000132891 001__ 132891
000132891 005__ 20250923084415.0
000132891 0247_ $$2doi$$a10.1016/j.cattod.2024.114520
000132891 0248_ $$2sideral$$a137769
000132891 037__ $$aART-2024-137769
000132891 041__ $$aeng
000132891 100__ $$aMoreno, R.
000132891 245__ $$aModeling TiO2/UV–vis bacterial inactivation: Useful tools for reactor optimization and design
000132891 260__ $$c2024
000132891 5060_ $$aAccess copy available to the general public$$fUnrestricted
000132891 5203_ $$aHeterogeneous photocatalysis applying TiO2 based catalysts has been widely studied for removing inorganic and organic compounds from water and for bacterial inactivation. This available and low-cost catalyst has demonstrated to be effective in the removal of organic pollutants and inactivation of pathogenic bacteria from water. The design of proper types of industrial-scale photoreactors has not been yet successfully implemented, probably due to the conceptual complexity of modeling this process in real wastewater. As a result, TiO2 based photocatalysis is still considered an effective but energetic-inefficient process. In this work, Escherichia coli (gram-positive) and Enterococcus sp (gram-negative) were selected for studying the kinetics of TiO2 photocatalysis. Since several approaches, such as fist-order kinetics, are not truly representative of the bacterial inactivation process, the experimental data were fitted to different mathematical models, such as Gompertz model, which has demonstrated to describe the process properly. Moreover, the effect of the main variables of the process in the inactivation kinetic constant of the Gompertz model has ben studied. More precisely, light intensity, water matrix, catalyst concentration and bacteria have been under study and their effect has been included in the kinetic equation. Finally, operational and construction parameters of a 20 m3/d annular photoreactor for bacterial inactivation has been successfully optimized applying the proposed kinetic model.
000132891 536__ $$9info:eu-repo/grantAgreement/ES/DGA/B43-23R$$9info:eu-repo/grantAgreement/ES/DGA-FEDER/T22-23R$$9info:eu-repo/grantAgreement/ES/MICINN/AEI/TED2021-129267B-I00
000132891 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000132891 590__ $$a5.3$$b2024
000132891 592__ $$a1.05$$b2024
000132891 591__ $$aCHEMISTRY, APPLIED$$b16 / 75 = 0.213$$c2024$$dQ1$$eT1
000132891 593__ $$aChemistry (miscellaneous)$$c2024$$dQ1
000132891 591__ $$aENGINEERING, CHEMICAL$$b42 / 175 = 0.24$$c2024$$dQ1$$eT1
000132891 593__ $$aCatalysis$$c2024$$dQ2
000132891 591__ $$aCHEMISTRY, PHYSICAL$$b62 / 185 = 0.335$$c2024$$dQ2$$eT2
000132891 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000132891 700__ $$0(orcid)0000-0002-1401-7511$$aMoles, Samuel$$uUniversidad de Zaragoza
000132891 700__ $$0(orcid)0000-0003-3014-0322$$aOrmad, Maria P.$$uUniversidad de Zaragoza
000132891 700__ $$0(orcid)0000-0002-7456-4912$$aMosteo, R.$$uUniversidad de Zaragoza
000132891 700__ $$0(orcid)0000-0002-7836-5777$$aMonzón, A.$$uUniversidad de Zaragoza
000132891 7102_ $$11011$$2660$$aUniversidad de Zaragoza$$bDpto. Microb.Ped.Radio.Sal.Pú.$$cÁrea Parasitología
000132891 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000132891 7102_ $$15005$$2790$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Tecnologi. Medio Ambiente
000132891 773__ $$g430 (2024), 114520 [9 pp.]$$pCatal. today$$tCatalysis Today$$x0920-5861
000132891 8564_ $$s1251533$$uhttps://zaguan.unizar.es/record/132891/files/texto_completo.pdf$$yVersión publicada
000132891 8564_ $$s2528248$$uhttps://zaguan.unizar.es/record/132891/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000132891 909CO $$ooai:zaguan.unizar.es:132891$$particulos$$pdriver
000132891 951__ $$a2025-09-22-14:32:17
000132891 980__ $$aARTICLE