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a b s t r a c t

Runge–Kutta–Nyström (RKN) methods for the numerical solution of inhomogeneous
linear initial value problems with constant coefficients are considered.

A general procedure to construct explicit s-stage RKN methods with maximal order
p = s + 1, similar to the developed by the authors (Montijano et al., 2023) for the
class of second order IVP under consideration, depending on the nodes ci, i = 1, . . . , s
is presented. This procedure requires only the solution of successive linear equations in
the elements aij, 1 ≤ j < i ≤ s of the matrix of coefficients A of the RKN method and
avoids the solution of non linear equations.

The remarkable fact is that using as free parameters the nodes ci, i = 1, . . . , s with
a quadrature relation, the s(s − 1)/2 elements of matrix A can be computed by solving
successively linear systems with coefficients depending on the nodes, so that if they are
non-singular we get a unique s-stage method with maximal order s + 1.

We obtain an optimized six-stage seventh-order RKN method in the sense that the
nodes are chosen so that minimize the leading term of the local error. Finally, some
numerical experiments are presented to test the behaviour of the optimized RKN method
with others with Radau and Lobatto nodes.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

We consider second order Initial Value Problems (IVPs) for d-dimensional differential systems of second order linear
inhomogeneous equations given by

d2y
dt2

= y′′(t) = f (t, y) ≡ D y(t) + g(t), t ∈ [t0, t0 + T ],

y(t0) = y0 ∈ Rd, y′(t0) = y′

0 ∈ Rd, (1)

where D ∈ Rd×d is a constant matrix and g : R → Rd is a sufficiently smooth function in the interval of interest.
We approximate the solution y = y(t) of (1) and the derivative y′(t) at t = t0 + h by means of an s-stage

unge–Kutta–Nyström (RKN) method given by

y1 = y0 + h y′

0 + h2
s∑

i=1

b∗

i Ki, (2)
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a

y′

1 = y′

0 + h
s∑

i=1

bi Ki, (3)

where the stages Ki ∈ Rd, i = 1, . . . , s are defined by

Ki = f

⎛⎝t0 + ci h, y0 + h ci y′

0 + h2
s∑

j=1

aij Kj

⎞⎠ , i = 1, . . . , s. (4)

Here

ci, bi, b∗

i , aij, i, j = 1, 2, . . . , s,

re real constants that define the method and for explicit methods aij = 0 for s ≥ j ≥ i ≥ 1.
It is usual to specify the RKN method (2), (3), (4) by the Butcher tableau

c A
b∗ T

bT
(5)

where

c = (ci) ∈ Rs, b = (bi) ∈ Rs, b∗
=
(
b∗

i

)
∈ Rs, A =

(
aij
)

∈ Rs×s. (6)

As remarked in [1] the derivation of special Runge–Kutta type methods for the second order equations y′′
= f (t, y) (usually

referred to as RKN) attracted the attention of many researchers after the early paper of Nyström in 1925. An important
reason is that this type of equations appear in many practical applications and further the direct approach is more efficient
than the straightforward transformation of the second order equation in two first order equations. High order methods
have been derived by Fehlberg [2] and Dormand et al. [3] and have been widely used for numerical integrators in many
problems of Celestial Mechanics and other areas. For other applications related to semi discretizations of some partial
differential equations special RKN methods have been proposed by Hoang [4]. In the derivation of particular methods the
choice of the available parameters takes into account not only the accuracy but also linear stability properties related
to the scalar test equation y′′

= −w2y, w > 0 and several definitions have been proposed by van der Houwen [5] and
Franco [6] that are considered for the derivation of particular methods. A more refined stability study of RKN methods
has been given by Alonso et al. in [7] that consider as test equation the system U ′′

+ B2 U = f (t) where B is symmetric
positive definite matrix. Such a system allow to define a natural energy norm that can be used to give some general
stability definitions. Also it is worth to remark the recent contributions of Simos and co-workers [8–11] that derive very
efficient high order methods taking into account the local error and the stability properties.

The rest of the paper is organized as follows: In Section 2 the series expansion of the exact and numerical solution
are studied. In Section 3 necessary and sufficient conditions for a given order are derived in a simple formulation. Some
consequences of these conditions are remarked with particular emphasis such as the highest order of an s-stage method
is s+ 1 and also the relation with the quadrature rules and the simplifying conditions. In Sections 4 and 5 the derivation
of particular families of s–stage methods with order s + 1 for s = 3, 4 is studied. In Section 6 it is shown that general
s-stage methods with order s + 1 can be constructed by solving only linear systems. Here we follow the approach of the
authors in [12] and in our opinion these procedure is a crucial step in the derivation of high order RKN methods. Moreover
an optimized six-stage seventh-order RKN method in the sense that the nodes are chosen so that minimize the leading
term of the local error and the dispersion and dissipation errors has been obtained. Finally in Section 7 some numerical
experiments are presented to test the behaviour of the optimized RKN method with others sixth-stage, seventh-order
RKN methods based on Radau and Lobatto nodes.

2. Series expansions of the exact and the numerical solutions

First of all we derive the series expansion of the exact solution y(t) of (1) at t = t0 + h in powers of the step size h.
The two matrix valued functions Φ1(h) and Φ2(h) that are the fundamental solutions of the homogeneous equation of (1),
y′′(t) + Dy(t) = 0 such that

Φ1(0) = I, Φ ′

1(0) = 0, and Φ2(0) = 0, Φ ′

2(0) = I,

have the series expansions

Φ1(h) =

∑
i≥0

h2i

(2i)!
Di, Φ2(h) =

∑
i≥0

h2i+1

(2i + 1)!
Di, (7)

and then the solution of the homogeneous of (1): y(t0 + h) = yH (h) can be written as

y (h) = Φ (h) y + Φ (h) y′ . (8)
H 1 0 2 0

2
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T

The particular solution of (1): y(t0 + h) = yP (h) such that yP (0) = 0, y′

P (0) = 0, is

yP (h) =

∫ h

0

(∑
k≥0

(−1)k(h − τ )2k+1

(2k + 1)!
Dk

)
g(t0 + τ ) dτ ,

and substituting the Taylor expansion of g(t0 + τ ) at t0 and integrating we get

yP (h) =

∑
i, k≥0

h2k+2+i

(2k + i + 2)!
Dk g (i)

0 , (9)

where g (i)
0 =

dig(t)
dt i

⏐⏐⏐⏐
t=t0

.

Then, the general solution of (1) is

y(t0 + h) = yH (h) + yP (h), (10)

with yH and yP given by (8) and (9) respectively.
For the series expansion of the s-stage RKN method (2), (3), (4) we introduce some auxiliary notations

K =

⎛⎜⎜⎝
K1
K2
...

Ks

⎞⎟⎟⎠ ∈
(
Rd)s , e =

⎛⎜⎜⎝
1
1
...

