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Resumen y conclusiones

Las enfermedades cardiovasculares son la mayor causa de muerte en el mundo. Aunque la

mayoŕıa de muertes por cardiopat́ıas se puede evitar, si las medidas preventivas no son las ade-

cuadas el paciente puede fallecer. Es por esto, que el seguimiento y diagnóstico de pacientes

con cardiopat́ıas es muy importante. Numerosos son las pruebas médicas para el diagnostico y

seguimiento de enfermedades cardiovasculares, siendo los ecocardiogramas una de las técnicas más

ampliamente utilizada. Un ecocardiograma consiste en la adquisición de imágenes del corazón me-

diante ultrasonidos. Presenta varias ventajas con respecto otras pruebas de imagen: no es invasiva,

no produce radiación ionizante y es barata. Por otra parte, los sistemas de telemedicina han crecido

rápidamente ya que ofrecen beneficios de acceso a los servicios médicos, una reducción del coste

y una mejora de la calidad de los servicios. La telemedicina proporciona servicios médicos a dis-

tancia. Estos servicios son de especial ayuda en casos de emergencia médica y para áreas aisladas

donde los hospitales y centros de salud están alejados. Los sistemas de tele-cardioloǵıa pueden ser

clasificados de acuerdo al tipo de pruebas. En esta Tesis nos hemos centrado en los sistemas de

tele-ecocardiografia, ya que los ecocardiogramas son ampliamente usados y presentan el mayor reto

al ser la prueba médica con mayor flujo de datos.

Los mayores retos en los sistemas de tele-ecocardiografia son la compresión y la transmisión

garantizando que el mismo diagnóstico es posible tanto en el ecocardiograma original como en el

reproducido tras la compresión y transmisión. Los ecocardiogramas deben ser comprimidos tanto

para su almacenamiento como para su transmisión ya que estos presentan un enorme flujo de datos

que desbordaŕıa el espacio de almacenamiento y no se podŕıa transmitir eficientemente por las

redes actuales. Sin embargo, la compresión produce pérdidas que pueden llevar a un diagnostico

erróneo de los ecocardiogramas comprimidos. En el caso de que las pruebas ecocardiograficas

quieran ser guardadas, una compresión cĺınica puede ser aplicada previa al almacenamiento. Esta

compresión cĺınica consiste en guardar las partes del ecocardiograma que son importantes para el

diagnóstico, es decir, ciertas imágenes y pequeños v́ıdeos del corazón en movimiento que contienen

de 1 a 3 ciclos cardiacos. Esta compresión cĺınica no puede ser aplicada en el caso de transmisión en

tiempo real, ya que es el cardiólogo especialista quien debe realizar la compresión cĺınica y éste se

encuentra en recepción, visualizando el echocardiograma transmitido. En cuanto a la transmisión,

las redes sin cables presentan un mayor reto que las redes cableadas. Las redes sin cables tienen un

ancho de banda limitado, son propensas a errores y son variantes en tiempo lo que puede resultar

problemático cuando el ecocardiograma quiere ser transmitido en tiempo real. Además, las redes sin

cables han experimentado un gran desarrollo gracias a que permiten un mejor acceso y movilidad,

por lo que pueden ofrecer un mayor servicio que las redes cableadas.
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Dos tipos de sistemas se pueden distinguir acorde a los retos que presenta cada uno de ellos:

los sistemas de almacenamiento y reenvió y los sistemas de tiempo real.

• Los sistemas de almacenamiento y reenvió consisten en la adquisición, almacenamiento y el

posterior envió del ecocardiograma sin requerimientos temporales. Una compresión cĺınica

puede ser llevada a cabo previa al almacenamiento. Además de la compresión cĺınica, una

compresión con pérdidas es recomendada para reducir el espacio de almacenamiento y el

tiempo de env́ıo, pero sin perder l ainformación diagnóstica de la prueba. En cuanto a

la transmisión, al no haber requerimientos temporales, la transmisión no presenta ninguna

dificultad. Cualquier protocolo de transmisión fiable puede ser usado para no perder calidad

en la imagen debido a la transmisión. Por lo tanto, para estos sistemas sólo nos hemos

centrado en la codificación de los ecocardiogramas.

• Los sistemas de tiempo real consisten en la transmisión del ecocardiograma al mismo tiempo

que éste es adquirido. Dado que el env́ıo de video cĺınico es una de las aplicaciones que

más demanda en ancho de banda y retardo, la compresión para la transmisión es requerida,

pero manteniendo la calidad diagnóstica de la imagen. La transmisión en canales sin cables

puede ser afectada por errores que distorsionan la calidad del ecocardiograma reconstruido

en recepción. Por lo tanto, métodos de control de errores son requeridos para minimizar los

errores de transmisión y el retardo introducido. Sin embargo, aunque el ecocardiograma sea

visualizado con errores debido a la transmisión, esto no implica que el diagnóstico no sea

posible.

Dados los retos previamente descritos, las siguientes soluciones para la evaluación cĺınica, com-

presión y transmisión han sido propuestas:

• Para garantizar que el ecocardiograma es visualizado sin perder información diagnóstica 2

tests han sido diseñados. El primer test define recomendaciones para la compresión de los

ecocardiogramas. Consiste en dos fases para un ahorro en el tiempo de realización, pero

sin perder por ello exactitud en el proceso de evaluación. Gracias a este test el ecocardio-

grama puede ser comprimido al máximo sin perder calidad diagnóstica y utilizando aśı más

eficientemente los recursos. El segundo test define recomendaciones para la visualización del

ecocardiograma. Este test define rangos de tiempo en los que el ecocardiograma puede ser

visualizado con inferior calidad a la establecida en el primer test. Gracias a este test se

puede saber si el ecocardiograma es visualizado sin pérdida de calidad diagnóstica cuando

se introducen errores en la visualización, sin la necesidad de realizar una evaluación para

cada video transmitido o diferentes condiciones de canal. Además, esta metodoloǵıa para la

evaluación cĺınica de imágenes médicas, puede ser aplicada para otras técnicas de diagnóstico

por imagen.

