

(5)
(
E0 ∩ E1, V̂ ∩ E1; E1

)
P

=
(
C, E1; Ĉ2

(p1,q1)

)
P
.



EMBEDDED Q-RESOLUTIONS FOR YOMDIN-LÊ SURFACE SINGULARITIES 11

On the other hand, the intersection of the total transform with E0 produces an
identical situation to that of C. All these statements follow from the equations
above. In Figure 3, we see the intersection of the divisor π∗1π

∗
0(V ) with E0 and E1,

respectively.
Finally, the triple points of the total transform in dimension 3 are identified with

the points of C∩E1 and, by (5), the intersection at one of those points is transverse
if and only if so is it in dimension 2. This concludes the proof. �

Remark 3.3. To study the curves {z = 0} and {z + hν1(x, y) = 0} in P2(p1, q1, ν1)
at the point [0 : 1 : 0], one chooses the second chart of the weighted projective
plane and obtains the local equations z = 0 and z + xa = 0 around the origin
of X(q1; p1, ν1). The intersection multiplicity at that point is a/q1, although the
quotient space is not represented by a normalized type, see Remark 1.8. Analogous
considerations follow for the points [γi : 1 : 0] and [1 : 0 : 0]. This fact was used to
prove (5).

Remark 3.4. The curve V̂ ∩E1 meets the line x = 0 (resp. y = 0) in the projective
plane P2(p1, q1, ν1) at exactly one point and the intersection is always transverse. If
a = 0 (resp. b = 0), then gcd(q1, ν1) = q1 (resp. gcd(p1, ν1) = p1) and that point is
different from the origins, see table with the equations. This is important to obtain
transversality in the next steps of the resolution of (V, 0).

After the first blow-up a very similar situation to Lemma 2.1 is produced, except
that there is a new divisor to be considered and the points where the total transform
does not have normal crossings could be singular in the ambient space. The main
advantage compared with Artal’s resolution [2] is that in the latter ν1 blow-ups at
points and rational curves were needed to achieve a similar situation.

The next result is the second step in the resolution of (V, 0) and it corresponds
to the second step in the resolution of (C, P ). Fix a point Pa ∈ NT ($∗1(C)) and,
to cover all cases, assume Pa is possibly not smooth in the ambient space.

Lemma 3.5 (Step 2). Let (pa, qa) ∈ N2 be two positive coprime numbers. Let $a

be the weighted blow-up at Pa with respect to (pa, qa). Denote by Ea its exceptional
divisor, νa the (pa, qa)-multiplicity of C at Pa, and ma the multiplicity of Ea.

Consider πa the (pa, qa, νa)-weighted blow-up at Pa in dimension 3 and let Ea be
the corresponding exceptional divisor. Then, the new total transforms satisfy:

(1) ma =
νa + paν1

gcd(p1, qa + paq1)
,

(2) $∗a$
∗
1(C) = C + ν1E1 +maEa,

(3) π∗aπ
∗
1π
∗
0(V ) = V̂ +mE0 + (m+ 1)ν1E1 + (m+ 1)maEa,

(4) NT (π∗aπ
∗
1π
∗
0(V )) = NT ($∗a$

∗
1(C)).

Proof. To fix ideas assume that Pa = [1 : 0] ∈ C ∩ E1. The other cases follow
analogously. Let us first describe the (pa, qa)-weighted blow-up at the point Pa ∈ C.
Consider local coordinates around Pa so that the equation of $1(C) = C + ν1E1 is
given by the well-defined function

xν1h1(x, y) : X(p1;−1, q1) −→ C,

where x = 0 is the exceptional divisor E1 and h1(x, y) = 0 is the strict trans-
form of the curve as in the proof of Lemma 2.1. Hence the order at Pa is νa =
ord(pa,qa) h1(x, y).

Also, take α1, β1 satisfying the Bézout’s identity α1p1 + β1q1 = 1 so that
X(p1;−1, q1) = X(p1;β1,−1) and thus xν1h1(x, y) also defines a function on the
latter quotient space.
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Denote d := gcd(p1, qa + paq1). Two new cyclic quotient singularities of orders
p1pa
d and p1qa

d appear in the ambient space. They correspond to the origin of each
chart and thus located at the new exceptional divisor

Ea = P1
(pa,qa)

/
µp1 = P1

(pa,qa)(p1;−1, q1),

which has self-intersection −d2
p1paqa

, see Proposition 1.6.

Let h1 = hνa + hνa+l + · · · be the decomposition of h1(x, y) into (pa, qa)-
homogeneous parts. Denote by g1(x, y) and g2(x, y) the unique polynomials such
that

h1(xpa , xqay) = xνag1(x, y), h1(xypa , yqa) = yνag2(x, y).

Then, g1(x
1
d , y)|x=0 = g1(0, y) = hνa(1, y), and g2(x, y

1
d )|y=0 = g2(x, 0) = hνa(x, 1).

Hence the set of points C ∩ Ea is given by the (global) equation

{hνa(x, y) = 0} ⊂ P1
(pa,qa)(p1;−1, q1).

Note that hνa(x, y) is not a function on the previous quotient space but it defines
a zero set, since

(6)
hνa(ξ−1

p1 x, ξ
q1
p1y) = ξν1p1hνa(x, y),

hνa(ξβ1
p1 x, ξ

−1
p1 y) = ξ−β1ν1

p1 h1(x, y).

The multiplicity of the new exceptional divisor Ea is ma = νa+paν1
d . The equa-

tions of the total transform $∗a$
∗
1(C) in the two charts are given in the table below,

see Example 1.3.

Equations of $∗a$
∗
1(C) Chart

Ea : x = 0
X
(
p1pa
d ;−1, qa+paq1

d

)
−→ Ĉ2(pa, qa)

/
µp1E1 : −

C : g1(x
1
d , y) = 0

[
(xd, y)

]
7→

[(
(xpa , xqay), [1 : y](pa,qa)

)]

Ea : y = 0
X
(
p1qa
d ; pa+β1qa

d ,−1
)
−→ Ĉ2(pa, qa)

/
µp1E1 : x = 0

C : g2(x, y
1
d ) = 0

[
(x, yd)

]
7→

[(
(xypa , yqa), [x : 1](pa,qa)

)]

Now let us see the behavior of the (pa, qa, νa)-weighted blow-up at the point Pa
in dimension 3. In our local coordinates around Pa = [1 : 0 : 0] ∈ (V̂ ∩ E0) ∩ E1,

the equation of the divisor π∗1π
∗
0(V ) = V̂ + mE0 + (m + 1)ν1E1 is given by the

function

zmx(m+1)ν1(z + h1(x, y)) : X(p1;−1, q1, ν1) −→ C.
Note that X(p1;−1, q1, ν1) = X(p1;β1,−1,−β1ν1). Now we use the charts de-
scribed in Example 1.5.

The ambient space has two new lines of singular points corresponding to the
lines at infinity {x = 0} and {y = 0} of the exceptional divisor

Ea = P2
(pa,qa,νa)

/
µp1 = P2

(pa,qa,νa)(p1;−1, q1, ν1).

Recall that [0 : 0 : 1] ∈ Ea is a quotient singular point not necessarily cyclic.
The multiplicity of Ea is the sum of the (pa, qa, νa)-multiplicities of the compo-

nents of the divisor π∗1π
∗
0(V ) that pass through Pa divided by d = gcd(p1, qa+paq1),

that is,

νam+ pa(m+ 1)ν1 + νa
d

=
(m+ 1)(νa + paν1)

d
= (m+ 1)ma.
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To study the locus of non-transversality in a neighborhood of Ea, the equations
of the total transform are calculated in the following table. Note that the third
chart is not given in a normalized form but, as we shall see, it is not needed for our
purpose.

1st chart
Ea : x = 0

X

(
p1pa
d

;−1,
qa + paq1

d
,ma

)
E1 : −
E0 : z = 0

V̂ : z + g1(x
1
d , y) = 0

[
(xd, y, z)

]
7→

[(
(xpa , xqay, xνaz), [1 : y : z]

)]

2nd chart
Ea : y = 0

X

(
p1qa
d

;
pa + β1qa

d
,−1,

νa − β1ν1qa
d

)
E1 : x = 0
E0 : z = 0

V̂ : z + g2(x, y
1
d ) = 0

[
(x, yd, z)

]
7→

[(
(xypa , yqa , yνaz), [x : 1 : z]

)]

3rd chart
Ea : z = 0

X

(
νa pa qa −1
p1νa paν1 + νa qaν1 − q1νa −ν1

)
E1 : x = 0
E0 : −
V̂ : 1 + h1(xzpa ,yzqa )

zpa = 0
[
(x, y, z)

]
7→

[(
(xzpa , yzqa , zνa), [x : y : 1]

)]

The divisor mE0 + (m + 1)ν1E1 + (m + 1)maEa has clearly normal crossings.