1

⎞⎟⎟⎠ ∈ Rs, (11)

ω∗

k, j = b∗T Ak cj, ωk, j = bT Ak cj, j ≥ 0, k ≥ 0. (12)

Also for f : R → Rd and u = (u1, u2, . . . , us)T ∈ Rs we denote by f (u) the (d × s)-dim vector with components

f (u) =

⎛⎜⎜⎝
f (u1)
f (u2)

...

f (us)

⎞⎟⎟⎠ ∈
(
Rd)s . (13)

With these notations, the Eqs. (2), (3) may be written as

y1 = y0 + h y′

0 + h2 (b∗T
⊗ Id

)
K, (14)

and

y′

1 = y′

0 + h (b ⊗ Id) K, (15)

where Id is the identity matrix of order d and ⊗ the standard Kronecker product and

K = (e ⊗ D y0) + h
(
c ⊗ D y′

0

)
+ h2 (A ⊗ D) K + g(t0 e + h c). (16)

hen [
Ids − h2 (A ⊗ D)

]
K = (e ⊗ D y0) + h

(
c ⊗ D y′

0

)
+ g(t0 e + h c). (17)

and taking into account that[
Ids − h2 (A ⊗ D)

]−1
=

∑
j≥0

h2j (A ⊗ D)j ,

and

g(t0e + hc) = (e ⊗ g0) +

∑
k≥1

hk

k!
(ck ⊗ g (k)

0 ),

we have(
b∗T

⊗ Id
)

K =
(
b∗T

⊗ Id
) ⎛⎝∑

j≥0

h2j (A ⊗ D)j

⎞⎠
[
(e ⊗ D y0) + h

(
c ⊗ D y′

0

)
+ (e ⊗ g0) +

∑
k≥1

hk

k!
ck ⊗ g (k)

0

]

=

∑
h2j ω∗

0j D
j+1 y0 +

∑
h2j+1ω∗

1j D
j+1y′

0 +

∑ h2j+k

k!
ω∗

kj D
jg (k)

0 .
j≥0 j≥0 j,k≥0

3
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In conclusion

y1 = TN1 + TN2 + TN3, (18)

ith

TN1 = y0 +

∑
j≥0

h2j+2 ω∗

0j D
j+1 y0,

TN2 = h y′

0 +

∑
j≥0

h2j+3 ω∗

1j D
j+1y′

0, (19)

TN3 =

∑
j,k≥0

h2j+k+2

k!
ω∗

kj D
jg (k)

0 .

Similarly for y′

1

y′

1 = y′

0 + h
(
bT

⊗ Id
)

K = T ′

N1 + T ′

N2 + T ′

N3, (20)

ith

T ′

N1 =

∑
j≥0

h2j+1 ω0j Dj+1 y0,

T ′

N2 = y′

0 +

∑
j≥0

h2j+2 ω1j Dj+1y′

0, (21)

T ′

N3 =

∑
j,k≥0

h2j+k+1

k!
ωkj Djg (k)

0 .

3. Order conditions

Recall that a RKN method has order p iff this is the largest positive integer such that

y(t0 + h) − y1 = O
(
hp+1) , y′(t0 + h) − y′

1 = O
(
hp+1) , (22)

hold for all second order IVP (1) under consideration. Then in view of the above expansions (18)–(21) of the exact and
the RKN solutions we may state the following result

Theorem 3.1. The RKN method (2), (3), (4) has order p if this is the largest positive integer such that the following conditions
hold

ω∗

k,j := b∗T Ak cj =
j!

(2k + j + 2)!
, for all k, j ≥ 0 with 2k + j + 2 ≤ p, (23)

ωk,j := bT Ak cj =
j!

(2k + j + 1)!
, for all k, j ≥ 0 with 2k + j + 1 ≤ p. (24)

3.1. Some consequences of Theorem 3.1

(1) The order of a s-stage RKN method depends on the available parameters through the real constants ωi,k and ω∗

i,k. We
suppose now, that s = 2q+ 1. Then, for a method with order p ≥ s+ 1 the principal term of the local error (PTLE) of the
RKN (18)–(20) is composed of the two terms

PTLE(y0) = hp+1
(

1
(p + 1)!

− ω∗

q,0

)
Dq+1y′

0

(25)

+ hp+1
q∑

j=0

(
1

(p + 1)!
−

ω∗

j,p−2j−1

(p − 2j − 1)!

)
Dj g (p−2j−1)

0 ,

and

PTLE(y′

0) = hp+1
(

1
(p + 1)!

− ωq+1,0

)
Dq+2y0

(26)

+ hp+1
q+1∑(

1
(p + 1)!

−
ωj,p−2j

(p − 2j)!

)
Dj g (p−2j)

0 ,
j=0

4
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i

H

where the first terms of (25) and (26) are the contribution due to the homogeneous part of the solution and the second
one to the non homogeneous part, both for the numerical solution and the first derivative respectively.

(2) The conditions (24) for k = 0, and j = 0, 1, . . . , p − 1

bT cj =
1

j + 1
, j = 0, 1, . . . , p − 1,

imply that the quadrature rule with the s nodes c1, . . . , cs and weights b1, b2, . . . , bs has degree of precision ≥ (p − 1).
Since the maximum degree of precision of a quadrature rule with s nodes is (2s − 1) we have the necessary condition
p ≤ 2s for any general RKN method (2), (3), (4) with s stages.

(3) To compare the number of free parameters of an s-stage RKN method 5, (6) and the number of order conditions we
observe that for a given positive integer r the number of conditions Cr

ωk,j =
j!

(2k + j + 1)!
with k, j ≥ 0 and 0 ≤ 2k + j ≤ r,

s

Cr =

{
(q + 1)2, if r = 2q,
(q + 1)(q + 2), if r = 2q + 1.

ence the number of order conditions (23), (24) for even p is

NCon(Orderp) = Cp−2(of ω∗) + Cp−1(of ω) =
p(p + 1)

2
,

and similarly for odd p.
From this statement it follows that for any order p the number of order conditions NCon(Orderp) is p(p + 1)/2.
On the other hand the number of free parameters of an s-stage RKN method is

NFreePar(s stages) = s + s + s +
s(s − 1)

2
=

s(s + 5)
2

.

In view of the above for a RKN with s stages we have

NCon(Order(s + 2)) =
(s + 2)(s + 3)

2
=

s2 + 5s + 6
2

>
s2 + 5s

2
= NFreePar(s stages)

and therefore it is not expected that there exist RKN methods with s stages and order s + 2.

(4) For RKN with s stages and order s + 1 we have

NCon(Order(s + 1)) =
(s + 1)(s + 2)

2
=

s2 + 3s + 2
2

,

NFreePar(s stages) =
s2 + 5s

2
.

Hence

NFreePar(s stages) − NCon(Order(s + 1)) = s − 1,

and we have an infinite set of methods depending on (s − 1) free parameters.
In particular, with three stages the maximum order will be p = 4 and there exists a two parameter family of RKN

methods with three stages and order 4, and for four stages we expect to attain order 5 with three free parameters.