• Para la compresión de ecocardiogramas dos métodos de compresión han sido diseñados, uno

para el almacenamiento y otro para la transmisión. Diferentes propuestas son diseñadas, ya

que los ecocardiogramas para los dos propósitos tienen caracteŕısticas diferentes. Para ambos

propósitos un método de compresión en la que las facilidades que incorporan los dispositivos



de segmentar la imagen y en la que las caracteŕısticas de visualización de los ecocardiogramas

han sido tenidas en cuenta ha sido diseñado. Para la compresión del ecocardiograma con el

propósito de almacenarlo un formato de almacenamiento fácilmente integrable con DICOM

basado en regiones y en el que el tipo de datos y la importancia cĺınica de cada región es tenido

en cuenta ha sido diseñado. DICOM es el formato para el almacenamiento y transmisión

de imágenes más ampliamente utilizado actualmente. El formato de compresión propuesto

supone un ahorra de hasta el 75 % del espacio de almacenamiento con respecto a la compresión

con JPEG 2000, actualmente soportado por DICOM, sin perder calidad diagnostica de la

imagen. Los ratios de compresión para el formato propuesto dependen de la distribución

de la imagen, pero para una base de datos de 105 ecocardiogramas correspondientes a 4

ecógrafos los ratios obtenidos están comprendidos entre 19 y 41. Para la compresión del

ecocardiograma con el propósito de la transmisión en tiempo real un método de compresión

basado en regiones en el que el tipo de dato y el modo de visualización han sido tenidos en

cuenta se ha diseñado. Dos modos de visualización son distinguidos para la compresión de la

región con mayor importancia cĺınica (ultrasonido), los modos de barrido y los modos 2-D.

La evaluación cĺınica diseñada para las recomendaciones de compresión fue llevada a cabo

por 3 cardiologos, 9 ecocardiogramas correspondientes a diferentes pacientes y 3 diferentes

ecógrafos. Los ratios de transmisión recomendados fueron de 200 kbps para los modos 2-D y

de 40 kbps para los modos de barrido. Si se comparan estos resultados con previas soluciones

en la literatura un ahorro mı́nimo de entre 5 % y el 78 % es obtenido dependiendo del modo.

• Para la transmisión en tiempo real del ecocardiograma un protocolo extremo a extremo

basada en el método de compresión por regiones ha sido diseñado. Este protocolo llamado

ETP de las siglas en inglés Echocardiogram Transmssion Protocol está diseñado para la

compresión y transmisión de las regiones independientemente, pudiendo aśı ofrecer diferentes

ratios de compresión y protección de errores para las diferentes regiones de acuerdo a su

importancia diagnostica. Por lo tanto, con ETP el ratio de transmisión mı́nimo recomendado

para el método de compresión propuesto puede ser utilizado, usando aśı eficientemente el

ancho de banda y siendo menos sensible a los errores introducidos por la red. ETP puede

ser usado en cualquier red, sin embargo, en el caso de que la red introduzca errores se ha

diseñado un método de corrección de errores llamado SECM, de las siglas en inglés State Error

Control Method. SECM se adapta a las condiciones de canal usando más protección cuando

las condiciones empeoran y usando aśı más eficientemente el ancho de banda. Además, la

evaluación cĺınica diseñada para las recomendaciones de visualización ha sido llevada a cabo

con la base de datos de la evaluación previa. De esta forma se puede saber si el ecocardiograma

es visualizado sin pérdida diagnostica aunque se produzcan pérdidas de calidad debido a los

errores de transmisión.

En esta tesis, por lo tanto, se ha ofrecido una solución para la transmisión en tiempo real y

el almacenamiento de ecocardiogramas preservando la información diagnóstica y usando eficien-

temente los recursos (disco de almacenamiento y ratio de transmisión). Especial soporte se da

para la transmisión en redes sin cables, dando soluciones a las limitaciones que estas introducen.

Además, las soluciones propuestas han sido probadas y comparadas con otras técnicas con una red



de acceso móvil WiMAX, demostrando que el ancho de banda es eficientemente utilizado y que el

ecocardiograma es correctamente visualizado de acuerdo con las recomendaciones de visualización

dadas por la evaluación cĺınica.



Abstract

Cardiovascular diseases (CVDs) are the leading cause of death and disability in the world. For

this reason, it is very important to have techniques and services for an accurate diagnosis and

follow-up of patients with cardiopathies. One of the most widely medical tests to diagnose CVDs

is the echocardiogram. An echocardiogram consists of the continuous acquisition of ultrasound

images of the heart. However, in some cases access to medical services is not available, for ex-

ample in isolated and remote regions where there are no medical specialists. In other cases, the

response to emergencies is not fast enough. These problems can be solved with telemedicine sys-

tems that provide clinical health care at a distance, helping to eliminate distance barriers and

improving access to medical services. Nevertheless, the implantation of tele-echocardiography sys-

tems is not straightforward. Digital echocardiographic devices produce high data flows that may

exceed the channel capability and the storage space. An efficient compression method is extremely

important, especially for real-time transmission in wireless networks owing to the fact that they are

band-limited, time-varying and error-prone. Improving the compression method allows cost savings

since less bandwidth is required and facilitates the arrival of the echocardiogram at the transmitter

without loss of diagnostic information. It is very important to have an image with sufficient quality

for making an adequate diagnosis. However, the compression and transmission processes modify

the original image. Error control methods must be applied when echocardiograms are transmitted

over error prone channels in order to reduce the distortion introduced in the visualized image. Fur-

thermore, a clinical evaluation that gives compression and display recommendations is necessary in

order to know if the echocardiogram is visualized with guaranteed clinical quality. Consequently,

three main objectives have been addressed in order to provide support to tele-echocardiography

systems making an efficient use of resources: the design of an evaluation methodology, the design,

evaluation and recommendations for use of compression methods for storage and real-time trans-

mission of echocardiograms, and the design of protocols for transmission of echocardiograms in

real-time and recommendations for echocardiogram visualization.

