000132859 001__ 132859
000132859 005__ 20250923084417.0
000132859 0247_ $$2doi$$a10.1029/2023PA004738
000132859 0248_ $$2sideral$$a137679
000132859 037__ $$aART-2024-137679
000132859 041__ $$aeng
000132859 100__ $$aViganò, A.
000132859 245__ $$aCalcareous Nannofossils and Paleoclimatic Evolution Across the Eocene-Oligocene Transition at IODP Site U1509, Tasman Sea, Southwest Pacific Ocean
000132859 260__ $$c2024
000132859 5060_ $$aAccess copy available to the general public$$fUnrestricted
000132859 5203_ $$aThe Eocene‐Oligocene transition (EOT; ∼34 Ma) was one of the most prominent global cooling events of the Cenozoic, coincident with the emergence of continental‐scale ice‐sheets on Antarctica. Calcareous nannoplankton experienced significant assemblage turnover at a time of long‐term surface ocean cooling and trophic conditions, suggesting cause‐effect relationships between Antarctic glaciation, broader climate changes, and the response of phytoplankton communities. To better evaluate the timing and nature of these relationships, we generated calcareous nannofossil and geochemical data sets (δ18O, δ13C and %CaCO3) over a ∼5 Myr stratigraphic interval recovered across the EOT from IODP Site U1509 in the Tasman Sea, South Pacific Ocean. Based on trends observed in the calcareous nannofossil assemblages, there was an overall decline of warm‐oligotrophic communities, with a shift toward taxa better adapted to cooler more eutrophic conditions. Assemblage changes indicate four distinct phases caused by temperature decrease and variations in paleocurrents: late Eocene warm‐oligotrophic phase, precursor diversity‐decrease phase, early Oligocene cold‐eutrophic phase, and a steady‐state cosmopolitan phase. The most prominent shift in the assemblages occurred during the ∼550 kyr‐long precursor diversity‐decrease phase, which has relatively high bulk δ18O and %CaCO3 values, and predates the phase of maximum glacial expansion (Earliest Oligocene Glacial Maximum–EOGM).
000132859 536__ $$9info:eu-repo/grantAgreement/ES/MICINN-FEDER/PID2019-105537RB-I00
000132859 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000132859 590__ $$a3.2$$b2024
000132859 592__ $$a1.619$$b2024
000132859 591__ $$aOCEANOGRAPHY$$b13 / 65 = 0.2$$c2024$$dQ1$$eT1
000132859 593__ $$aAtmospheric Science$$c2024$$dQ1
000132859 591__ $$aPALEONTOLOGY$$b2 / 56 = 0.036$$c2024$$dQ1$$eT1
000132859 593__ $$aPaleontology$$c2024$$dQ1
000132859 591__ $$aGEOSCIENCES, MULTIDISCIPLINARY$$b82 / 258 = 0.318$$c2024$$dQ2$$eT1
000132859 593__ $$aOceanography$$c2024$$dQ1
000132859 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000132859 700__ $$aDallanave, E.
000132859 700__ $$0(orcid)0000-0002-8801-9544$$aAlegret, L.$$uUniversidad de Zaragoza
000132859 700__ $$aWesterhold, T.
000132859 700__ $$aSutherland, R.
000132859 700__ $$aDickens, G. R.
000132859 700__ $$aNewsam, C.
000132859 700__ $$aAgnini, C.
000132859 7102_ $$12000$$2655$$aUniversidad de Zaragoza$$bDpto. Ciencias de la Tierra$$cÁrea Paleontología
000132859 773__ $$g39, 2 (2024), e2023PA004738 [23 pp.]$$pPaleoceanogr. paleoclimatol.$$tPaleoceanography and Paleoclimatology$$x2572-4525
000132859 8564_ $$s10242788$$uhttps://zaguan.unizar.es/record/132859/files/texto_completo.pdf$$yPostprint
000132859 8564_ $$s2145669$$uhttps://zaguan.unizar.es/record/132859/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000132859 909CO $$ooai:zaguan.unizar.es:132859$$particulos$$pdriver
000132859 951__ $$a2025-09-22-14:33:42
000132859 980__ $$aARTICLE