000132887 001__ 132887 000132887 005__ 20250923084415.0 000132887 0247_ $$2doi$$a10.1021/acsomega.3c09760 000132887 0248_ $$2sideral$$a137762 000132887 037__ $$aART-2024-137762 000132887 041__ $$aeng 000132887 100__ $$aBlankevoort, Nickel 000132887 245__ $$aExploring the Impact of the HOMO–LUMO Gap on Molecular Thermoelectric Properties: A Comparative Study of Conjugated Aromatic, Quinoidal, and Donor–Acceptor Core Systems 000132887 260__ $$c2024 000132887 5060_ $$aAccess copy available to the general public$$fUnrestricted 000132887 5203_ $$aThermoelectric materials have garnered significant interest for their potential to efficiently convert waste heat into electrical energy at room temperature without moving parts or harmful emissions. This study investigated the impact of the HOMO–LUMO (H-L) gap on the thermoelectric properties of three distinct classes of organic compounds: conjugated aromatics (isoindigos (IIGs)), quinoidal molecules (benzodipyrrolidones (BDPs)), and donor–acceptor systems (bis(pyrrol-2-yl)squaraines (BPSs)). These compounds were chosen for their structural simplicity and linear π-conjugated conductance paths, which promote high electrical conductance and minimize complications from quantum interference. Single-molecule thermoelectric measurements revealed that despite their low H-L gaps, the Seebeck coefficients of these compounds remain low. The alignment of the frontier orbitals relative to the Fermi energy was found to play a crucial role in determining the Seebeck coefficients, as exemplified by the BDP compounds. Theoretical calculations support these findings and suggest that anchor group selection could further enhance the thermoelectric behavior of these types of molecules. 000132887 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E31-23R$$9info:eu-repo/grantAgreement/ES/MICINN/PID2022-141433OB-I00$$9info:eu-repo/grantAgreement/EUR/MICINN/TED2021-131318B-I00 000132887 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/ 000132887 590__ $$a4.3$$b2024 000132887 592__ $$a0.773$$b2024 000132887 591__ $$aCHEMISTRY, MULTIDISCIPLINARY$$b81 / 239 = 0.339$$c2024$$dQ2$$eT2 000132887 593__ $$aChemical Engineering (miscellaneous)$$c2024$$dQ1 000132887 593__ $$aChemistry (miscellaneous)$$c2024$$dQ2 000132887 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion 000132887 700__ $$aBastante, Pablo 000132887 700__ $$aDavidson, Ross J. 000132887 700__ $$aSalthouse, Rebecca J. 000132887 700__ $$aDaaoub, Abdalghani H. S. 000132887 700__ $$0(orcid)0000-0002-4729-9578$$aCea, Pilar$$uUniversidad de Zaragoza 000132887 700__ $$0(orcid)0000-0001-9193-3874$$aMartin Solans, Santiago$$uUniversidad de Zaragoza 000132887 700__ $$aBatsanov, Andrei S. 000132887 700__ $$aSangtarash, Sara 000132887 700__ $$aBryce, Martin R. 000132887 700__ $$aAgrait, Nicolas 000132887 700__ $$aSadeghi, Hatef 000132887 7102_ $$12012$$2755$$aUniversidad de Zaragoza$$bDpto. Química Física$$cÁrea Química Física 000132887 773__ $$g9, 7 (2024), 8471–8477$$pACS Omega$$tACS OMEGA$$x2470-1343 000132887 8564_ $$s2657754$$uhttps://zaguan.unizar.es/record/132887/files/texto_completo.pdf$$yVersión publicada 000132887 8564_ $$s3134927$$uhttps://zaguan.unizar.es/record/132887/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada 000132887 909CO $$ooai:zaguan.unizar.es:132887$$particulos$$pdriver 000132887 951__ $$a2025-09-22-14:32:11 000132887 980__ $$aARTICLE