A two phase evaluation methodology for the compression and transmission of clinical images has

been designed. This methodology is accurate but less burdensome than other tests proposed in the

literature. The evaluation consists of two tests. The first provides compression recommendations

and the second provides display recommendations. These tests enable the transmission of clinical

videos with a minimal transmission rate and establish whether the clinical image is visualized

without losing diagnostic information and without the need to carry out other evaluations for each

transmitted video.

An image compression format for storage purpose and an echocardiogram compression method
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for real-time transmission purpose have been designed taking into account the echocardiogram

characteristics and taking advantage of the segmentation facilities of the device to enhance the

compression performance without adding complexity to the device. Both methods compress the

regions according to its data type, diagnostic information and visualization characteristics. The

proposed storage format saves storage space with respect to the conventional image formats incor-

porated in the DICOM standard. The compression results depend on the acquisition devices, how

the image is displayed, and the compression quality. However, the compression ratios obtained for

the proposed format ranged from 19 to 41 without losing diagnostic information. The compression

method for real-time transmission that takes advantage of the visualization characteristics of the

devices has demonstrated that it compresses echocardiograms more efficiently than conventional

video codecs. The recommended transmission rates for the ultrasound regions are the following:

200 Kbps for the 2-D and the color Doppler modes, and 40 Kbps for the M and the pulsed/continu-

ous Doppler modes. This saving in the transmission rate leads to better transmission performance,

reducing the transmission time and errors introduced by the channel. These results make possible

the transmission of echocardiogram videos over 3G wireless networks and beyond.

An Echocardiogram Transmission Protocol (ETP) for end-to-end real-time transmission of

echocardiograms compressed by regions and a States Error Control Method (SECM) that adapts to

the channel conditions have been designed. ETP transmits the echocardiogram regions separately,

and consequently different transmission rates and error control methods can be used depending

on the clinical importance of the region and on the network. Therefore, ETP can be used for

transmission in any network. The simulated transmissions have demonstrated that by transmitting

the echocardiogram by regions, less bandwidth is used and the echocardiogram is visualized with

clinical quality for a greater percentage of time when errors occur than without considering the

regions and modes. The saving of bandwidth depends on the mode distribution of the echocar-

diograms. The percentage of time with adequate clinical quality increases between 5 % and 19 %

for a mobile network with WiMAX access, representative settings, nine available echocardiograms

and without an error control method. SECM uses different error control methods depending on

the channel errors. Furthermore, different configurations can be set depending on the data and

the network characteristics. SECM has been demonstrated to adapt the bandwidth used to the

channel conditions and to guarantee quality on reception. Furthermore, the echocardiograms are

visualized with adequate clinical quality for a mobile network with WiMAX access, representative

settings and nine available echocardiograms.

The proposed overall system for real-time echocardiogram transmission over wireless networks

achieves a saving in the transmitted bandwidth while ensuring all the available echocardiograms are

received with adequate clinical quality. This bandwidth saving depends on the mode distributions

of the echocardiogram and on the error distribution. For a mobile network with WiMAX access and

representative settings, and the available echocardiograms, the transmitted bandwidth is between

154 kbps and 244 kbps. If the results are compared with previous works where clinical videos with

similar resolution are transmitted over WiMAX networks, the saving in transmitted bandwidth is

higher than 1 Mbps. This bandwidth saving leads to savings in energy, money and transmission

time.
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Chapter 1

Introduction

Cardiovascular diseases (CVDs) are the leading cause of death and disability in the world. For

this reason, it is very important to have techniques and services for an accurate diagnosis and

follow-up of patients with cardiopathies. One of the most widely medical tests to diagnose CVD

is the echocardiogram. In some cases access to medical services is not available or the response

to emergencies is not fast enough. These problems can be solved with telemedicine systems that

provide clinical health care at a distance, helping to eliminate distance barriers and improving

access to medical services. Nevertheless, the implantation of tele-echocardiography systems is

not straightforward. Numerous challenges should be addressed in order to completely exploit the

advantages that these systems provide. This Chapter is organized as follow. The motivations, and

general concepts and definitions such as cardiovascular diseases, cardiac test, telemedicine, eHealth,

tele-echoacardiography systems are described in Section 1.1. Section 1.2 addresses the main aspects

of the tele-echocardiography systems: echocardiography, challenges and working scenarios. Section

1.3 defines the approach and objectives of this Thesis. Section 1.4 describes the research context.

Finally, the Thesis outline is presented in Section 1.5.