(5) A relation between the weights b and b∗ of a non confluent s-stage RKN with order (s + 1).
For an s-stage non-confluent RKN method of order (s + 1), i. e. with ci ̸= cj for all i ̸= j, the vectors b and b∗ satisfy

b∗
= b − (b · c). (27)

Let ∆ be the s-dim vector ∆ = b∗
− b + (b · c), then for all s-vectors cj, j = 0, 1, . . . , s − 1 we have

∆T cj = b∗T cj − bT cj + (b · c)T cj,

and taking into account the conditions (23) and (24) of Theorem 3.1 with p = s + 1 we get

∆T cj = 0, j = 0, 1, . . . , s − 1,

and by the non confluence of the we have ∆ = 0.
5
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(

h
t

s

T
b
T
s

a
T

T

(6) Order Conditions of a non confluent s-stage RKN for order s + 1.
In view of the relation (27) between b and b∗ we may substitute the order conditions ω∗ by other conditions that only

involve the weight b. Thus, for a non confluent s-stage RKN with order (s + 1) we have the equations

bT AKcj =
j!

(2k + j + 1)!
for all j, k ≥ 0 with 0 ≤ 2k + j ≤ s − 1, (28)

(b · c)T AKcj =
j! (2k + j + 1)
(2k + j + 2)!

for all j, k ≥ 0 with 0 ≤ 2k + j ≤ s − 2. (29)

7) A simplifying condition.
The condition

A e =
1
2

c2, (30)

as been considered by many authors [1] in the derivation of explicit RKN methods. For explicit methods (30) implies
hat c1 = 0 and there are (s − 1) additional linear relations between the elements of the matrix A.

On the other hand under the simplifying assumption (30) there are some order conditions of (23)–(24) that can be
kipped

ω1,0, ω2,0, . . . , ωk,0, for 0 ≤ 2k ≤ p − 1,
ω∗

1,0, ω∗

2,0, . . . , ω
∗

k,0, for 0 ≤ 2k ≤ p − 2.
(31)

hus for order p = s + 1 the simplifying assumption (30) introduces apart of c1 = 0, (s − 1) additional linear relations
etween the elements of the matrix A and on the other hand there are (s− 1) order conditions (31) that can be skipped.
his suggest that there is a close relation between the s-stage RKN methods with order s + 1 with c1 = 0 and those that
atisfy the condition (30). In fact, we will show next that if the nodes satisfy some algebraic relation they are equivalent.
Let

∆̂ = A e −
1
2

c2, (32)

nd assume that a RKN method with s = 2q stages and order (s+ 1) (a similar proof holds for an odd number of stages).
he method has order p = s + 1 = 2q + 1 and the order conditions are

bT Akcj =
j!

(2k + j + 1)!
for all j, k ≥ 0 with 0 ≤ 2k + j ≤ 2q,

(b∗)T Akcj =
j!

(2k + j + 1)!
for all j, k ≥ 0 with 0 ≤ 2k + j ≤ 2q − 1.

(33)

hen taking into account that c1 = 0, we obtain

eT1 ∆̂ = 0,

and by (33)

bT ∆̂ = 0, bTA ∆̂ = 0, . . . , bTAq−1∆̂ = 0.

Similarly for b∗

(b∗)T ∆̂ = 0, (b∗)TA ∆̂ = 0, . . . , (b∗)TAq−2∆̂ = 0.

This implies that the vector ∆̂ is orthogonal to the s = 2q vectors

eT1, bT , bTA, . . . , bTA(q−1), (b∗)T , (b∗)TA, . . . , (b∗)TA(q−2). (34)

Therefore if the vectors (34) are linearly independent, then ∆̂ = 0 and the simplifying condition (32) is satisfied.

(8) On the FSAL condition.
In the practical derivation of explicit RK methods for first order equations it is usual to consider methods in which the

last stage of a step coincides with the first stage of the next step. Such a condition that reduces the computational cost
of a methods is usually referred to as FSAL. Next we consider explicit RKN methods with this condition, i.e. the last stage
of the s-stage RKN in [t0, t1 = t0 + h] coincides with the first stage in [t1, t2]

K0,s = K1,1, (35)

or else

f
(
t0 + csh, y0 + hcsy′

0 + h2
s−1∑
j=1

asjK0,j

)
= f (t1 + c1h, y1) (36)

= f
(
t1 + c1h, y0 + hy′

0 + h2
s∑

b∗

j K0,j

)
.

j=1

6
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i
s

c

F

d

w

g

From the above equations it follows that the FSAL condition holds if and only if we have the following relations between
the coefficients of the method

c1 = 0, cs = 1, asj = b∗

j , j = 1, . . . , s − 1, and b∗

s = 0. (37)

ote that the condition b∗
s = 0 follows from cs = 1.

Since the s stage explicit RKN methods for linear equations with maximal order (s+1) depend on (s−1) parameters one
ay wonder whether or not this freedom can be used to satisfy the FSAL conditions (37). The number of FSAL conditions

n (37) are (s + 1) and therefore we cannot expect that a maximal order method satisfies the FSAL condition. In fact for
= 3 it is straightforward to see that all methods with order 4 do not satisfy (37) with s = 3.
An alternative study would be to derive s-stage methods with order s and the FSAL condition. Now we have the order

onditions

ω∗

k,j =
j!

(2k + j + 2)!
, 2k + j + 2 ≤ s,

(38)

ωk,j =
j!

(2k + j + 1)!
. 2k + j + 1 ≤ s.

or non confluent nodes the s equations

ω0,j = bT cj =
1

j + 1
, j = 0, . . . , s − 1, (39)

efine uniquely b = (b1, . . . , bs)T as function of the nodes.
Also from the (s − 1) equations

ω∗

0,j = (b∗)T cj =
j!

(j + 2)!
, j = 0, . . . , s − 2, (40)

ith b∗
s = 0 define uniquely b∗

= (b∗

1, . . . , b
∗

s−1, 0)
T as function of the nodes.

Now since asj = b∗

j are given as function of the nodes we must determine the remaining (s − 1)(s − 2)/2 parameters
aij with s − 1 ≥ i > j ≥ 1 of matrix A taking into account the conditions (38) with k ≥ 1. There are (s − 1)(s − 2)/2
order conditions on the elements of A to be satisfied i.e we have the same number of equations as parameters and a
linearization process similar to [12] can be applied to solve such system so that except for an isolated set of values of the
non confluent nodes there is a unique solution. In conclusion, for s-stage explicit RKN methods for linear equations with
order s there is a family of FSAL methods depending on s − 2 parameters.