Since the polynomial xν1ymag2(x, y
1
d ) defines a function on the quotient space

X(p1qad ; pa+β1qa
d ,−1), the following map is a well-defined automorphism on the

corresponding cyclic quotient space

X
(p1qa

d
;
pa + β1qa

d
,−1,

νa − β1ν1qa
d

)
, [(x, y, z)] 7−→ [(x, y, z + g2(x, y

1
d )]

and hence the divisor V̂ + (m+ 1)ν1E1 + (m+ 1)maEa has also normal crossings.

Only the intersection V̂ ∩ E0 ∩ Ea has to be studied. To do so, we consider

the curves E0 ∩ Ea = {z = 0} and V̂ ∩ Ea = {z + hνa(x, y) = 0} as subvarieties
in Ea = P2

(pa,qa,νa)(p1;−1, q1, ν1). The first two charts of the latter space are

respectively isomorphic to

X
(p1pa

d
;
qa + paq1

d
,ma

)
, X

(p1qa
d

;
pa + β1qa

d
,
νa − β1ν1qa

d

)
.

By Proposition 1.7, these smooth projective curves are two sections of Ea with
self-intersection number νad

p1paqa
; note that

gcd
(
p1, qa + paq1, νa + paν1, q1νa − ν1qa

)
= d,

which is the greatest common divisor needed in the proposition mentioned above.
Now working as in Remark 3.3, see also Remark 1.8, one sees that they meet at

#(C ∩ Ea) points with exactly the same intersection multiplicity as in the latter,

that is, for P ∈ C ∩ Ea ≡ V̂ ∩ E0 ∩ Ea, one has

(7)
(
E0 ∩ Ea, V̂ ∩ Ea; Ea

)
P

=
(
C, Ea; Ĉ2

(pa,qa)

/
µp1

)
P
.

As in the first step, the intersection of the total transform with E0 produces an
identical situation to that of C. Also, note that Figures 2 and 3 can also be used to
illustrate the general situation here. The main difference is that the line at infinity
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{x = 0} ⊂ Ea coincides with E1 ∩Ea and thus the point [0 : 0 : 1] ∈ Ea belongs to
two divisors.

Now, to finish, observe that the triple points V̂ ∩E0 ∩Ea of the total transform
in dimension 3 are identified with the points of C∩Ea and, by (7), the intersection
at one of those points is transverse if and only if so is it in dimension 2. �

Remark 3.6. Note that if xkg1(x, y) : X(e;−1, r) → C defines a function and

x - g1(x, y), then d := gcd(e, r) divides k and g1(x
1
d , y) is a polynomial. This

implies, in particular, that ma is an integer since the polynomial xνa+paν1g1(x, y)
defines a function on X(p1pa;−1, qa + paq1).

Remark 3.7. If y - hνa(x, y), or equivalently Ea 3 [1 : 0] /∈ C, then pa|νa and
p1|(ν1 + νa

pa
); consequently, gcd(p1pad ,ma) = p1pa

d .

Indeed, assume that hνa(x, y) = xe0ye∞
∏
i≥1(xqa − γiypa)ei . Then, its order is

νa = e0pa + e∞qa + paqa
∑
i ei. By (6), the following two expressions are equal:

hνa(ξ−1
p1 x, ξ

q1
p1y) = ξ−e0+e∞q1

p1 xe0ye∞
∏

(ξ−qap1 xqa − ξq1pap1 γiy
pa)ei =

= ξ
−e0+e∞q1−qa

∑
i ei

p1 xe0ye∞
∏

(xqa − ξq1pa+qa
p1 γiy

pa)ei ,

ξν1p1hνa(x, y) = ξν1p1x
e0ye∞

∏
(xqa − γiypa)ei .

Hence p1 divides ν1 + e0 − e∞q1 + qa
∑
i ei. In the case e∞ = 0, the latter number

is ν1 + νa
pa

and the claim follows.

Anologously, if x - hνa(x, y) (⇔ Ea 3 [0 : 1] /∈ C ⇔ e0 = 0), then one has that

qa|νa and p1|(νaqa − β1ν1); consequently, gcd(p1qad , pa+β1qa
d ) = p1qa

d .

Remark 3.8. Although the third chart, say X3, is not in general a cyclic quotient
space, there are a couple of situations where it is.

• If gcd(ν1, νa) = 1, then the action given by the second row includes the first
one and thus X3 is just C3 under the second row action.
• Also if gcd(p1, ν1) = 1 and λ is the inverse of ν1 modulo p1, then the space
X(p1;−1, q1, ν1) can be written in the form X(p1;λ,−λq1,−1) and thus
X3 = X(p1νa; pa + λνa, qa − λq1νa,−1).

Let Γ and Γ+ be the dual graphs associated with the total transform and the
exceptional divisor, after having computed an embedded Q-resolution of (C, P ),
respectively. Denote by S(Γ) and S(Γ+) the sets of their vertices. The classical
partial order on S(Γ+) is denoted by 4.

The locus of non-transversality after the last blow-up in dimension 3 is identified
with the locus of non-transversality in the resolution of (C, P ). Each of these points
corresponds to a weighted blow-up in the resolution of the curve C, that is, to a
vertex of Γ+. Thus in the next step we need to blow-up those points to produce a
similar situation. Again the same operation will be applied to the points where the
total transform is not a normal crossing divisor. These points will also be associated
with vertices of Γ+.

The following result is proven by induction on S(Γ+) using the relation 4.
Lemma 3.2 is the first step in the induction. The proof of Lemma 3.5 tells us
the way to show the general case. Let b ∈ S(Γ+) be a vertex such that Pb belongs
to the locus of non-transversality of the total transform. As usual, denote by Eb
the exceptional divisor appearing after blowing up the point Pb.

Proposition 3.9 (Step b). Let $b be the (pb, qb)-weighted blow-up at Pb with b ∈
S(Γ+). Denote by Eb its exceptional divisor, νb the (pb, qb)-multiplicity of C ⊂ C2,
and mb the multiplicity of Eb.
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Consider πb the (pb, qb, νb)-weighted blow-up at Pb in dimension 3 and Eb the
corresponding exceptional divisor. Then, after blowing up the point Pb, the new
total transform verifies:

(1) The exceptional divisor Eb is isomorphic to P2(pb, qb, νb)/µe and its mul-
tiplicity equals (m + 1)mb. In general, the lines at infinity {x = 0} and
{y = 0} are quotient singular in the ambient space and the point [0 : 0 : 1]
is the only one which may be non-cyclic. By contrast, the stratum {z =
0} \ {[0 : 1 : 0], [1 : 0 : 0]} ⊂ Eb does not contain singular points of the
ambient space.

(2) Let a be a vertex such that a ≺ b. Then, Ea∩Eb 6= ∅ if and only if Pb ∈ Ea.
In such a case, Ea ∩ Eb is one of the two lines at infinity of Eb different
from {z = 0}. If Pb ∈ Ea ∩ Ea′ , a 6= a′, then the corresponding lines are
different and hence they meet at the point [0 : 0 : 1].

(3) The intersection of the rest of components with E0 produces an identical
situation to the resolution of (C, P ), after blowing up the point Pb. More
precisely,

V̂ ∩ E0 = C,

Eb ∩ E0 = Eb,
Ea ∩ E0 = Ea, ∀a 4 b.

(4) The curves E0 ∩ Eb = {z = 0} and V̂ ∩ Eb = {z + Hνb(x, y) = 0} are

two
(−E2b νb

d

)
-sections of Eb and the intersecting points can be identified with

C∩Eb. Moreover, the intersection multiplicity of these two sections at one of

those points is the same as in the latter, that is, for P ∈ C∩Eb ≡ V̂ ∩E0∩Eb,
one has (

E0 ∩ Eb, V̂ ∩ Eb; Eb
)
P

=
(
C, Eb; Ĉ2

(pb,qb)

/
µe

)
P
.

If Pb ∈ Ea, then Ea∩Eb and V̂ ∩Eb always meet at exactly one point. This
point passes through E0∩Eb if and only if C∩Ea∩Eb 6= ∅. This is the case
when there exist quadruple points.