1.1 Motivation

CVDs are caused by disorders of the heart and blood vessels, and includes coronary heart disease

(heart attacks), cerebrovascular disease (stroke), high blood pressure (hypertension), peripheral

artery disease, rheumatic heart disease, congenital heart disease and heart failure. The major

causes of cardiovascular disease are tobacco use, physical inactivity, an unhealthy diet and harmful

use of alcohol. As a matter of fact, CVDs are the leading causes of death and disability in the

world. According to the World Health Organization [1], an estimated 17.3 million people died from

CVDs in 2008, representing 30% of all global deaths. Of these deaths, an estimated 7.3 million

were due to coronary heart disease and 6.2 million were due to strokes. Moreover, according to

the latest report from the American Heart Association [2], in 2009, one in nine death certificates

(274601 deaths) in the United States mentioned heart failure and more than 2150 Americans die

of CVDs each day, an average of 1 death every 40 seconds.

In Europe, 35.6% of all deaths were due to CVDs in 2010, and 28.3 % in Aragón constituting

25



26 1.1. Motivation

the leading cause of death according to National Institute of Stadistics [3]. Although a large

proportion of CVDs is preventable, fatalities continue to rise mainly because preventive measures

are inadequate. For this reason, it is very important to have techniques and services for an accurate

diagnosis and follow-up of patients with cardiopathies.

Nowadays, as technology advances, doctors have access to a wider range of medical tests which

can be used to diagnose CVDs in a safe and efficient manner. In cardiology, cardiac tests help

to confirm a clinical diagnosis as well as assisting in the follow-up of patients with cardiopathies.

The main medical tests for CVDs, apart from the physical examination, are the electrocardiogram

(ECG), echocardiogram, coronary angiography, computed tomography (CT), exercise stress test,

and holter monitoring. One of the most widely used techniques is echocardiography. An echocar-

diogram is based on the continuous acquisition of ultrasound images of the heart. It has several

advantages compared with other medical imaging techniques: it is non invasive, it does not produce

ionized radiation and it is cheap.

Several definitions can be found for the term eHealth [4]. Broadly speaking, eHealth can be

defined as the delivery of healthcare and the exchange of healthcare information across distances [5]

by means of information and communications technologies (ICT) [6]. eHealth is an umbrella term

that includes telemedicine, electronic medical records, and other components of health information

technology. Telemedicine refers specifically to the provision of clinical services while the term

ehealth can refer to clinical and non-clinical services involving medical education, administration,

and research.

Telemedicine systems have grown rapidly because they offer several benefits such as improved

access to medical services, a reduction in the cost of healthcare and improvements in the quality

of services. In [7], an overall review of the effectiveness of telemedicine was presented showing that

twenty-one studies concluded that telemedicine works well and has positive effects. These include

improved therapeutic effects, increased efficiencies in the services, and greater technical usability.

Nowadays, telemedicine systems are commonly used to provide remote assistance, such as remote

diagnosis (telediagnosis) and second opinions from specialized physicians (teleconsultation), to

medical institutions that do not have specialized human resources. They are also used for the

remote monitoring of patients (telemonitoring). These systems are especially helpful in countries

where there is no easy access to medical care due to geographical barriers or a widely dispersed

distribution of physicians.

Several classifications of telemedicine systems can be made according to the nature of the

data (images, video, audio, signal, text), the transmission network (wired and wireless) and the

required time (store-and-forward and real-time). Different challenges and problems arise for each

telemedicine system according to these classifications, each one requiring specific research and

investigation.

One of the most important areas for the application of telemedicine is telecardiology due to

the fact that CVDs are the leading cause of death and disability in the world. In general, it is

possible to distinguish three types of telecardiology systems according to the clinical test applied:

phonocardiogram, ECG and echocardiogram. The latter test is the most comprehensive since it
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can include the previous two. It is also the most challenging since it represents the biggest data

flow which makes compression and transmission more difficult.

Thanks to the development of efficient compression techniques and wideband communica-

tion channels [8], low-cost and clinically accurate tele-echocardiography systems can be imple-

mented even for real-time diagnosis. A review of 50 published works on tele-echocardiography

appeared in [9]. The analysis showed a generalized widespread increase in the use of digital

tele-echocardiography thanks to the development of information technology. This diffusion has

sometimes been accompanied by research studies into diagnostic accuracy and cost-benefit anal-

yses with special emphasis on the economic and social impact. It has been shown in [10] that

tele-echocardiography diminishes costs and enhances cardiac disease management.

1.2 Tele-Echocardiography

1.2.1 Echocardiography

The echocardiography is the most widely used imaging modality in clinical cardiology. It is based

on the continuous acquisition of ultrasound images of the heart and it is the technique of choice for

the diagnosis and follow-up of most heart diseases. The echocardiogram allows doctors to diagnose,

evaluate, and monitor [11]: abnormal heart valves, atrial fibrillation, congenital heart disease,

damage to the heart muscle in patients who have had heart attacks, heart murmurs, infection in the

sac around the heart (pericarditis), infection on or around the heart valves (infectious endocarditis),

pulmonary hypertension, the pumping function of the heart for people with heart failure and the

source of a blood clot after a stroke.

Figure 1.1: Echocardiogram modes. B mode (top left), color Doppler mode (bottom left), M mode
(top right), and pulsed/continuous Doppler mode (bottom right).

The echocardiograms have different modes of operation. Each mode presents different represen-

tation of the heart. There are four basic modes of operation recommended by the European Asso-
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ciation of Echocardiography (EAE) [12] and the American Society of Echocardiography (ASE) [13]

that are incorporated in basic cardiac ultrasound devices. These are: B, M, color Doppler and

pulsed/continuous Doppler (see Figure 1.1). The B mode displays a 2-D image that represents the

heart and its movement. The M mode represents a 1-D view of the cardiac structures moving over

time. Together, the B and M modes permit us to measure the size, thickness and movement of the

heart. The color Doppler mode displays a 2-D image of the heart as the B mode, but shows velocity

of the blood-flow by using a color code. The pulsed and continuous mode represents a 1-D view

of the blood velocity over time and permits taking velocity measurements in a specific portion of

the heart. Recent developments in echocardiography such as color M mode, 3-D echocardiography

and second-generation intravenous contrast agents have widened the applications of the technique.