As an example we consider the case s = 4 methods with order p = 4. Taking c2 and c3 as free parameters we have for
the other elements:

b1 = (1 − 2c2 − 2c3 + 6c2c3)/(12c2c3),
b2 = (2c3 − 1)/(12(c2 − 1)c2(c2 − c3)),
b3 = (2c2 − 1)/(12(c3 − 1)c3(c3 − c2)),
b4 = (3 − 4c2 − 4c3 + 6c2c3)/(12(c2 − 1)(c3 − 1)),
b∗

1 = (1 − 2c2 − 2c3 + 6c2c3)/(12c2c3),
b∗

2 = (2c3 − 1)/(12c2(c2 − c3)),
b∗

3 = (2c2 − 1)/(12c3(c3 − c2)),
b∗

3 = 0,

a21 = c22/2,
a31 = (c3(c22 (1 − 12c3) + 6c32c3 − c23 + 3c2c3(1 + c3)))/(6(c2 − 1)c2(2c2 − 1)),
a32 = c3(c2 − c3)(3c2c3 − c2 − c3)/(6(c2 − 1)c2(2c2 − 1)).

(9) The RKN method generated by a RK method for first order equations
Let ĉ, Â, b̂ the Butcher coefficients of an s-stage RK method. When applied to the IVP

Y ′
= F (t, Y ), Y (t0) = Y0, (41)

ives the approximation Y1 ≃ Y (t0 + h) given by the equations

Y1 = Y0 + h
s∑

i=1

b̂i Fi,

Fi = F (t0 + ĉih, Y0 + h
s∑

âijFj). i = 1, . . . , s.

(42)
j=1

7
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To apply this method (42) to the special second order equation

y′′
= f (t, y), y(t0) = y0, y′(t0) = y′

0, (43)

we transform (43) in a equivalent first order system putting

Y =

(
y
y′

)
, Y0 =

(
y0
y′

0

)
, F (t, Y ) =

(
y′

f (t, y)

)
=

(
F 1

F 2

)
, (44)

The application of (42) to (44) leads to

y1 = y0 + h
∑s

i=1 b̂i F
1
i , y′

1 = y′

0 + h
∑s

i=1 b̂i F
2
i ,

F 1
i = y′

0 + h
∑s

j=1 âij F
2
j , F 2

i = f (t0 + ĉih, y0 + h
∑s

j=1 âijF
1
j ),

(45)

that are equivalent to

y1 = y0 + h
∑

i

b̂i y′

0 + h2
∑
i,j

b̂i âij F 2
j , y′

1 = y′

0 + h
∑

i

b̂i F 2
i , (46)

F 2
i = f

⎛⎝t0 + ĉih, y0 + h
∑

j

âij y′

0 + h2
∑
j,k

âij âjk F 2
j

⎞⎠ .

Then it is equivalent to the s-stage RKN method with

cj = ĉj ci =

∑
j

âij,
∑

i

b̂i = 1, bi = b̂i, b∗

j =

∑
i

b̂îaij, A = Â2. (47)

For explicit methods Â is lower triangular and then A has also zeros in the two main subdiagonals.

4. Three stage explicit RKN methods with order 4

According to (24) we have the six order conditions relatives to

ω0,0, ω0,1, ω0,2, ω0,3, ω1,0, ω1,1, (48)

and the four order conditions (23) relatives to ω∗

ω∗

0,0, ω∗

0,1, ω∗

0,2, ω∗

1,0. (49)

To give an explicit derivation of fourth-order methods we propose the following approach:
From the conditions of ω0,0, ω0,1 and ω0,2 we obtain b1, b2, b3 from the explicit equations

b1 =
2 − 3c2 − 3c3 + 6c2c3
6(c1 − c2)(c1 − c3)

, (50)

nd b2, b3 by circular rotation (1 → 2, 2 → 3, 3 → 1).
Then substituting into

ω0,3 = bT c3 =
1
4
,

e get the condition on the nodes

− 3 + 4c2 + 4c3 − 6c2c3 + 2c1(2 − 3c2 − 3c3 + 6c2c3) = 0. (51)

Also from ω∗

0,0, ω
∗

0,1 and ω∗

0,2 we get

b∗

1 =
1 − 2c2 − 2c3 + 6c2c3
12(c1 − c2)(c1 − c3)

, (52)

nd b∗

2, b
∗

3 by circular rotation (1 → 2, 2 → 3, 3 → 1).
And finally ω1,0, ω1,1 and ω∗

1,0 are three linear equations in a21, a31 and a32 that define these unknowns as functions
of b, b∗ and c and also as functions of the nodes. For example

a21 =
(c1 − c2)(−c2 − c1 + 6c1c2)

2(1 − 6c1 + 6c21 )
,

a31 = −
b2b3 − 2

√
3b3b∗

2 − 4b2b∗

3 + 2
√
3b2b∗

3

24b3(b3b∗

2 − b2b∗

3)
,

a32 =
(−1 + 4c1)(c1 − c3)(c2 − c3)

.

(53)
4(c1 − c2)(2 − 3c1 − 3c2 + 6c1c2)
8
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In conclusion if the nodes cj satisfy (51) and b∗

j , bj, ajk are well defined we have a three stage RKN method with order
our. It is worth to note that for all set of nodes that satisfy (51) we cannot ensure that the linear system in the elements
f A, a21, a31, a32 possess a solution. Thus with the choice

c1 =
3 −

√
3

6
, c2 =

1
2
, c3 =

3 +
√
3

6
,

that satisfies (51), we have from (50) and (52)

b =
1
2
(1, 0, 1)T , b∗

=

(
3 +

√
3

12
, 0,

3 −
√
3

12

)T

,

and the system in a21, a31, a32 has no solution.
A particular solution of (53) is the one given in Hairer [1]

c = (0, 1/2, 1)T , b = (1/6, 4/6, 1/6)T , b∗
= (1/6, 1/3, 0)T , (54)

a21 = 1/8, a31 = 0, a32 = 1/2.

Another particular solution is the corresponding to the Gaussian nodes in [0, 1] given by

c1 =
1
2

−

√
3
20

, c2 =
1
2
, c3 =

1
2

+

√
3
20

.

Now

b =

(
5
18

,
4
9
,
5
18

)T

, b∗
=

(
5 +

√
15

36
,
2
9
,
5 −

√
15

36

)T

,

and the linear system in a21, a31 and a32 has the unique solution

a21 =
6 −

√
15

16
, a31 = −

3
5

+

√
3
5
, a32 =

6 −
√
15

10
.

ote that this three-stage fourth-order RKN has ω0,5 = 1/6 and ω0,6 = 1/7.

5. Four stage explicit RKN methods with order 5

According to (24) we have the nine order conditions relatives to of ωi,j

ω0,0, ω0,1, ω0,2, ω0,3, ω0,4,

ω1,0, ω1,1, ω1,2,

ω2,0,

(55)

and from (23) the six order conditions of ω∗

ω∗

0,0, ω∗

0,1, ω∗

0,2, ω∗

0,3,

ω∗

1,0, ω∗

1,1.
(56)

First of all we consider the equations ω0,0 to ω0,3 to obtain b1, b2, b3, b4 as a functions of the nodes cj. Then we substitute
into the equation of ω0,4, that is bT c4 = 1/5, obtaining the following non linear relation between the nodes

(−12 + 15c3 + 15c4 − 20c3c4) + 5c2(3 − 4c3 − 4c4 + 6c3c4) (57)
= 5c1(−3 + 4c3 + 4c4 − 6c3c4 + 2c2(2 − 3c3 − 3c4 + 6c3c4)).