(5) The locus of non-transversality of the total transform in dimension 3 is
identified with the one in the resolution of (C, P ). These points belong to

V̂ ∩ E0 ∩ Eb = C ∩ Eb and they correspond to the ones where the curves

E0 ∩ Eb and V̂ ∩ Eb, or equivalently Eb and C, do not meet transversely.

(6) The strict transform V̂ never passes through [0 : 0 : 1] ∈ Eb. In particular,

V̂ only contains cyclic quotient singularities.

Proof. By induction on S(Γ+) with respect to 4. Lemma 3.2 is base case. As
for the inductive step, one proceeds as in the proof of Lemma 3.5. Assume, by
induction, that the local equation of the total transform in the resolution of the
curve C around Pb is given by (gcd(e, r) = gcd(e, s) = 1)

(8) xmayma′H(x, y) : X(e; r, s) −→ C,
where C = {H(x, y) = 0} is the equation of the strict transform and the others
correspond to the divisors Ea and Ea′ (they may not appear if ma or ma′ equals
zero).

Also, the equation of the total transform around Pb in dimension 3 is given by
the function

(9) x(m+1)ma · y(m+1)ma′ · zm
[
z +H(x, y)

]
: X(e; r, s, t) −→ C,

where V̂ = {z + H(x, y) = 0} is the strict transform, E0 = {z = 0}, and the
others are the divisors Ea and Ea′ (if they exist). Using that both (8) and (9) are
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well-defined functions, one has

t+ma · r +ma′ · s ∈ (e).

The verification of the statement is very simple once the local equations of the
divisors appearing in the total transform are calculated. The main ideas behind
are contained in the proof of Lemmas 3.2 and 3.5. The details are omitted to avoid
repeating the same arguments; only the local equations are given, see table below.

To do so, consider the following data and use the charts described in Examples 1.3
and 1.5. As auxiliary results, Propositions 1.6 and 1.7 and Remark 1.8 are also
needed.

νb = ord(pb,qb)H(x, y) mb =
pb ·ma + qb ·ma′ + νb

d
d = gcd(e, pb · s− qb · r)

s′r + s ≡ 0 mod (e) r′s+ r ≡ 0 mod (e)

H1(x, y) =
H(xpb , xqby)

xνb
H2(x, y) =

H(xypb , yqb)

yνb

These are the equations in the resolution of the curve C presented as zero sets
in the corresponding (abelian) quotient space, cf. proof of Lemma 3.5.

Equations Chart

Eb : x = 0
X

(
epb
d

;−1,
qb + s′pb

d

)
−→ Ĉ2(pb, qb)

/
µeEa : −

Ea′ y = 0

C : H1(x
1
d , y) = 0

[
(xd, y)

]
7→

[(
(xpb , xqby), [1 : y](pb,qb)

)]

Eb : y = 0
X

(
eqb
d

;
pb + r′qb

d
,−1

)
−→ Ĉ2(pb, qb)

/
µeEa : x = 0

Ea′ : −
C : H2(x, y

1
d ) = 0

[
(x, yd)

]
7→

[(
(xypb , yqb), [x : 1](pb,qb)

)]

In dimension 3, the local equations of the total transform are presented as well-
defined functions over the corresponding quotient spaces. The notation is self-
explanatory to recognize the equation of each divisor.

1st chart X

(
epb
d

;−1,
qb + s′pb

d
,
νb + t′pb

d

)
−→ C

x(m+1)mb · y(m+1)ma′ · zm
[
z +H1(x

1
d , y)

]

2nd chart X

(
eqb
d

;
pb + r′qb

d
,−1,

νb + t′′qb
d

)
−→ C

x(m+1)ma · y(m+1)mb · zm
[
z +H2(x, y

1
d )
]

3rd chart X

(
νb pb qb −1
eνb rνb − tpb sνb − tqb t

)
−→ C

x(m+1)ma · y(m+1)ma′ · z(m+1)mb·d
[
1 + H(xzpb ,yzqb )

zνb

]

Here t′ and t′′ are taken so that t′r + t ≡ 0 and t′′s + t ≡ 0 modulo (e). The
exceptional divisor Eb is identified with P2(pb, qb, νb)/µe where the action is of type
(e; r, s, t), i.e. Eb = P2

(pb,qb,νb)
(e; r, s, t). �
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Remark 3.10. Note that the equations after the blowing-up at Pb around the points
where the total transform is not a normal crossing divisor are of the same form as
in (8) and (9). Hence, by induction, this fact holds for every stage of the resolution.

Remark 3.11. Let us write Hνb(x, y) = xe0ye∞
∏
i≥1(xqb − γiypb)ei . As in Remark

3.7, if

y - Hνb(x, y)
(
⇐⇒ Eb 3 [1 : 0] /∈ C⇐⇒ e∞ = 0

)
,

then pb|νb and e|( νbpb +t′); consequently, gcd( epbd ,
νb+t

′pb
d ) = epb

d . Analogously, e0 = 0

implies gcd( eqbd ,
vb+t

′′qb
d ) = eqb

d .

Theorem 3.12. Given an embedded Q-resolution of (C, P ) for all P ∈ Sing(C),
one can construct an embedded Q-resolution of (V, 0), consisting of weighted blow-
ups at points. Each of these blow-ups corresponds to a weighted blow-up in the
resolution of (C, P ) for some P ∈ Sing(C), that is, it corresponds to a vertex of
ΓP+. �

We shall see later that an exceptional divisor EPa in the resolution of (V, 0)
obtained contributes to the monodromy if and only if so does the corresponding di-
visor EPa in the resolution of (C, P ), see Lemma 4.1 and Theorem 4.3. In particular,
the weights can be chosen so that every exceptional divisor in the embedded Q-
resolution of (V, 0), except perhaps the first one E0, contributes to its monodromy.

4. The Characteristic Polynomial of SIS

Here we plan to apply Theorem 1.10 to compute the characteristic polynomial of
the monodromy and the Milnor number of (V, 0) in terms of the curves (C, P ). Some
notation need to be introduced, concerning the stratification of each irreducible
component of the exceptional divisor in terms of its quotient singularities.

Given a point P ∈ Sing(C), denote by %P : Y p → (C, P ) an embedded Q-
resolution of (C, P ). Assume that the total transform is given by

(%P )∗(C, P ) = C +
∑

a∈S(ΓP+)

mP
a EPa ,

where EPa is the exceptional divisor of the (pPa , q
P
a )-blow-up at a point Pa belonging

to the locus of non-transversality. Denote by νPa the (pPa , q
P
a )-multiplicity of C at

Pa.
Recall that EPa is naturally isomorphic to P1

(pPa ,q
P
a )/µe. Using this identification,

see Figure 4, define

EPa,1 = EPa \ {[0 : 1], [1 : 0]}, EPa,x = {[0 : 1]}, EPa,y = {[1 : 0]}.

The strata ĚPa,j := EPa,j \
(
EPa,j ∩

(⋃
b6=a EPb ∪C

))
for j = 1, x, y (see notation just

above Theorem 1.10) will be considered in Lemma 4.1.

Let us see the situation in the superisolated singularity (V, 0). Denote by ρ :
X → (V, 0) the embedded Q-resolution obtained following Proposition 3.9. Then,
the total transform is

ρ∗(V, 0) = V̂ +mE0 +
∑

P∈Sing(C)

a∈S(ΓP+)

(m+ 1)mP
a E

P
a ,

and EPa appears after the (pPa , q
P
a , ν

P
a )-blow-up at the point Pa (recall that the locus

of non-transversality in dimension 2 and 3 are identified).



18 J. MARTÍN-MORALES

The divisor EPa is naturally isomorphic to P2
(pPa ,q

P
a ,ν

P
a )/µe. Using this identifica-

tion, see Figure 4, define

EPa,1 = EPa \ {xy = 0}, EPa,x = {x = 0} \ {[0 : 1 : 0], [0 : 0 : 1]},
EPa,y = {y = 0} \ {[1 : 0 : 0], [0 : 0 : 1]}, EPa,xy = {[0 : 0 : 1}.

Analogously, one considers EPa,xz and EPa,yz so that EPa =
⊔
j E

P
a,j really defines a

stratification of EPa . However, these two strata belong to more than one irreducible
divisor in the total transform and hence they do not contribute to the characteristic
polynomial. As for E0, according to its quotient singularities, no stratification need
to be considered (it is smooth).