However, many of these newer developments do not necessarily have to be currently included in a

routine transthoracic echo studies according the EAE recommendations.

Figure 1.2: Echocardiogram regions of a color Doppler mode (on the left) and a pulsed Doppler
mode (on the right) captured with a Philips Envisor device. The white solid line contains the
ultrasound, the blue dotted and dashed line the ECG, the green dotted line the auxiliary images and
the yellow dashed line the text.

The echocardiograms have special characteristics in the way that the image is displayed that

should be taken into account in order to design an efficient tele-echocardiography system. As

can be seen in Figure 1.2, the echocardiogram has four main types of regions: ultrasound image,

ECG, auxiliary images and text. The ultrasound and ECG regions contain the relevant clinical

information, they are the regions of interest. Moreover, the echocardiogram may also incorporate

sound to listen to the heartbeat.

The accuracy of an echocardiogram depends on the knowledge, skill and experience of both

the individual performing the study and the physician interpreting the study. For this reason,

according to the ASE [13] a transthoracic echocardiogram must be performed by a physician with

Level II training in echocardiography, or the equivalent, or by an accredited sonographer [14]. The

echocardiogram should also be interpreted by a physician who has Level II training in echocardio-

graphy, or the equivalent. In a typical tele-echocardiography scenario, the person who acquires the

echocardiogram, the sonographer, is not able to perform the interpretation and diagnosis of the

echocardiogram. This is usually done at another location.
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1.2.2 Challenges

According to the EAE recommendations [12] the time allocated for a standard transthoracic

study should be at least 30 min. A standard study will therefore require at least 60 GB of uncom-

pressed data, the total size depending on the spatial and temporal resolution of each study. For

example, a typical echocardiogram with a frame size of 720 x 576 pixels, 24 bits per pixel and 25 fps

presents a raw data flow of about 250 Mbit per second.Furthermore, according to the EAE [12] it is

recommended to store the studies for at least the duration of the patients’ life expectancy for sub-

sequent analysis and review, although legal requirements affecting the duration of mandatory data

storage have to be met. Consequently, compression must be applied for two purposes: reduction

of storage requirements and reduction in the transmission rate. Unfortunately, lossless methods

can only provide limited compression rates (up to 4:1) [15] which are insufficient. Therefore, lossy

compression has to be used since it is able to reduce the data flow considerably, having compression

rates up to 20:1 with better quality than the original analog echocardiograms [16] in the sense that

noise is reduced. Moreover, in order to compress the echocardiogram efficiently, its visualization

characteristics should be taken into account.

Nevertheless, it is very important to note that lossy compression modifies the original video

and may decrease its quality. The higher the compression rate, the higher the distortion [17, 18].

In medical images, a minimum quality is required to be able to make an adequate diagnosis. There

is a compromise between compression rate and clinical quality. Thus, the minimum recommended

compression rates required for the compressed echocardiogram to achieve adequate clinical quality

have to be provided. In order to quantify the clinical distortion introduced in the compressed signal,

distortion indexes that quantify the real degradation in the diagnosis content of echocardiograms are

necessary. A testbed that unifies and reflects the clinical evaluation procedure should be designed.

The integration of the digital echocardiogram replacing traditional video tape recording in

echocardiogram machines [19] presented several advantages that were addressed in [20, 21]. The

main advantage of the introduction of the digital echocardiogram was the possibility of including

clinical compression for storage purpose. Clinical compression stores only the information that is

important for the diagnosis. For echocardiograms, clinical compression was defined in [12, 19, 20],

and the accuracy of the approximation was demonstrated in [22]. Consequently, instead of storing

the whole video, the specialist cardiologist chooses several images of different heart visualizations

or several images of the same heart visualization of at least one but preferably three cardiac cycles

(from 14 to 64 frames). Clinical compression considerably reduces the storage space, although

digital compression is also recommended. It is important to note that clinical compression is not

applicable for echocardiogram transmissions in real-time, since it is the specialist cardiologist who

makes the clinical compression while watching the transmitted echocardiogram. Thus, the whole

echocardiogram has to be transmitted.

Another important aspect to be taken into account is that the echocardiogram image may

contain text regions with the patient’s personal data (see Figure 1.2). Thus the echocardiogram

must be treated with special care since it identifies the patient. Consequently, the protection of these

tests during transmission is required by several governmental regulations such as the HIPAA [23]



30 1.2. Tele-Echocardiography

in the U.S., the PIPEDA [24] in Canada, the LOPD [25] in Spain and the Digital Signature Laws

in several countries.

Transmission presents more challenges for wireless than for wired channels because the former

are band limited, time varying and error prone. This is a particular problem for medical video

streaming applications [26]. However, mobile healthcare (m-health) has undergone an impressive

development over recent decades [27, 28] thanks to the improvement of wireless technologies. This

emerging concept has seen the evolution of e-health systems from traditional desktop telemedicine

platforms to wireless and mobile configurations, allowing access to telemedicine services anywhere.

Two types of tele-echocardiogram systems can be distinguished: store&forward and real-time

systems. The working procedures and main challenges addressed in this Thesis for each system are

described below.