On the other hand from the equations

ω∗

0,0, ω∗

0,1, ω∗

0,2, ω∗

0,3,

we obtain b∗

j , j = 1, 2, 3, 4 depending on the nodes ci.
There are still six equations to be satisfied (four in (55) and two in (56)) that will be used to determine the six elements

in the matrix A. All equations are linear in the elements aij except the corresponding to ω2,0. However we may use the
linearization process (see [12])to substitute this equation for another equivalent that is linear. In fact the equations of
ω1,0, ω1,1, ω1,2 can be written in the matrix form

bT A
[
e | c | c2

]
= (1/3! , 1/4!, 2!/5!) ,

or else

bT A Ω = bT A
[
e | c | c2 | e

]
= 1/3! , 1/4!, 2!/5! , 0 ≡ dT .
3 4 ( ) 1

9
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Hence

bT A = dT
1 Ω

−1
3 ≡ µT

1,

and then the second order equation in A

bT A2 e =
1
5!

,

can be substituted by

µT
1 A e =

1
5!

. (58)

ow the six equations ω1,0, ω1,1, ω1,2, (58), ω∗

1,0, ω
∗

1,1 are linear equations that define aij.
In particular for c = (c1, c2, c3, c4)T = (0, 1/5, 2/3, 1)T , the condition (57) is satisfied and we get the method defined

y

b∗
=

(
14
336

,
100
336

,
54
336

, 0
)T

, b =

(
14
336

,
125
336

,
162
336

,
35
336

)T

,

A =

⎛⎜⎝ 0
1/50 0

−1/27 7/27 0
3/10 −2/35 9/35 0

⎞⎟⎠ ,

iven by Hairer et al. in [1].

. The construction of explicit s-stage RKN linear methods of maximal order s + 1.

An explicit s-stage RKN method for linear equations has 3s + s(s − 1)/2 parameters

c = (ci) ∈ Rs, b = (bi) ∈ Rs, b∗
= (b∗

i ) ∈ Rs, A = (aij), s ≥ i > j ≥ 1, (59)

nd for maximal order p = s + 1 the order conditions are

ωk,j = bT Ak cj =
j!

(2k + j + 1)!
≡ γk,j, 0 ≤ 2k + j ≤ s, (60)

ω∗

k,j = b∗T Ak cj =
j!

(2k + j + 2)!
≡ γ ∗

k,j, 0 ≤ 2k + j ≤ s − 1, (61)

then there are (s − 1) free parameters.
After an elementary calculation it can be seen that the number of order conditions (60) and (61) are

NConds =
(s + 1)(s + 2)

2
,

and in these RKN methods with order (s + 1) there are (s − 1) free parameters.
To construct methods of maximal order we observe first that the conditions

ω0,j = bT cj =
1

j + 1
, j = 0, . . . , s, (62)

mply that the quadrature rule with nodes cj, j = 1, . . . , s and weights bj, j = 1, . . . , s has degree of precision s. The
ssuming non confluent nodes the first s equations of (62) define uniquely the weights bi, i = 1, . . . , s as rational functions
f the nodes and we have the additional condition between the nodes

bT cs =
1

s + 1
. (63)

Moreover the order equations

ω∗

0,j : (b∗)T cj =
1

(j + 1)(j + 2)
, j = 0, . . . , s − 1, (64)

efine the weights b∗T
= (b∗

1, . . . , b
∗
s )

T as functions of the nodes.
Now we must determine the s(s − 1)/2 parameters aij with 1 ≤ j < i ≤ s that define the matrix A from the s(s − 1)/2

emaining order conditions of (59)–(60) with ωk,j and ω∗

k,j with k ≥ 1.
We have the same number of conditions as free parameters but the point here is that conditions ωi,j and ω∗

i,j with
≥ 2 are non linear in the elements aij of matrix A.
The key point here is that the order conditions (59)–(60) with k ≥ 2 are non linear in the elements of the matrix A.

owever we will see that these non linear equations can be substituted by other equivalent linear equations in a and
ij

10
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therefore the computation of aij can be reduced to solve only linear systems with coefficients depending only on the nodes
j, j = 1, . . . , s and if these systems have a unique solution they will determine maximal order methods.
To fix ideas suppose that s = 2q+1 is an odd number (a similar study can be carried out for even s). Then, the (2q+1)q

quations that determine the (2q + 1)q elements of A are⎧⎨⎩ bT A cj = γ1,j, j = 0, 1, . . . , 2q − 1,

b∗TA cj = γ ∗

1,j, j = 0, 1, . . . , 2q − 2,
(65)

{
bT A2 cj = γ2,j, j = 0, 1, . . . , 2q − 3,
b∗TA2 cj = γ ∗

2,j, j = 0, 1, . . . , 2q − 4, (66)

...{
bT Aq cj = γq,j, j = 0, 1,
b∗TAq cj = γ ∗

q,j, j = 0. (67)

here the first block (65) are linear equations in A, the second block (66) are quadratic and the last block (67) have order
.
Now we consider the first set of (s − 1) equations of (65). Adding the identity bT Aes = 0, these equations can be

ritten equivalently in the matrix form

bT A
[
e|c| . . . |cs−2

|es
]

=
[
γ0,1, . . . , γ0, s−2, bTAes = 0

]
.

herefore introducing the notations

Ωi =
[
e | c | . . . | ci−1

| ei+1 | . . . |es
]

∈ Rs×s,

γT
i = (γ0,1, . . . , γ0, i−1, bTAei+1, . . . , bTAes), i ≤ s − 1,

the first equation of (65) can be written in the equivalent matrix form

bT A Ω2q = γ2q.

ext, we consider the second equation of (65), and adding the identities

b∗TAes = 0, b∗TAes−1 = b∗TAes−1,

and putting

γ∗

i
T

=

(
γ ∗

0,1, . . . , γ
∗

0, i−2, b
∗TAei, . . . , b∗TAes

)
,

an be written in the equivalent matrix form

b∗T A Ω2q−1 = γ∗

2q−1.

hese notations can be applied to (65)–(67) obtaining{
bT A Ω2q = γ2q,

b∗T A Ω2q−1 = γ∗

2q−1,
(68)

...
...{

bT Aq Ω2 = γ2,

b∗T Aq Ω1 = γ∗

1.
(69)

ow defining

µT
1 = bT A, µ∗

1
T

= b∗T A,

µT
2 = bT A2

= µT
1A, µ∗

2
T

= b∗T A2
= µ∗

1
TA,

...
...