The Euler characteristic of Ě0 and ĚPa,j := EPa,j \
(
EPa,j ∩

(⋃
b 6=aE

P
b ∪ V̂

))
for

j = 1, x, y, xy (see notation just above Theorem 1.10) as well as its multiplicity are
calculated in Lemma 4.1.

x = 0 y = 0

EP
a

E0 ∩ EP
a

V̂ ∩ EP
a

[γi : 1 : 0]

[0 : 0 : 1]

[0 : 1] [1 : 0][γi : 1]

EP
a

C

Figure 4. Stratification of EPa and EPa .

Lemma 4.1. Using the previous notation, the Euler characteristic and the multi-
plicity of Ě0 are

χ(Ě0) = χ(P2 \C), m(Ě0) = m.

For the rest of strata of ĚPa , let us fix a point P ∈ Sing(C). Then, one has that

χ(ĚPa,j) =





1 a = 1, j = xy

0 a 6= 1, j = xy

−χ(ĚPa,j) ∀a, j = 1, x, y ;

χ(ĚPa,j) 6= 0 =⇒ m(ĚPa,j) =

{
m+ 1 a = 1, j = xy

m(ĚPa,j) · (m+ 1) ∀a, j = 1, x, y.

In fact, ∀a ∈ S(ΓP+), a 6= 1, the stratum ĚPa,xy is empty and, in particular, its Euler
characteristic is zero.

Proof. Let E be an irreducible component of the exceptional divisor of ρ. Let
us travel back in the history of the resolution until the time when E first appears.
Consider the space defined by E minus the intersections with the other components
at that moment.

Since all the weighted blow-ups have center in that intersections, this space is
naturally isomorphic to Ě. Using these arguments, we will perform the calculations
of the Euler characteristics at the moment when the component appears in the
history of the resolution.

For E0, the space Ě0 is isomorphic to E0\(V̂ ∩E0) which is identified with P2\C;
its multiplicity is m, see Figure 1 and discussion before Lemma 2.1.
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For the rest of the proof the cases j = 1, x, y, xy are treated separately. Let us
fix a point P ∈ Sing(C) and omit the index “P” to simplify the notation.

Recall that Ea = P2
(pa,qa,νa)/µe, see Proposition 3.9(1). Also Figure 4 will be

useful.

• j = xy :

The stratum Ea,xy is the point [0 : 0 : 1] ∈ Ea. By Proposition 3.9, it belongs
to just one divisor if and only if a 6= 1, see Lemma 3.2 and its proof. This implies
that χ(Ě1,xy) = 1 and that

χ(Ěa,xy) = 0, ∀a ∈ S(Γ+) \ {1}.

Following Definition 1.9, the multiplicity of Ě1,xy is (m+1)ν1
ν1

, since the origin [0 :

0 : 1] ∈ E1 is a cyclic quotient singular point of order ν1, see Lemma 3.2.

• j = x :

The stratum Ea,x is the line {x = 0} ⊂ Ea. If there is another component

of the divisor that passes through Ea,x = [0 : 1] ∈ Ea, then one has Ěa,x = ∅,
and either Ěa,x = Ea,x \ {2 points} or Ěa,x = ∅. Otherwise, Ěa,x = [0 : 1] and

Ěa,x = Ea,x \ {3 points}, see second part of Proposition 3.9(4). In the case when
the Euler characteristic is different from zero, by Remark 3.11, the multiplicity is

m(Ěb,x) =
(m+ 1)mb

gcd( eqbd ,
νb+t′′qb

d )
=

(m+ 1)mb
eqb
d

= (m+ 1)m(Ěb,x).

The case j = y is exactly the same as j = x.

• j = 1 :

Consider the projection of Ea \ Ea,xy onto the line {z = 0} ≡ Ea. This map is
identified with the morphism

τ : P2
(pa,qa,νa)(e; r, s, t) \ {[0 : 0 : 1]} −→ P1

(pa,qa)(e; r, s),

[x : y : z] 7→ [x : y].

Note that the restriction τ | : Ěa,1 → Ěa,1 is a fibration with fiber isomorphic to
C \ {2 points} and hence χ(fiber) = −1.

The multiplicity of the smooth part is (m+1)ma in the superisolated singularity
while it is ma in the curve C.

To finish observe that in any case, one has that χ(Ěa,j) = −χ(Ěa,j) and, if they

are different from zero, m(Ěa,j) = (m+ 1)m(Ěa,j). Now the proof is complete. �

Remark 4.2. The Euler characteristic of the complement of a projective plane curve
in P2 is known to be

χ(P2 \C) = (m2 − 3m+ 3)−
∑

P∈Sing(C)

µP ,

see [6], or [1] for an elementary proof based on the additivity of the Euler charac-
teristic.

Theorem 4.3. The characteristic polynomial of the complex monodromy of (V, 0)
is

∆(V,0)(t) =
(tm − 1)χ(P2\C)

t− 1

∏

P∈Sing(C)

∆(C,P )(t
m+1),

where ∆(C,P )(t) denotes the characteristic polynomial of the local complex mon-
odromy of (C, P ).
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Proof. Given a point P ∈ Sing(C), let us compute the characteristic polynomial of
(C, P ). Its total transform is

(%P )∗(C, P ) = Ĉ +
∑

a∈S(ΓP+)

mP
a EPa ,

and the stratification associated with each exceptional divisor needed for applying
A’Campo’s formula is Ěa = Ěa,1 t Ěa,x t Ěa,y. Then, by Theorem 1.10,

(10) ∆(C,P )(t) = (t− 1)
∏

a∈S(ΓP+)
j=1, x, y

(tm(ĚPa,j) − 1)−χ(ĚPa,j).

Let us see the situation in the superisolated singularity (V, 0). The total trans-
form is

ρ∗(V, 0) = V̂ +mE0 +
∑

P∈Sing(C)

a∈S(ΓP+)

(m+ 1)mP
a E

P
a ,

and the corresponding stratification is ĚPa = ĚPa,1 t ĚPa,x t ĚPa,y t ĚPa,xy.
By Theorem 1.10, the characteristic polynomial of (V, 0) is

(11) ∆(V,0)(t) =
1

t− 1
(tm(Ě0) − 1)χ(Ě0)

∏

P∈Sing(C)

a∈S(ΓP+)
j=1, x, y, xy

(tm(ĚPa,j) − 1)χ(ĚPa,j).

From Lemma 4.1, m(Ě0) = m and χ(Ě0) = χ(P2 \ C), and the latter can
be computed combinatorially as indicated in the statement. Let us calculate the
contribution of the preceding product for a given point P ∈ Sing(C).

Again using Lemma 4.1 and, in particular, the fact that a 6= 1 implies χ(ĚPa,xy) =
0, one has that

∏

a∈S(ΓP+)
j=1, x, y, xy

(
tm(ĚPa,j) − 1

)χ(ĚPa,j)

=

=
(
tm(ĚP1,xy) − 1

)χ(ĚP1,xy)

︸ ︷︷ ︸
a=1, j=xy

∏

a∈S(ΓP+)
j=1, x, y

(
tm(ĚPa,j) − 1

)χ(ĚPa,j)

=
(
tm+1 − 1

)1 ∏

a∈S(ΓP+)
j=1, x, y

(
t(m+1)m(ĚPa,j) − 1

)−χ(ĚPa,j)
.

By (10), the last expression is equal to ∆(C,P )(t
m+1) and hence (11) is exactly

the formula of the statement. �

Remark 4.4. Note that the first part of ∆(t) is closely related to the zeta function
of fm(x, y, z) regarded as an function on C3. In fact, Z(fm : C3 → C; t) = (1 −
tm)χ(P2\C). This is a consequence of the fact that the monodromy zeta function
of a homogeneous polynomial of degree d is Z(t) = (1 − td)χ(F )/d, where F is the
corresponding Milnor fiber.

Corollary 4.5. The Milnor number of a SIS can be expressed in terms of the
Milnor numbers of the singular points of C, namely

µ(V, 0) = (m− 1)3 +
∑

P∈Sing(C)

µ(C, P ).
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Proof. The Milnor number coincides with the degree of the characteristic polyno-
mial. Then,

deg ∆(t) = m
(
m2 − 3m+ 3−

∑

P

µP
)
− 1 +

∑

P

deg ∆P (t)︸ ︷︷ ︸
µP

(m+ 1)

= m3 − 3m2 + 3m−m
∑

P

µP − 1 + (m+ 1)
∑

P

µP

= (m− 1)3 +
∑

P

µP .