• The storage&forward systems involve acquiring, encoding, storing and transmitting the

echocardiogram at a convenient time for assessment offline, without time deadline require-

ments. First, while the echocardiogram is performed, the cardiologist selects the relevant

images for the diagnosis (clinical compression). After the clinical compression, the acquisi-

tion device provides several images of different heart visualizations and a set of images from

the same heart visualization (from 14 to 64 frames) for each echocardiogram instead of a

video. Although a clinical compression is performed previous to storage, a lossy compression

is also required to reduce the storage space and the transmission time, but without losing

diagnosis quality. Since there are no time requirements for transmitting the echocardiograms,

transmission is not a difficulty. Any reliable protocol can be used for the transmission of the

whole echocardiogram without losing quality. Furthermore, store&forward telemedicine can

be used with any bandwidth, although there is a trade-off between transmission time and

bandwidth. In conclusion, this Thesis is focused on the encoding aspect of store&forward

systems, which presents the most significant challenge.

• The real-time transmission systems involve transmitting the echocardiogram video at the

same time that it is acquired. Medical video streaming is the most demanding application in

terms of bandwidth and delay, and hence requires compression for transmission while at the

same time maintaining high image quality on reception in order to avoid losing diagnostic

information. A bandwidth saving leads to better transmission performance, reducing the

transmission time and error introduced by the channel. In order to provide an accurate

diagnosis, it is not only necessary to have a compression method that guarantees clinical

quality, but it is also essential to be able to guarantee the integrity of the video during the

transmission process. It is well known that wireless channels are error prone. Consequently,

digital transmission over wireless channels may be affected by erroneous bits that distort the

reconstruction of the video on reception. Hence, error control methods are required in order

to minimize the delay and errors in transmission. However, even if the echocardiogram is not

visualized all the time with minimal acceptable quality, it may be possible to preserve the

diagnostic information. An assessment by expert cardiologist is required in order to find out
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the percentage of time that the echocardiogram can be visualized with lower than minimum

quality but without losing diagnostic quality.

1.2.3 Working Scenarios

With emerging wireless technologies, patients can access healthcare services not only from

hospitals, but also from rural healthcare centers, ambulances, ships, trains, airplanes and homes.

The tele-echocardiography scenarios dealt with in this Thesis are shown in Figure 1.3 and described

below:

Figure 1.3: Typical scenarios of tele-echocardiography for real-time and store&forward systems.

• Telediagnosis of patients in remote areas with wireless access (real-time systems). The patient

who lives in a remote area does not have to move to the hospital where the expert cardiologist

works for the follow-up and early diagnosis of cardiovascular diseases. The echocardiogram

is performed in a remote location by a sonographer and the echocardiogram is sent to the

expert cardiologist who visualizes the echocardiogram in real-time and makes the diagnosis.

• Emergency cases (real-time systems). The transmission of the echocardiogram video begins

after the patient is transferred into the ambulance or other conveyance. The basic idea is to

communicate ultrasound to an emergency physician, to further assist in the diagnosis and to

prepare for the patient’s admission to the hospital.

• Medical educational and collaborative evaluations (real-time and store&forward systems).

This allows centers delivering cardiology education or collaborative lectures to show echocar-

diogram acquisition in real-time as well as stored echocardiograms to hospitals and health

care centers. These applications provide fundamental principles, firsthand knowledge and

evidenced-based methods for critical analysis of established clinical practice standards, and
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comparisons with newer advanced alternatives. Various centers collaborate and share their

perspectives based on their location, available staff, and available resources.

• Storage of examinations (store&forward systems). The studies are stored for subsequent

analysis and review or for onward transmission to another center in the event that the patient

changes location.

1.3 Thesis Approach and Objectives

The general approach of this Thesis is to research and make contributions to the field of ICT

applied to the health area. Nowadays, research results in Communication Technologies and the

Information Society are considered strategic. Moreover, the application of these technologies to

the health area through new telemedicine services facilitates citizens’ access to the health system.

Therefore, investigations in this area are highly relevant thanks to the potential benefits for patients,

doctors and the health system as a whole.

The main aim of this Thesis is to investigate telemedicine systems applied in cardiology en-

vironments, since cardiovascular diseases are the leading cause of death in the developing world

mainly because they are not diagnosed sufficiently early. Thus, the overall objectives are:

• The design, evaluation and recommendations for use of compression methods for storage and

real-time transmission of echocardiograms.

• The design and evaluation of protocols for transmission of echocardiograms in real-time, and

recommendations for the echocardiogram visualization.

On a deeper level, further detailed objectives can be mentioned. These are presented as follows,

subdivided into the main topics of the Thesis, i.e. compression and transmission. Compression:

• To conduct reviews on the state of the art in general aspects of compression methods for both

image and video, and clinical quality. Specifically, to review the literature on compression

techniques used in wireless medical video transmission systems.

• To design a compression image format taking into account the characteristics of stored

echocardiograms in order to save storage space while preserving clinical quality.

• To design an efficient method to encode the echocardiogram in real-time taking into account

its visualization characteristics in order to use less bandwidth while preserving its clinical

quality.

• To design an accurate echocardiogram evaluation methodology in order to provide a recom-

mendation for echocardiogram compression.

• To provide recommendations of use for the proposed compression method for real-time trans-

mission and comparisons with the transmission rates described in the literature.



Chapter 1. Introduction 33

Transmission:

• To conduct reviews on the state of the art in general aspects of wireless technologies and trans-

mission protocols. Specifically, to review the literature on wireless medical video transmission

systems.

• To design a protocol to transmit the echocardiogram in real-time taking into account its

characteristics in order to accomplish transmission using less bandwidth while preserving

clinical quality.

• To design an error control method for echocardiogram transmission that allows adequate

diagnosis even over error prone channels.

• To provide display recommendations for an accurate diagnosis of echocardiograms.