µT
q = bT Aq

= µT
q−1A, µ∗

q
T

= b∗T Aq
= µ∗

q−1
TA,

we have{
µT

1Ω2q = γ2q → µT
1 = γ2qΩ

−1
2q ,

µ∗T
1Ω2q−1 = γ∗

2q−1 → µ∗T
1 = γ∗

2qΩ
−1
2q−1,

(70){
µT

2Ω2q−2 = γ2q−2 → µT
2 = γ2q−2Ω

−1
2q−2,

∗T ∗ ∗T ∗ −1 (71)

µ 2Ω2q−3 = γ2q−3 → µ 2 = γ2q−3Ω2q−3,

11
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t

...{
µT

qΩ2 = γ2 → µT
q = γ2Ω

−1
2 ,

µ∗T
qΩ1 = γ∗

1 → µ∗T
q = γ∗

1Ω
−1
1 ,

(72)

ow the computation of the elements of A proceeds in the following way:
Solve for the (s − 1)th-column of A, as s−1, from the (s − 1) component of bT A = µT

1 ,

bsas s−1 = µ1,s−1,

hat defines as s−1 provided that bs ̸= 0.
Solve for the (s − 2)th-column of A, i.e. from the (s − 2) components of bT A = µT

1 and b∗T A = µ∗

1
T , resulting the

linear system 2 × 2(
bs bs−1
b∗
s b∗

s−1

)(
as,s−2

as−1,s−2

)
=

(
µ1,s−2
µ∗

1,s−2

)
. (73)

Solve for the (s− 3)th-column of A, i.e. from the (s− 3) components of bT A = µT
1 , b

∗T A = µ∗

1
T and µT

2 A = µT
1 resulting

the linear system 3 × 3(bs bs−1 bs−2
b∗
s b∗

s−1 b∗

s−2
0 µ1,s−1 µ1,s−2

)( as,s−3
as−1,s−3
as−2,s−3

)
=

⎛⎝µ1,s−3
µ∗

1,s−3
µ2,s−3

⎞⎠ ,

This process is repeated obtaining in the last step the linear system for the first column of A⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

bs bs−1 bs−2 . . . b2
b∗
s b∗

s−1 b∗

s−2 . . . b∗

2
0 µ1,s−1 µ1,s−2 . . . µ1,2
0 µ∗

1,s−1 µ∗

1,s−2 . . . µ∗

1,2
...

. . .

0 . . . 0 µq−1,q+2 . . . µq−1,2
0 . . . 0 µ∗

q−1,q+2 . . . µ∗

q−1,2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

as 1
as−1 1
as−2 1

...

a3 1
a2 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

µ1,1
µ∗

1,1
µ2,1

...

µq,1
µ∗

q,1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(74)

Note that if the matrix in the linear system (74) is non singular, then it is possible to construct s-stages RKN methods
with order p = s + 1.

As remarked above the calculation of the s(s − 1)/2 elements of the matrix A of an s-stage RKN method with order
p = s+1 by solving only linear systems with coefficients bi depending on the nodes that satisfy the algebraic condition (63)
can be carried out only if the successive linear systems to be solved in the above algorithm are non singular. Thus for
s = 3, with the nodes c1 = (3 −

√
3)/6, c2 = 1/2, c3 = (3 +

√
3)/6, the coefficients b1 = 1/2, b2 = 0, b3 = 1/2 satisfy

(62) and (63), but solving for the elements a21 and a31 of the first column of A, the coefficient matrix of (73) is singular,
and then there is no solution for this set of nodes. Therefore apart of (63), there are additional algebraic conditions to be
satisfied by the nodes to attain order p = s + 1.

A particular interesting case is the closed Newton–Cotes nodes in [0, 1] with an odd number of nodes s = 2q + 1,
cj = j/(2q), j = 0, . . . , 2q. In this case our numerical experiments show that for all q there exist a unique s-stage method
with maximal order p = s + 1 with positive coefficients bi and b∗

i and with the elements aij given by rational numbers.
Thus for s = 5 we have the linear RKN method with

c =

(
0,

1
4
,
2
4
,
3
4
, 1
)T

, b =

(
7
90

,
16
45

,
2
15

,
16
45

,
7
90

)T

, b∗
=

(
7
90

,
4
15

,
1
15

,
4
15

, 0
)T

,

A =

⎛⎜⎜⎜⎝
0

1/32 0
−1/24 1/6 0
5/32 1/8 1/16 0
0 3/7 −1/14 1/7 0

⎞⎟⎟⎟⎠ ,

that it has order 6. In Table 2 we give an five-stages sixth-order RKN method based on the nodes c = (1/5, 1/3, 1/2, 4/5,
2/3)T and in Table 3 an seven-stage seventh-order FSAL RKN based on the nodes c = (0, 1/5, 1/4, 1/2, 2/3, 4/5, 1)T .

In relation with the choice of the s−1 free nodes in the s-stage explicit RKN methods with order p = s+1, we consider
the minimization of the principal term of the local truncation error (25)–(26). Therefore, we take the Euclidean norm of
the coefficients for the solution and their derivative. In the case that s = 2q + 1,

CT
p+1 =

1
(p + 1)!

(1, . . . , 1) −

(
ω∗

q,0, ω
∗

q,0,
ω∗

q−1,2

2!
, . . . ,

ω∗

1,p−4

(p − 4)!
,

ω∗

0,p−2

(p − 2)!

)
∈ Rq+2,

ĈT
p+1 =

1
(1, . . . , 1) −

(
ωq+1,0, ωq+1,0,

ωq,2
, . . . ,

ω1,p−2
,
ω0,p

)
∈ Rq+3.
(p + 1)! 2! (p − 2)! p!
12
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Table 1
Summary of six-stage seventh-order RKN methods.
Method ∥C8∥ ∥̂C8∥ Is φ(ν) d(ν)

RKN6 new 2.58 × 10−7 2.25 × 10−7 3.137 1.16 × 10−7ν9 5.01 × 10−10ν8

Radau IA 4.61 × 10−7 4.15 × 10−6 2.873 −8.44 × 10−7ν9 1.56 × 10−6ν8

Lobatto IIIA 1.36 × 10−6 1.13 × 10−6 3.131 −1.55 × 10−7ν9 6.03 × 10−7ν8

To study the absolute linear stability of an RKN method we consider the homogeneous linear test model [5]

y′′(t) + ω2y(t) = 0, y (t0) = y0, y′ (t0) = y′

0, ω > 0, (75)

whose analytical solution satisfies the relationship:(
y (t0 + h)

y′ (t0 + h) /ω

)
=

(
cos(ν) sin(ν)

− sin(ν) cos(ν)

)(
y0

y′

0/ω

)
where v = ωh. When an RKN method is applied to the above linear test IVP the following difference system is obtained:(

y1
y′

1/ω

)
= M(ν2)

(
y0

y′

0/ω

)
, M(ν2) =

(
m11(ν2) m12(ν2)

−m21(ν2) m22(ν2)

)
.