Above, the sums are taken over P ∈ Sing(C). �

5. Yomdin-Lê Surface Singularities

The family of singularities studied above can be generalized as follows. Let
f = fm + fm+k + · · · ∈ C{x, y, z} be the decomposition of f into its homogeneous
parts, k ≥ 1. Denote V := V (f) ⊂ C3 and C := V (fm) ⊂ P2. Then, the
germ (V, 0) is said to be a Yomdin-Lê surface singularity (YLS) if the condition
Sing(C) ∩ V (fm+k) = ∅ holds in P2.

The main difficulty in finding a (usual) embedded resolution of this kind of
singularities is that after several blow-ups at points and rational curves, following
the ideas of [2], one eventually obtains a branch of resolutions depending on k.
Thus the study of this singularities by using these tools seem to be very long and
tedious.

However, an embedded Q-resolution of (V, 0) can be computed exactly as for SIS,
i.e. by means of weighted blow-ups at points. In fact, this is the main purpose of
Section 6. As an application, the characteristic polynomial and the Milnor number
are calculated using Theorem 1.10. Again, the weights at each step can be chosen
so that every exceptional divisor in the Q-resolution, except perhaps the first one
E0, contributes to its monodromy.

In order not to repeat the same arguments, the proofs of this section are sketched,
commented, or simply omitted. Moreover, they are presented following the same
structure as in previous sections so that one can easily compares the corresponding
results with the SIS. In the discussion, one usual thinks that k 6= 1, since otherwise
(V, 0) is a SIS.

We start the embedded Q-resolution of (V, 0) with the usual blow-up at the

origin π0 : Ĉ3 → C3. The total transform is the divisor π∗0(V ) = V̂ + mE0, where

V̂ is the strict transform and E0 is the exceptional divisor. The intersection V̂ ∩E0

is identified with C, see Figure 5.

E0

V̂

C

π∗
0(V ) = V̂ +mE0

V̂ ∩ E0 = C
NT (π∗

0(V )) = Sing(C)

Figure 5. Step 0 in the embedded Q-resolution of (V, 0).

Let us consider P ∈ V̂ ∩ E0 = C. After linear change of coordinates we can

assume that P = ((0, 0, 0), [0 : 0 : 1]) ≡ [0 : 0 : 1] ∈ C. Take a chart of Ĉ3 around
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P where z = 0 is the equation of E0 and the blowing-up takes the form

(x, y, z)
π07−→ (xz, yz, z).

Then, the equation of V̂ is

V̂ : fm(x, y, 1) + zk
[
fm+k(x, y, 1) + zfm+k+1(x, y, 1) + · · ·

]
= 0.

Two cases arise: if P is smooth in the curve C, then V̂ is also smooth at P and
the intersection with E0 at that point is transverse; otherwise, i.e. P ∈ Sing(C),
the YLS condition Sing(C) ∩ V (fm+k) = ∅ implies that the previous expression

in brackets is a unit in the local ring C{x, y, z} and V̂ is not smooth at P (unless
k = 1). Now the order of fm(x, y, 1) is greater than or equal to 2 and the intersection

V̂ ∩ E0 is not transverse at P .
We summarize the previous discussion in the following result, which is the step

zero in our Q-resolution of (V, 0).

Lemma 5.1 (Step 0). Let P ∈ C. The surfaces V̂ and E0 intersect transversely
at P if and only if P is a smooth point in C. Otherwise, i.e. P ∈ Sing(C), there
exist local analytic coordinates around P such that the equations of the exceptional
divisor and the strict transform are

E0 : z = 0 ;

V̂ : zk + h(x, y) = 0 ,

where h(x, y) = 0 is an equation of C and its order is at least 2.

Remark 5.2. Observe that the main difference at this stage is that V̂ is not smooth
at the singular points of the curve C and its equation at those points has zk as one
of its terms.

6. Embedded Q-Resolution for YLS

After the step zero NT (π∗0(V )) is identified with Sing(C). The next step in
the Q-resolution of (V, 0) is to blow up those points. Let us fix P ∈ Sing(C) and
consider local coordinates as in Lemma 5.1. The idea is to choose suitable weights

so that the strict transform of V̂ has again an equation of the same form, namely
zk +H(x, y) = 0.

Given an exceptional divisor in the curve C, Ea, a ∈ S(Γ+), and ma its multiplic-
ity, denote ka := gcd(k,ma). When a = 1, then m1 = ν1 and thus k1 = gcd(k, ν1).

Lemma 6.1 (Step 1). Let (p1, q1) ∈ N2 be two positive coprime numbers. Let $1

be the (p1, q1)-weighted blow-up at P ∈ C. Denote by E1 its exceptional divisor and
by ν1 the (p1, q1)-multiplicity of C at P .

Consider π1 the
(
kp1
k1
, kq1k1 ,

ν1
k1

)
-weighted blow-up at P in dimension 3 and E1 the

corresponding exceptional divisor. Then, the total transforms verify:

(1) $∗1(C) = C + ν1E1,

(2) π∗1π
∗
0(V ) = V̂ +mE0 + (m+ k)

ν1

k1
E1,

(3) NT (π∗1π
∗
0(V )) = NT ($∗1(C)).

Proof. The weighted blow-up at P ∈ C is described in detail in the first part of the
proof of Lemma 3.2. Thus we only consider here the weighted blow-up at P with
respect to

(
kp1
k1
, kq1k1 ,

ν1
k1

)
in dimension 3.

The new space has in general three cyclic quotient singular lines, see Remark
6.2(1) below, each of them isomorphic to P1, and located at the new exceptional

divisor E1. They correspond to the three lines at infinity of E1 = P2
(
kp1
k1
, kq1k1 ,

ν1
k1

)
.
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The multiplicity of E1 is the sum of the multiplicities, in our local coordinates,
of the components of the divisor π∗0(V ) that pass through P , that is, m ν1

k1
+ k ν1k1 =

(m+ k) ν1k1 .
Hence the total transform is the divisor

π∗1π
∗
0(V ) = V̂ +mE0 + (m+ k)

ν1

k1
E1.

To study the locus of non-transversality, the equations in the three charts are
calculated in the table below. Note that the cyclic quotient spaces are represented
by their normalized types, since gcd

(
kp1
k1
, kq1k1 ,

ν1
k1

)
= 1, see Example 1.4.

X

(
kp1

k1
;−1,

kq1

k1
,
ν1

k1

)
X

(
kq1

k1
;
kp1

k1
,−1,

ν1

k1

)

(x, y, z)
π17−→ (x

kp1
k1 , x

kq1
k1 y, x

ν1
k1 z) (xy

kp1
k1 , y

kq1
k1 , y

ν1
k1 z)

E0 z = 0 z = 0
E1 x = 0 y = 0

V̂ zk + h1(x
k
k1 , y) = 0 zk + h2(x, y

k
k1 ) = 0

X

(
ν1

k1
;
kp1

k1
,
kq1

k1
,−1

)

(x, y, z)
π17−→ (xz

kp1
k1 , yz

kq1
k1 , z

ν1
k1 )

E0 −
E1 z = 0

V̂ 1 + hν1(x, y) + z
kl
k1 hν1+l(x, y) + · · · = 0

Clearly E1 and E0 intersect transversely. The strict transform V̂ also cuts E1

transversely except perhaps at {z = 0} ⊂ E1. The equations of these intersections
are given by

E0 ∩ E1 = {z = 0},
V̂ ∩ E1 = {zk + hν1(x, y) = 0},

as projective subvarieties in E1 = P2
(
kp1
k1
, kq1k1 ,

ν1
k1

)
.

(
ν1
k1

)

(kq1k1 )

(kp1k1 )

x = 0

y = 0

E1

E0 ∩ E1

V̂ ∩ E1

(
k
k1

)

[0 : 0 : 1]

(
kp1
k1

)

(
kq1
k1

)

E0

E1 ∩ E0

V̂ ∩ E0

[γi : 1] gcd(k, ν1q1 )

Figure 6. Step 1 in the embedded Q-resolution of (V, 0).

By Proposition 1.7, these smooth projective curves have self-intersection numbers
k1ν1
k2p1q1

and k1ν1
p1q1

respectively. They meet at #(C ∩ E1) points with intersection

number k1/k times the intersection number in C ∩ E1, that is, for P ∈ C ∩ E1 ≡
V̂ ∩ E0 ∩ E1, one has

(12)
(
V̂ ∩ E1, E0 ∩ E1; E1

)
P

=
k1

k
·
(
C, E1; Ĉ2

(p1,q1)

)
P
.
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On the other hand, the intersection of the total transform with E0 produces an
identical situation to that of the curve C, see Remark 6.2(2) for a more detailed
explanation.

