000132887 001__ 132887
000132887 005__ 20250923084415.0
000132887 0247_ $$2doi$$a10.1021/acsomega.3c09760
000132887 0248_ $$2sideral$$a137762
000132887 037__ $$aART-2024-137762
000132887 041__ $$aeng
000132887 100__ $$aBlankevoort, Nickel
000132887 245__ $$aExploring the Impact of the HOMO–LUMO Gap on Molecular Thermoelectric Properties: A Comparative Study of Conjugated Aromatic, Quinoidal, and Donor–Acceptor Core Systems
000132887 260__ $$c2024
000132887 5060_ $$aAccess copy available to the general public$$fUnrestricted
000132887 5203_ $$aThermoelectric materials have garnered significant interest for their potential to efficiently convert waste heat into electrical energy at room temperature without moving parts or harmful emissions. This study investigated the impact of the HOMO–LUMO (H-L) gap on the thermoelectric properties of three distinct classes of organic compounds: conjugated aromatics (isoindigos (IIGs)), quinoidal molecules (benzodipyrrolidones (BDPs)), and donor–acceptor systems (bis(pyrrol-2-yl)squaraines (BPSs)). These compounds were chosen for their structural simplicity and linear π-conjugated conductance paths, which promote high electrical conductance and minimize complications from quantum interference. Single-molecule thermoelectric measurements revealed that despite their low H-L gaps, the Seebeck coefficients of these compounds remain low. The alignment of the frontier orbitals relative to the Fermi energy was found to play a crucial role in determining the Seebeck coefficients, as exemplified by the BDP compounds. Theoretical calculations support these findings and suggest that anchor group selection could further enhance the thermoelectric behavior of these types of molecules.
000132887 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E31-23R$$9info:eu-repo/grantAgreement/ES/MICINN/PID2022-141433OB-I00$$9info:eu-repo/grantAgreement/EUR/MICINN/TED2021-131318B-I00
000132887 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000132887 590__ $$a4.3$$b2024
000132887 592__ $$a0.773$$b2024
000132887 591__ $$aCHEMISTRY, MULTIDISCIPLINARY$$b81 / 239 = 0.339$$c2024$$dQ2$$eT2
000132887 593__ $$aChemical Engineering (miscellaneous)$$c2024$$dQ1
000132887 593__ $$aChemistry (miscellaneous)$$c2024$$dQ2
000132887 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000132887 700__ $$aBastante, Pablo
000132887 700__ $$aDavidson, Ross J.
000132887 700__ $$aSalthouse, Rebecca J.
000132887 700__ $$aDaaoub, Abdalghani H. S.
000132887 700__ $$0(orcid)0000-0002-4729-9578$$aCea, Pilar$$uUniversidad de Zaragoza
000132887 700__ $$0(orcid)0000-0001-9193-3874$$aMartin Solans, Santiago$$uUniversidad de Zaragoza
000132887 700__ $$aBatsanov, Andrei S.
000132887 700__ $$aSangtarash, Sara
000132887 700__ $$aBryce, Martin R.
000132887 700__ $$aAgrait, Nicolas
000132887 700__ $$aSadeghi, Hatef
000132887 7102_ $$12012$$2755$$aUniversidad de Zaragoza$$bDpto. Química Física$$cÁrea Química Física
000132887 773__ $$g9, 7 (2024), 8471–8477$$pACS Omega$$tACS OMEGA$$x2470-1343
000132887 8564_ $$s2657754$$uhttps://zaguan.unizar.es/record/132887/files/texto_completo.pdf$$yVersión publicada
000132887 8564_ $$s3134927$$uhttps://zaguan.unizar.es/record/132887/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000132887 909CO $$ooai:zaguan.unizar.es:132887$$particulos$$pdriver
000132887 951__ $$a2025-09-22-14:32:11
000132887 980__ $$aARTICLE