Here M(ν2) is the so called stability matrix whose elements are

m11(ν2) = 1 − ν2 b∗T
(
I + ν2A

)−1 e, m12(ν2) = ν − ν3 b∗T
(
I + ν2A

)−1 c,
m21(ν2) = ν bT

(
I + ν2A

)−1 e, m22(ν2) = 1 − ν2 bT
(
I + ν2A

)−1 c.

The behaviour of the numerical solution depends on spectral radius ρ(M(ν2)). Then, for RKN methods, the stability
interval is defined as Is = {ν > 0 | ρ(M(ν2)) < 1}.

Once defined the stability matrix, a comparison between the numerical and exact solution of (75) leads to the following:

Definition
For an RKN method the dispersion error (phase error) and the dissipation error (amplification error) [5,6], are given

respectively by

φ(v) = v − arccos

⎡⎣ tr
(
M
(
v2
))

2
√
det

(
M
(
v2
))
⎤⎦ , d(v) = 1 −

√
det

(
M
(
v2
))

.

Then the method is said to be dispersive of order q and dissipative of order r , if

φ(v) = O
(
vq+1) , d(v) = O

(
vr+1) , ν → 0.

To derive an optimized six-stage seventh-order RKN method with c1 = 0, we select the free parameters c2, . . . , c5
so that they minimize ∥C8∥

2
+ ∥̂C8∥

2 with small values of the dispersive and dissipative errors. After this process of
minimization, we obtain a rational set of values, rounding the optimized solution given by

c =

(
0,

3
50

,
9
25

,
11251
12500

,
18
25

,
24070733
25588787

)T

.

The coefficients of this new method are given in Table 6 in Appendix.
We consider also a six-stage method obtained using the Lobatto IIIA (c1 = 0, c6 = 1) (see Table 4) and other scheme

with the nodes of the RADAU IA quadrature nodes (c1 = 0) (see Table 5). We present in Table 1 the main properties of
the several RKN considered.

7. Numerical experiments

We present here some numerical experiments with the methods included in Table 1 and also the efficient six-stage,
sixth-order FSAL DPRKN6 [3]. The Euclidean norm of all the coefficients of its PTLE is 3.99 × 10−4.

We have considered the following test problems:

(I) Linear scalar inhomogeneous problem

y′′(t) = −100y(t) + 99 sin(t), y(0) = 1, y′(0) = 11, t ∈ [0, 20π ],

with exact solution given by y(t) = cos(10t) + sin(10t) + sin(t). The step sizes used are h =
π

, i = 2, . . . , 6.

5 × 2i

13



J.I. Montijano, L. Rández and M. Calvo Journal of Computational and Applied Mathematics 438 (2024) 115533
(II) Small dimensional linear system [7]

q′′(t) = −
1
2

(
ω2

+ 1 ω2
− 1

ω2
− 1 ω2

+ 1

)
q(t), q(0) =

(
1 + ε

−1 + ε

)
, q′(0) =

(
1 + εω

−1 + εω

)
,

whose analytic solution is given by

q(t) =

(
cos(t) + sin(t)

− cos(t) − sin(t)

)
+ ε

(
cos(ωt) + sin(ωt)

cos(ωt) + sin(ωt)

)
with ε = 10−3, ω = 20, and combines a dominant component of short frequency with a component of large

frequency and small amplitude. In our test the problem is integrated up to tend = 20 with steps h =
4π

5 × 2i ,
i = 2, . . . , 7, and the numerical results obtained are presented in Fig. 2.

(III) Inhomogeneous linear system [8]
Starting from the wave equation given by

∂2x
∂t2

= 4
∂2x
∂r2

+ sin t · cos
(πr

L

)
, 0 ≤ r ≤ L, t ∈ [0, 40π ],

∂x
∂r

(t, 0) =
∂x
∂r

(t, L) = 0,

x(0, r) = 0,
∂x
∂t

(0, r) =
L2

4π2 − L2
cos

πr
L

,

with exact solution

x(t, r) =
L2

4π2 − L2
· sin(t) · cos

πr
L

,

we semi-discretize ∂2x
∂r2

with fourth-order symmetric differences at internal points and one-sided differences of the
same order at the boundaries obtaining the system:

⎡⎢⎢⎣ x′′

1

x′′

2

x′′

N+1

⎤⎥⎥⎦ =
4

(∆r)2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−
415
72 8 −3 8

9 −
1
8 0 · · ·

257
144 −

10
3

7
4 −

2
9

1
48 0 · · ·

−
1
12

4
3 −

5
2

4
3 −

1
12

...

0
. . .

. . .
. . .

. . .
. . . 0

... −
1
12

4
3 −

5
2

4
3 −

1
12

· · · 0 1
48 −

2
9

7
4 −

10
3

257
144

· · · 0 −
1
8

8
9 −3 8 −

415
72

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
·

⎡⎢⎢⎢⎢⎢⎣
x1
x2
...

xN+1

⎤⎥⎥⎥⎥⎥⎦

+ sin t ·

⎡⎢⎢⎢⎢⎣
cos

( 0·∆r
L · π

)
cos

( 1·∆r
L · π

)
...

cos
(N·∆r

L · π
)

⎤⎥⎥⎥⎥⎦ .

By choosing L = 25 and N = 20 and the spatial step size ∆r = L/N , we arrive at a constant coefficient linear system.

Then, x1 ≈ x(t, 0), x2 ≈ x(t, ∆r), . . . , x21 ≈ u(t, 20∆r). The time step sizes used are h =
4π

3 × 2i , i = 2, . . . , 5 and for
computing the global error at each step, we have used the code DOPRI853 [1] at stringent tolerance after converting
it in a first order IVP.

In Figs. 1, 2, 3 we show efficiency plots, computing the maximum global error (log10 (max ∥y (tn) − yn∥)) over the
whole integration interval and plotted against the number of required function evaluations.

From the numerical results obtained in Figs. 1, 2 and 3, it follows that for the problems under consideration, the
efficiency of the RKN schemes developed for linear problems is clearly superior to the standard RKN scheme, being the
optimized method deduced in the previous section the most efficient.

8. Conclusions

For the class of second-order linear inhomogeneous IVPs, the order conditions of explicit RKN methods have been
obtained by a direct derivation without using the Butcher theory of B-series [13].
14
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Fig. 1. Efficiency plot for problem I.

Fig. 2. Efficiency plot for problem II.

Fig. 3. Efficiency plot for problem III.
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Table 2
Five-stage sixth-order RKN based on c = (1/5, 1/3, 1/2, 4/5, 2/3)T .

1/5 0

1/3
8

279
0

1/2
7953
63488

−
15

2048
0

4/5
369441
1091200

−
21819
176000

168
1375

0

2/3
1560041
8678016

811
10368

−
56

2187
10

2187
0

b∗T 275
378

−
27
28

28
27

275
1512

−
27
56

bT 1375
1512

−
81
56

56
27

1375
1512

−
81
56

Table 3
Seven-stage seventh-order FSAL RKN.