All these statements follow from the equations above. In Figure 6, we see the
intersection of the divisor π∗1π

∗
0(V ) with E0 and E1, respectively. See also Figure 2

for the situation in C. Finally, the triple points of the total transform in dimension
3 are identified with the points of C ∩ E1 and, by (12), the intersection at one of
those points is transverse if and only if so is it in dimension 2. This concludes the
proof. �

Remark 6.2. Just to emphasize, we collect below the main differences with the
embedded Q-resolution for SIS at this stage, cf. Lemma 3.2 and its proof.

(1) The stratum {z = 0} \ {[0 : 1 : 0], [1 : 0 : 0]} ⊂ E1 contains singular points
of the ambient space. In fact, the group acting on these points is of type(
k
k1

;−1, 0, ν1k1

)
, see Figure 6.

(2) In principle, the intersection of E0 with the rest of components seem to
be different from the situation in the curve C, because in the first chart

E1 ∩ E0 = {x = 0} and V̂ ∩ E0 = {h1(xk/k1 , y) = 0} on X
(
kp1
k1

;−1, kq1k1

)
.

After normalizing the latter type, one finds the equation of E1 and C on
X(p1;−1, q1), cf. 6.3.

(3) Write hν1(x, y) = xayb
∏
i(x

q1 − γq1i yp1)ei = 0. If a = 0, or equivalently

E1 3 [0 : 1] /∈ C, then {x = 0} ⊂ E1 cuts V̂ ∩ E1 = {zk + hν1(x, y) = 0}
in exactly gcd(k, ν1q1 ) points different from the origins of E1. Analogously,

{y = 0} ⊂ E1 intersects in gcd(k, ν1p1 ) points if b = 0. This can be checked

directly or applying Bézout’s Theorem on E1.

Let Γ and Γ+ be the dual graphs associated with the total transform and the
exceptional divisor, after having computed an embedded Q-resolution of (C, P ),
respectively. Denote by S(Γ) and S(Γ+) the sets of their vertices. The classical
partial order on S(Γ+) is denoted by 4.

The locus of non-transversality after the last blow-up in dimension 3 is identified
with the locus of non-transversality in the resolution of (C, P ). Each of these points
corresponds to a weighted blow-up in the resolution of the curve C, that is, to a
vertex of Γ+. Thus in the next step we need to blow-up those points to produce a
similar situation. Again the same operation will be applied to the points where the
total transform is not a normal crossing divisor. These points will be associated
with vertices of Γ+ too.

Before describing a generic step, blowing up the point Pb as in Proposition 3.9,
let us clarify the justification for working with non-normalized spaces.

6.3. After the first blow-up the local equation of the total transform of (C, P ) is
given by xν1h1(x, y) : X(p1;−1, q1)→ C, see proof of Lemma 3.2. The situation in
dimension 3 is provided by

x(m+k)
ν1
k1

︸ ︷︷ ︸
E1

· zm︸︷︷︸
E0

·
[
zk + h1(x

k
k1 , y)

]
︸ ︷︷ ︸

V̂

: X

(
kp1

k1
;−1,

kq1

k1
,
ν1

k1

)
−→ C,

as we have just seen in the proof of Lemma 6.1. The divisors E1 and E1 are both
represented by x = 0.

However, the equation of the strict transform of C and V̂ do not correspond to
each other directly. This obstruction can be solved working with non-normalized
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types, since the function

x
kν1
k1 h1(x

k
k1 , y) : X

(
kp1

k1
;−1,

kq1

k1

)
−→ C

also gives rise to the total transform of C on a space represented by a non-
normalized type.

On the other hand, the embedded Q-resolution of a Yomdin-Lê surface singu-
larity will contain in general non-cyclic quotient singularities. Hence providing
normalized types is long and tedious. Motivated by this fact and for better un-
derstanding of the relationship between C and (V, 0), we present the embedded
Q-resolution without explicitly giving the normalized type of each quotient space.

The following result is proven by induction on S(Γ+) using the relation 4.
Lemma 6.1 and 6.3 just above is the first step in the induction. Let b ∈ S(Γ+)
be a vertex such that Pb belongs to the locus of non-transversality of the total
transform. As usual, denote by Eb the exceptional divisor appearing after blowing
up the point Pb.

Proposition 6.4 (Step b). Let $b be the (pb, qb)-weighted blow-up at Pb with b ∈
S(Γ+). Denote by Eb its exceptional divisor, νb the (pb, qb)-multiplicity of C ⊂ C2,
and mb the multiplicity of Eb. Assume, if necessary, that k|pb and k|qb so that k|νb
too.

Consider πb the (pb, qb,
νb
k )-weighted blow-up at Pb in dimension 3 and Eb the

corresponding exceptional divisor. Then, after blowing up the point Pb, the new
total transform verifies:

(1) The exceptional divisor Eb is isomorphic to P2(pb, qb,
νb
k )/µe and its multi-

plicity equals (m+k)mbkb . In general, their three lines at infinity are quotient
singular in the ambient space.

(2) Let a be a vertex such that a ≺ b. Then, Ea∩Eb 6= ∅ if and only if Pb ∈ Ea.
In such a case, the curve Ea ∩ Eb is one of the two lines at infinity of Eb
different from {z = 0}. If Pb ∈ Ea ∩ Ea′ , a 6= a′, then the corresponding
lines are different and hence they meet at the point [0 : 0 : 1].

(3) The intersection of the rest of components with E0 produces an identical
situation to the resolution of (C, P ), after blowing up the point Pb. More
precisely,

V̂ ∩ E0 = C,

Eb ∩ E0 = Eb,
Ea ∩ E0 = Ea, ∀a 4 b.

(4) The curves E0∩Eb = {z = 0} and V̂ ∩Eb = {zk+Hνb(x, y) = 0} in Eb have

self-intersection numbers
−E2b νbkb
k2` and

−E2b νbkb
` respectively, in particular

(V̂ ∩Eb)2 = k2(E0∩Eb)2 holds, and the intersecting points can be identified
with C ∩ Eb.

Moreover, the intersection multiplicity of these two curve at those points

can be computed as follows. Let P ∈ V̂ ∩ E0 ∩ Eb ≡ C ∩ Eb, then one has
(
V̂ ∩ Eb, E0 ∩ Eb; Eb

)
P

=
1

O(Eb,z)
·
(
C, Eb; Ĉ2

(pb,qb)

/
µe

)
P
,

where O(Eb,z) denotes the order of the group acting on the natural stratum
Eb,z := {z = 0} \ {[0 : 1 : 0], [1 : 0 : 0]} ⊂ Eb.

Let Pb ∈ Ea (a ≺ b) and assume e.g. Ea ∩ Eb = {x = 0} ⊂ Eb. If

C ∩ Ea ∩ Eb = ∅, then Ea ∩ Eb and V̂ ∩ Eb meet transversely at exactly
gcd(k,m(Ěb,x)) points different from the origins of Eb. Otherwise, i.e. C∩
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Ea ∩ Eb 6= ∅, the letter curves only meet at one point, which besides passes
through E0 ∩ Eb. This is the case when there exist quadruple points.

(5) The locus of non-transversality of the total transform in dimension 3 is
identified with the one in the resolution of (C, P ). These points belong to

V̂ ∩ E0 ∩ Eb ≡ C ∩ Eb and they correspond to the ones where the curves

E0 ∩ Eb and V̂ ∩ Eb, or equivalently Eb and C, do not meet transversely.

(6) The strict transform V̂ never passes through [0 : 0 : 1] ∈ Eb.

Proof. By induction on S(Γ+) with respect to the order 4. The base case is
Lemma 6.1 together with its modification explained in 6.3. As for the inductive
step, one proceeds as in the proof of Lemma 3.5. Assume, by induction, that the
local equation of the total transform in the resolution of the curve C around Pb is
given by the function

xnayna′H(x, y) : X(e; r, s) −→ C,

where C = {H(x, y) = 0} is the equation of the strict transform and the others
correspond to the divisors Ea and Ea′ (they may not appear if na or na′ equals
zero). In principle, the type (e; r, s) is not assumed to be normalized. Hence na
and na′ are not the multiplicities of Ea and Ea′ .