• To study the transmission of echocardiograms in real-time over wireless networks with the

designed techniques. To study quality parameters such as transmitted bandwidth and diag-

nostic validation.

1.4 Research Context

This Thesis has been mostly developed within the following funded projects of the Telemedicine

research line of the Communications Technologies Group (GTC), belonging to the Aragón Institute

of Engineering Research (I3A) of the University of Zaragoza:

1. DGA - PI029/09: “Analysis of echocardiogram coding and real-time transmission through

communications networks”.

2. MCINN - TIN2008-00933/TSI: “New telemonitoring systems for e-Health services”.

3. MCINN - TIN-2011-23792/TSI: “Ontology-based interoperable architecture for patients tele-

monitoring and clinical decision support”.

The research group collaborates with other entities, institutions, universities and hospitals,

both national and international. Specially mention can be made of the following international

cooperation partners relevant to this Thesis:

− The e-Health Laboratory of the Department of Computer Science, of the University of Cyprus,

through Professor Constantinos S. Pattichis, Dean of the School of Pure and Applied Sciences.

− The Communications Network Laboratory in the School of Engineering Science at Simon

Fraser University, Burnaby, British Columbia, Canada through Professor Ljiljana Trajkovic.

Two research stages have been done in collaboration with these research groups.

At a national level, specific mention can be made of the following clinical collaborations partners:
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− The Cardiology Service of the Lozano Blesa Clinic Hospital (Zaragoza) through Dr. Isaac

Lacambra, Lena Castro and José Montoya.

− The Cardiologist Service of the “Hospital viamed Montecanal” (Zaragoza) through Dr. Pedro

Serrano.

− The Cardiology Service of the Miguel Servet Hospital (Zaragoza) through Dr. Ernest Spitzer.

1.5 Thesis Outline

The remainder of this Thesis is structured as follows:

• Chapter 2 provides a detailed review of the state of the art of compression of image and video

for storage and transmission in real-time purposes, transmission of ultrasound videos, wireless

technologies and clinical quality. It also summarizes the most important characteristics of

recent ultrasound wireless transmission systems. Finally, improvements are suggested that

can be made to existing systems in order to achieve better results in compression, transmission

and clinical evaluation.

• Chapter 3 describes echocardiogram databases and characteristics for both storage and real-

time purposes. It also contributes a clinical evaluation methodology for compression recom-

mendations of echocardiograms, a compression technique for storage purpose and its results

compared with other compression techniques, and finally a compression technique for real-

time transmission purposes, including recommendations and compression results. The results

are compared with the results of previous systems.

• Chapter 4 describes an evaluation methodology for the display recommendations of medical

images after transmission, specifically for echocardiograms that have been encoded with the

method proposed in Chapter 3; display recommendations for the echocardiogram after com-

pression for real-time transmission with the proposed method and recommended transmission

rates listed in Chapter 3, a protocol for echocardiogram transmission in real-time; an error

control method and its configuration for echocardiogram transmission using the proposed

protocol, and finally results and discussion for real-time echocardiogram transmission over

wireless channels.

• Chapter 5 presents research objectives achieved, contributions and accomplished results of

this Thesis, and future lines of research.



Chapter 2

Tele-Echocardiography Realities:

Background and What Can Be

Improved?

The challenging issues in tele-echocardiography systems dealt with in this thesis are the key

factors of encoding algorithms, transmission protocols, error control methods, wireless transmission

technologies and clinical quality. The tele-echocardiography system scheme followed in this Thesis

is depicted in Figure 2.1. The echocardiogram is acquired and can then be stored or transmitted in

real-time. For both purposes, the echocardiogram, in video or image format, has to be compressed

with the maximum compression rate while preserving the clinical quality. However, the data

acquired for each purpose is different and therefore the compression methods must also be different.

In the case of transmitting the echocardiogram, the protocols have to be carefully chosen in order

to guarantee reception of the echocardiogram with minimal delay and without losing diagnostic

information even if not all the information gets to the receiver in time. Furthermore, the wireless

channel has to comply with the system requirements, acceptable delay and transmission rates.

Sections 2.1, 2.2, 2.3, 2.4, 2.5 and 2.6 address the above-mentioned key factors in terms of the

state of the art, improvements that can be made to achieve better results and the most relevant

technologies that have been used in this Thesis. Finally, the most important characteristics of

recent ultrasound wireless transmission systems are summarized in Section 2.7 and conclusions

relating to the design premises used in this Thesis to improve tele-echocardiography systems are

shown in Section 2.8.

2.1 Compression for Storage

Hospitals and medical centers produce large volume of digital medical images that require

considerable storage space. Standardization of storage format is critical to enable interoperability

within and between centers and equipment from different vendors. A survey of the different medical

image formats and compression techniques is presented in [29]. Digital Imaging and Communica-

tions in Medicine (DICOM) [30] is the most widely used and accepted standard for effective medical

35
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Figure 2.1: Tele-echocardiography system structure followed in this Thesis.

imaging storage and transfer over large geographical areas, providing the basis for picture archiving

and communications systems (PACS). Moreover, DICOM is the most extensively used standard

for storage purpose, recommended by the EAE [12], the ASE [20] and the American College of

Cardiology (ACR) [31]. It is also included in the majority of medical image devices [31–33]. For

this reason, it is very important to design a compression format interoperable with DICOM and to

take into account the DICOM characteristics, described below in Section 2.1.1.