0 0
1
5

1
50

0

1
4

4814423
73014272

−
2532727
73014272

0

1
2

8765803965
139813204096

−
715410053

139813204096
16525
245104

0

2
3

83920581299
4246826074416

−
4192123959163
12740478223248

4001725
7445034

−
35

5832
0

4
5

57110372996641
2594190310375000

431735384596
3631866434525

110480854
1196796875

41283
593750

1435401
83125000

0

1
29
560

2125
5292

−
384
1925

212
945

−
243
4900

2375
33264

0

b∗T 29
560

2125
5292

−
384
1925

212
945

−
243
4900

2375
33264

0

bT 29
560

10625
21168

−
512
1925

424
945

−
729
4900

11875
33264

31
560

The order conditions obtained do not assume the standard simplifying condition Ae = c2/2.
By using the close connection of these order conditions with those which appear in the theory of degree of precision

of quadrature rules, we have proposed an algorithm for the direct construction of s-stage explicit RKN methods that only
requires the solution of linear systems in the elements aik, s ≥ i > k ≥ 1 of matrix A.

Thus, our algorithm avoids the treatment of non-linear algebraic equations in the available parameters aik by
substituting these equations by equivalent linear equations obtained after suitable reduction.

Finally, the results of some numerical experiments to compare the behaviour of several 6-stages methods seventh-order
RKN have been presented.

Data availability

No data was used for the research described in the article.
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See Tables 2–6.
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Table 4
Six-stage seventh-order Lobatto IIIA RKN.
a21 = 0.006899875101736095721792
a31 = −0.008649348384522627811526
a32 = 0.072511096513592418131778
a41 = 0.104494022647602567335994
a42 = −0.023548725703754618489262
a43 = 0.125532209425544389630595
a51 = −0.206831187509496682807197
a52 = 0.515997648211865580182855
a53 = −0.023154349324445859897361
a54 = 0.103415425688545404668997
a61 = 0.837331614754864935733926
a62 = −1.126061983315861349122818
a63 = 0.805147761593905739861816
a64 = −0.055588841946761896205889
a65 = 0.039171448913852569732965
b∗

1 = 0.033333333333333333333333
b∗

2 = 0.167007309146871573763622
b∗

3 = 0.178280368337326917338981
b∗

4 = 0.099148820180416259169378
b∗

5 = 0.022230169002051916394684
b∗

6 = 0
b1 = 0.033333333333333333333333
b2 = 0.189237478148923490158306
b3 = 0.277429188517743176508360
b4 = 0.277429188517743176508360
b5 = 0.189237478148923490158306
b6 = 0.033333333333333333333333
c1 = 0
c2 = 0.117472338035267653574498
c3 = 0.357384241759677451842924
c4 = 0.642615758240322548157075
c5 = 0.882527661964732346425501
c6 = 1

Table 5
Six-stage seventh-order Radau IA RKN.
a21 = 0.0048545815666910426173870
a31 = 0.0178867174586194785795939
a32 = 0.0284842869433949608464863
a41 = −0.0085229470829495326182732
a42 = 0.0667757130306330902320682
a43 = 0.0996833910105472478290203
a51 = 0.0285399512356621006986177
a52 = 0.1971976976979077054873200
a53 = 0.0023568039193981549822464
a54 = 0.0934967861024179505405569
a61 = 0.0521153690477277501220434
a62 = −0.0094452871378897228108407
a63 = 0.3249664785174538438961446
a64 = 0.0502604721607108392479879
a65 = 0.0430855227197577349777399
b∗

1 = 0.0277777777777777777777777
b∗

2 = 0.1440724620885632070875976
b∗

3 = 0.1687847241618682877292807
b∗

4 = 0.1140764045101176825870768
b∗

5 = 0.0412760290615843039880275
b∗

6 = 0.0040126024000887408302394
b1 = 0.0277777777777777777777777
b2 = 0.1598203766102554832728899
b3 = 0.2426935942344849580799139
b4 = 0.2604633915947874912851147
b5 = 0.2084506671559538694797031
b6 = 0.1007941926267404201046003
c1 = 0
c2 = 0.0985350857988264261234988
c3 = 0.3045357266463639054853851
c4 = 0.5620251897526138559949874
c5 = 0.8019865821263918274642078
c6 = 0.9601901429485312576591933
17



J.I. Montijano, L. Rández and M. Calvo Journal of Computational and Applied Mathematics 438 (2024) 115533
Table 6
Six-stage seventh-order optimized RKN.

a21 =
9

5000

a31 = −
3634069637887140077316
53113189967339903376875

a32 =
566064347821661265291
4249055197387192270150

a41 =
8054088664006320077374798453522968728624516971
2255775205810430242066927075153523437500000000

a42 = −
15673554453785866571904623545471961034558496067
3759625343017383736778211791922539062500000000

a43 =
66597022293443164742902591
66361082082363281250000000

a51 =
2799906116457805865852985436372420713166301172318
10683385770614357719482753057055174448979559399375

a52 = −
2030089456101085474684297666560587179060580676621
9971223355899153000825561270299207793861377055625

a53 =
14957824304702535876353046357
75433372650289261840211320625

a54 =
823529283413166000000

339943616467082167731559

a61 =
3563203594163175979894004847721040446165535344779545910824501044838967229248444137
5472003407206819031103218762906536765207466084551655581936948263663458130603102054

a62 = −
3925145090285808076404606818190932614058287091093530649340672243949908330338417695
6242176849167648042166759522828558135927469310309664206886487432070529159127533566

a63 =
6834019611379007761629294570122746165710480958850239242171905
19318392175580294085336879244732167995045801869596567299775309

a64 = −
1677555919234738888873681153423261797817055688187500000000

504038350615804977199788645979977703459603971283672930280659

a65 =
235288433205605928365351457398836341141978199401775
3378334474455160133475290334309091868500511394379014
18
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b∗

1 = −
46209807457411

1579421172644856

b∗

2 =
2112119288666500
10542503391066999

b∗

3 =
212185132357250
914089036824459

b∗

4 = −
378819626464843750000000

69938969444368592985434139

b∗

5 =
1864640258070625
20385839438418168

b∗

6 =
396539474222098651604742574282710336797909

36936271118274824682876038597998874219099636

b1 = −
46209807457411

1579421172644856

b2 =
2246935413475000
10542503391066999

b3 =
2652314154465625
7312712294595672

b4 = −
3791229248046875000000000
69938969444368592985434139

b5 =
6659429493109375
20385839438418168

b6 =
40105150974713441375211814295744232778359487
221617626709648948097256231587993245314597816

c =

(
0,

3
50

,
9
25

,
11251
12500

,
18
25

,
24070733
25588787

)T
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