Also, the equation of the total transform around Pb in dimension 3 is given by
the function

x
(m+k)na

k · y
(m+k)n

a′
k · zm ·

[
zk +H(x, y)

]
: X(e; r, s, t) −→ C,

where V̂ = {zk + H(x, y) = 0} is the strict transform, E0 = {z = 0}, and the
others are the divisors Ea and Ea′ (if they exist). Using that both equations are
well-defined functions on the corresponding quotient spaces, one has

(13)
na
k
· r +

na′

k
· s + t ≡ 0 (mod e).

The verification of the statement is very simple once the local equations of the
divisors appearing in the total transform are calculated. The main ideas behind
are contained in the proof of Lemma 6.1 and 6.3. The details are omitted to avoid
repeating the same arguments; only the local equations are given, see below. To
do so, consider the following data and use the charts described in Examples 1.3
and 1.5. As auxiliary results Propositions 1.6 and 1.7 and Remark 1.8 are also
needed.

νb := ord(pb,qb)H(x, y) nb := pb · na + qb · na′ + νb

H1(x, y) := H(xpb ,xqby)
xνb H2(x, y) := H(xypb ,yqb )

yνb

Note that if QC
1 denotes the quotient space of the first chart in the curve C (see

below) and (QC
1 , [(0, 1)]) ∼= (C2, (0, 1)), [(x, y)] 7→ (x`, y) defines an isomorphism of

germs, then the multiplicity of the new exceptional divisor Eb is mb = nb
` .

These are the equations in the resolution of C. They are presented as zero sets
omitting their multiplicities.
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Equations Chart

Eb : x = 0
X

(
pb −1 qb
pbe r pbs− qbr

)
−→ Ĉ2(pb, qb)

/
µeEa : −

Ea′ y = 0
C : H1(x, y) = 0

[
(x, y)

]
7→

[(
(xpb , xqby), [1 : y](pb,qb)

)]

Eb : y = 0
X

(
qb pb −1
qbe qbr− pbs s

)
−→ Ĉ2(pb, qb)

/
µeEa : x = 0

Ea′ : −
C : H2(x, y) = 0

[
(x, y)

]
7→

[(
(xypb , yqb), [x : 1](pb,qb)

)]

In dimension 3, the local equations of the total transform are presented as well-
defined functions over the corresponding quotient spaces. The notation is self-
explanatory to recognize the equation of each divisor. In the first chart, however, it
is indicated the divisor corresponding to each equation. Note that, for instance, the
polynomial in the first chart has been obtained after performing the substitution

(x, y, z) 7→ (xpb , xqby, x
νb
k z).

1st chart X

(
pb −1 qb

νb
k

pbe r pbs− qbr pbt− νb
k r

)
−→ C

x
(m+k)nb

k

︸ ︷︷ ︸
Eb

· y
(m+k)n

a′
k

︸ ︷︷ ︸
Ea′

· zm︸︷︷︸
E0

·
[
zk +H1(x, y)

]
︸ ︷︷ ︸

V̂

2nd chart X

(
qb pb −1 νb

k
qbe qbr− pbs s qbt− νb

k s

)
−→ C

x
(m+k)na

k · y (m+k)nb
k · zm ·

[
zk +H2(x, y)

]

3rd chart X

(
νb
k pb qb −1
νb
k e νb

k r− pbt νb
k s− qbt t

)
−→ C

x
(m+k)na

k · y
(m+k)n

a′
k · z (m+k)nb

k ·
[
1 + H(xzpb ,yzqb )

zνb

]

Note that if QV
1 denotes the quotient space of the first chart in dimension 3

(see above) and (QV
1 , [(0, 1, 1)]) ∼= (C3, (0, 1, 1)), [(x, y, z)] 7→ (xL, y, z) defines an

isomorphism of germs, then the multiplicity of the new exceptional divisor Eb is
(m+k)nb

kL . �

Remark 6.5. Observe that the columns of the new spaces satisfy a condition anal-
ogous to (13). For example, using (13), it can be checked that

nb
k
·
(
−1
r

)
+
na′

k
·
(

qb
pbs− qbr

)
+

(
νb
k

pbt− νb
k r

)
≡
(

0
0

)
, mod

(
pb
pbe

)
.

In other words, the third column is a linear combination of the first two ones,
modulo the order of the corresponding group. This can be used to prove that

L = gcd(`, nbk ) and hence the multiplicity of Eb is (m+k)·mb
gcd(k,mb)

indeed.

Theorem 6.6. Given an embedded Q-resolution of (C, P ) for all P ∈ Sing(C), one
can construct an embedded Q-resolution of (V, 0), consisting of weighted blow-ups at
points. Each of these blow-ups corresponds to a weighted blow-up in the resolution
of (C, P ) for some P ∈ Sing(C), that is, it corresponds to a vertex of ΓP+. �
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By Lemma 7.1 and Theorem 7.2, an exceptional divisor EPa in the Q-resolution
of (V, 0) contributes to the monodromy if and only if so does the corresponding
divisor EPa in (C, P ). Hence the weights can be chosen so that every exceptional
divisor, except perhaps the first one E0, contributes to its monodromy.

7. The Characteristic Polynomial of YLS

Here we plan to apply Theorem 1.10 to compute the characteristic polynomial
of the monodromy and the Milnor number of (V, 0) in terms of the singularities
(C, P ). Some notation need to be introduced, concerning the stratification of each
irreducible component of the exceptional divisor in terms of its quotient singulari-
ties.

Given a point P ∈ Sing(C), denote by %P : Y p → (C, P ) an embedded Q-
resolution of the curve (C, P ). Assume that the total transform is given by

(%P )∗(C, P ) = C +
∑

a∈S(ΓP+)

mP
a EPa ,

where EPa is the exceptional divisor of the (pPa , q
P
a )-blow-up at a point Pa belonging

to the locus of non-transversality. Denote by νPa the (pPa , q
P
a )-multiplicity of C at

Pa.
Recall that EPa is naturally isomorphic to P1

(pPa ,q
P
a )/µe. Using this identification,

see Figure 7, define

(14) EPa,1 = EPa \ {[0 : 1], [1 : 0]}, EPa,x = {[0 : 1]}, EPa,y = {[1 : 0]}.

The strata ĚPa,j := EPa,j \
(
EPa,j ∩

(⋃
b6=a EPb ∪C

))
for j = 1, x, y (see notation just

above Theorem 1.10) will be considered in Lemma 7.1.

Let us see the situation in the Yomdin-Lê singularity (V, 0). Denote by ρ : X →
(V, 0) the embedded Q-resolution obtained following Proposition 6.4. Then, the
total transform is (recall kPa := gcd(k,mP

a ))

ρ∗(V, 0) = V̂ +mE0 +
∑

P∈Sing(C)

a∈S(ΓP+)

(m+ k)
mP
a

kPa
EPa ,

and EPa appears after the blow-up at the point Pa with suitable weights (recall that
the locus of non-transversality in dimension 2 and 3 are identified).

E0 ∩ EP
a

[0 : 1] [1 : 0][γi : 1]

EP
a

C

x = 0

y = 0

EP
a

V̂ ∩ EP
a

[0 : 0 : 1]

[γi : 1 : 0]

Figure 7. Stratification of EPa and EPa .



EMBEDDED Q-RESOLUTIONS FOR YOMDIN-LÊ SURFACE SINGULARITIES 29

The divisor EPa is naturally isomorphic to P2
ω/µe. Using this identification, see

Figure 7, define

(15)
EPa,1 = EPa \ {xyz = 0}, EPa,x = {x = 0} \ {[0 : 1 : 0], [0 : 0 : 1]},
EPa,y = {y = 0} \ {[1 : 0 : 0], [0 : 0 : 1]}, EPa,xy = {[0 : 0 : 1}.

Analogously, one considers EPa,z, E
P
a,xz, and EPa,yz so that EPa =

⊔
j E

P
a,j really

defines a stratification. However, these three strata belong to more than one ir-
reducible divisor in the total transform and hence they do not contribute to the
characteristic polynomial.

As for E0, according to its quotient singularities, no stratification need to be
considered (it is smooth).

The Euler characteristic of Ě0 and ĚPa,j := EPa,j \
(
EPa,j ∩

(⋃
b 6=aE

P
b ∪ V̂

))
for

j = 1, x, y, xy (see notation just above Theorem 1.10) as well as its multiplicity are
calculated in Lemma 7.1.

The following three results are presented without their proofs because they do
not provide any new idea. They are the analogous of Lemma 4.1, Theorem 4.3, and
Corollary 4.5, respectively. Anyway, recall that the Euler characteristic of P2 \C
is m2 − 3m+ 3−∑P∈Sing(P ) µP .

Lemma 7.1. Using the previous notation, the Euler characteristic and the multi-
plicity of Ě0 are

χ(Ě0) = χ(P2 \C), m(Ě0) = m.

For the rest of strata of ĚPa , let us fix a point P ∈ Sing(C). Then, one has that

χ(ĚPa,j) =





1 a = 1, j = xy

0 a 6= 1, j = xy

− gcd
(
k,m(ĚPa,j)

)
· χ(ĚPa,j) ∀a, j = 1, x, y ;

χ(ĚPa,j) 6= 0 =⇒ m(ĚPa,j) =





m+ k a = 1, j = xy

(m+ k) ·m(ĚPa,j)
gcd

(
k,m(ĚPa,j)

) ∀a, j = 1, x, y.

In fact, ∀a ∈ S(ΓP+), a 6= 1, the stratum ĚPa,xy is empty and, in particular, its Euler
characteristic is zero. �

Theorem 7.2. The characteristic polynomial of the complex monodromy of (V, 0)
is

∆(V,0)(t) =
(tm − 1)χ(P2\C)

t− 1

∏

P∈Sing(C)

∆k
(C,P )(t

m+k),

where ∆(C,P )(t) denotes the characteristic polynomial of the local complex mon-

odromy of (C, P ) and if ∆(t) =
∏
i(t

mi − 1)ai , then ∆k(t) denotes

∆k(t) =
∏

i

(
t

mi
gcd(mi,k) − 1

)gcd(mi,k)ai
. �

Corollary 7.3. The Milnor number of a Yomdin-Lê surface singularity can be
expressed in terms of the Milnor numbers of the singular points of the curve Ce,
namely

µ(V, 0) = (m− 1)3 + k
∑

P∈Sing(C)

µ(C, P ). �
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8. An Illustrative Example

We end this paper with perhaps the simplest example of this construction,
namely the curve C has exactly one singular point with just a Puiseux pair. In this
case the embedded Q-resolution of the YLS has only two steps. This example has
also been treated in [11].

Let f : C3 → C be the polynomial function defined by f = fm(x, y, z) + zm+k.
Assume that C = {fm = 0} ⊂ P2 has only one singular point P = [0 : 0 : 1], which
is locally isomorphic to the cusp xq + yp, gcd(p, q) = 1. Let us briefly discuss the
resolution in dimension 2 and 3 separately.

Curve C: Let h(x, y) = xq + yp and consider $ : Ĉ2(p, q) → C2 the weighted

blow-up at the origin of type (p, q). Recall that Ĉ2(p, q) = U1∪U2 has two singular
points corresponding to the origin of each chart.

In U1 = X(p;−1, q) the total transform of h is given by xpq(1+yp). The equation
yp = −1 has unique solution in U1 and the local equation of the total transform at
this point is of the form xpqy.

Hence the proper map $ is an embedded Q-resolution of C = {h = 0} ⊂ C2

where all spaces are presented by normalized types, see Figure 8.

E1 = P1
(p,q)
∼= P1

(p;−1, q)(q; p,−1)

[0 : 1] [1 : 0]

E21 = − 1
pq

m(E1) = pq = ν
C

Figure 8. Embedded Q-resolution of {xq + yp = 0} ⊂ C2.

According to (14), the stratification associated with the unique exceptional di-
visor is Ě1 = Ě1,1 t Ě1,x t Ě1,y, where Ě1,1 = P1 \ {3 points}, Ě1,x = {[0 : 1]}, and

Ě1,y = {[1 : 0]}. Their Euler characteristics and multiplicities are calculated in the
table below.

stratum Ě1,1 Ě1,x Ě1,y
χ(·) −1 1 1
m(·) pq p q

Now, one applies Theorem 1.10 and obtains

∆(C,P )(t) = (t− 1)
∏

j=1,x,y

(tm(Ě1,j) − 1)−χ(Ě1,j) =
(t− 1)(tpq − 1)

(tp − 1)(tq − 1)
.

Yomdin-Lê Singularity: Consider π0 : Ĉ3 → C3 the classical blow-up at the
origin. In the third chart, the local equation of the total transform is

zm(zk + xq + yp) = 0.

The strict transform V̂ and the exceptional divisor E0 intersect transversally at

every point but in P ∈ C ≡ E0 ∩ V̂ . Also V̂ \ P is smooth. Denote k1 = gcd(k, p)
and k2 = gcd(k, q) so that gcd(k,m(E1)) = gcd(k, pq) = k1k2.

One is therefore interested in the weighted blowing-up at the point P with respect
to (kp, kq, pq). However, in order to obtain cyclic quotient spaces presented by

normalized types, it is more suitable to choose ω = ( kp
k1k2

, kq
k1k2

, pq
k1k2

) instead. Let
π1 be the weighted blow-up at P with respect to the vector ω. The local equation
of the total transform in the second chart is given by{

y
pq
k1k2

(m+k)zm(zk + xq + 1) = 0
}
⊂ X

(
kq
k1k2

; kp
k1k2

,−1, pq
k1k2

)
,

where y = 0 represents the new exceptional divisor E1 = P2
ω
∼= P2(k1, k2, 1).
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From Lemma 6.1, cf. Proposition 6.4, the composition π = π0◦π1 is an embedded
Q-resolution of the singularity (V, 0) ⊂ (C3, 0). The final situation is illustrated in
Figure 9.

The self-intersection number of E0∩E1 = {z = 0} (resp. V̂ ∩E1 = {zk+xq+yp =
0}), regarded as projective curve in E1 = P2

ω, is k1k2
k2 (resp. k1k2). Moreover, the

intersection multiplicity of these two plane curves at the unique intersecting point
is k1k2

k , which is exactly the multiplicative inverse of the order of the cyclic group
acting on {z = 0} \ {[1 : 0 : 0], [0 : 1 : 0]} ⊂ E1, cf. Proposition 6.4(4). On the
other hand, the intersection of the total transform with E0

∼= P2 \C produces an

identical situation to that of C, in particular E1 ∩ E0
∼= E1 and V̂ ∩ E0

∼= C, see
Remark 6.2(2) for a more detailed explanation.

E1 ∩ E0

mE0
(

kp
k1k2

)

(
kq

k1k2

)

(
k

k1k2

)

P2

V̂ ∩ E0

(
k

k1k2

)

(
pq

k1k2

)

(
kp

k1k2

)
V̂ ∩ E1

(
q
k2

) (
p
k1

)

(
kq

k1k2

) E0 ∩ E1

x = 0y = 0

z = 0

k1 pts k2 pts

P2
ωpq

k1k2
(m+ k)E1

Figure 9. Intersection of E0 (resp. E1) with the rest of components.

Following the notation in (15), the stratification associated with the last excep-
tional divisor is

Ě1 = Ě1,1 t Ě1,x t Ě1,y t Ě1,xy,

where Ě1,1 = P2
ω \ ({xyz = 0} ∪ (V̂ ∩ E1)), Ě1,x = {x = 0} \ {k1 + 2 points},

Ě1,y = {y = 0}\{k2 + 2 points}, and Ě1,xy = [1 : 0 : 0]. Their Euler characteristics
and multiplicities are calculated in the table below.

stratum Ě0 Ě1,1 Ě1,x Ě1,y Ě1,xy

χ(·) χ(P2 \C) k1k2 −k1 −k2 1
m(·) m pq

k1k2
(m+ k) p

k1
(m+ k) q

k2
(m+ k) m+ k

Applying the generalized A’Campo’s formula (Theorem 1.10), the characteristic
polynomial of (V, 0) is

∆(V,0)(t) =
1

t− 1
(tm(Ě0) − 1)χ(Ě0) ·

∏

j=1,x,y,xy

(tm(Ě1,j) − 1)χ(Ě1,j)

=

(
tm − 1

)χ(P2\C)

t− 1
·
(
tm+k − 1

)(
t
pq
k1k2

(m+k) − 1
)k1k2

(
t
p
k1

(m+k) − 1
)k1(

t
q
k2

(m+k) − 1
)k2 .

Note that Lemma 7.1 and Theorem 7.2 are verified for this particular case.
After computing this resolution one can proceed with the resolution of the quotient
singularities so as to achieve a standard embedded resolution of (V, 0). As one can
figure out, the latter process strongly depends on k1 = gcd(k, p) and k2 = gcd(k, q).
This is one of the reason why no embedded resolution can be found in the literature
for YLS with k 6= 1.
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