In order to enhance medical image compression while preserving diagnostic information, the

concept of Region of Interest (ROI) has been adopted and widely used [34–38]. The challenge

of this technique is to perform the image segmentation. In some medical image modalities an

algorithm has been designed to obtain the regions automatically. However, obtaining the regions

automatically is not always possible, and for almost all medical image modalities the regions of

interest for each individual image must be defined by the cardiologist. In order to easily extract the

echocardiogram regions, the facilities included in the acquisition devices to segment the images must

be taken into account. The devices form the echocardiogram with the different regions: ultrasound

image, ECG, auxiliary image and text. A proof that the ultrasound devices incorporate the division

of the regions is the calibration DICOM header, which is described in the next Section 2.1.1. In

the calibration header different regions are defined with different calibrations that correspond to

the ultrasound image region and the ECG. The ROI regions are the ultrasound image and the

ECG. The whole ultrasound image has to be selected as ROI. If a small ultrasound part is selected

instead, the clinical quality is affected by the degradation quality of the non ROI part [39]. As

regards the type of data, two types of region can be distinguished, image and text, since it is not

efficient to compress the text as an image. In conclusion, better compression performances can be

achieved if the facilities that the ultrasound devices incorporate to divide the image into regions

are used to encode each region separately and take into account the data type of each region as

well as its clinical importance.

Image compression methods that use wavelet transforms have been successful in providing

high compression ratios while maintaining good image quality: Joint Photographic Experts Group

(JPEG) 2000 [40] and Set Partitioning in Hierarchical Trees (SPIHT) [41]. However, the DI-
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COM standard includes the JPEG 2000 standard, but not SPIHT. Moreover, JPEG 2000 has been

demonstrated to achieve very good results in the compression of medical images [42, 43]. It is

shown in [43,44] that with a compression rate of 1 bit per pixel (bpp) the diagnostic information is

preserved for computerized radiography and ultrasound images, respectively. Consequently, JPEG

2000 can be used for medical image compression providing adequate clinical quality with 1 bpp.

The main JPEG 2000 characteristics are described in Section 2.1.2.

2.1.1 DICOM

2.1.1.1 DICOM overview

In response to the increased use of digital images in radiology ACR and the National Electrical

Manufacturers Association (NEMA) formed a joint committee in 1983 to create a standard format

for storing and transmitting medical images [30]. The committee published the original ACR-

NEMA standard in 1985. This has subsequently been revised and in 1993 the standard was renamed

DICOM. DICOM is administered by the NEMA Diagnostic Imaging and Therapy Systems division

and each year the standard is updated. Details of recent improvements can be found on [30].

The standard describes how to format and exchange medical images and associated information,

both within the hospital and also outside the hospital. DICOM interfaces are available for connec-

tion of any combination of the following categories of digital imaging devices: (a) image acquisition

equipment such as computed tomography, magnetic resonance imaging, computed radiography,

ultrasonography, and nuclear medicine scanners; (b) image archives; (c) image processing devices

and image display workstations; (d) hard-copy output devices such as photographic transparency

film and paper printers.

DICOM addresses five general application areas:

1. Network image management.

2. Network image interpretation management.

3. Network print management.

4. Imaging procedure management.

5. Off-line storage media management.

DICOM is a message standard that facilitates interoperability of medical imaging equipment

by specifying:

1. For network communications, a set of protocols to be followed by devices claiming confor-

mance to the standard.

2. The syntax and semantics of Commands and associated information which can be exchanged

using these protocols.

3. For media communication, a set of media storage services to be followed by devices claiming

conformance to the standard, as well as a File Format and a medical directory structure to

facilitate access to the images and related information stored on interchange media.
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2.1.1.2 DICOM File Format

A single DICOM file contains both a header (which stores information about the patient’s name,

the type of scan, image dimensions, etc), as well as all of the image data. The header and the image

data are stored in the same file. The image data follows the header information.

Table 2.1: Some fields of the DICOM header from an Acuson device.

Field Contents

Filename [1x65 char]

FileModDate “12-nov-2010”

FileSize 2361370

Format “DICOM”

FormatVersion 3

Width 1024

Height 768

BitDepth 8

ColorType “truecolor”

FileMetaInformationGroupLength 204

MediaStorageSOPClassUID “1.2.840.10008.5.1.4.1.1.6.1”

TransferSyntaxUID “1.2.840.10008.1.2.1”

ImplementationClassUID “1.2.276.0.7230010.3.0.3.5.4”

Modality “US”

Manufacturer “SIEMENS”

InstitutionName “HC LOZANO BLESA”

ManufacturerModelName “ACUSON SC2000”

PatientName [1x1 struct]

PatientID “XXXXXXXXXXXX”

PatientBirthDate “XX”

PatientSex “X”

HeartRate 88

SequenceOfUltrasoundRegions [1x1 struct]

The size of the header varies depending on the acquisition device and image type. The DICOM

elements required depend on the image type that are listed in Part 3 of the DICOM standard [45].

DICOM requires a 128-byte preamble (these 128 bytes are usually all set to zero), followed by the

letters ’D’, ’I’, ’C’, ’M’. This is followed by the header information, which is organized in groups:

general information, patient, study, series, frame of reference, equipment and image information.

In Table 2.1 some fields of a header for an ultrasound device are shown. Of particular importance

is the “Transfer Syntax Unique Identification” which reports the structure of the image data,

revealing whether the data has been compressed or not. Another important field in the DICOM

header included in the ultrasound is the regions calibration, see “SequenceOfUltrasoundRegions” in

Table 2.1. It defines regions on the ultrasound image with different calibration and the calibration

parameters in order to be able to perform measurements on the ultrasound regions. The calibration
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header is defined in Part 3 of the DICOM standard [45]. The regions definition depends on the

echocardiogram devices and not all the devices define these regions. In Figure 2.2 the calibration

regions for an M mode are shown. There are four calibration regions that are defined with four

coordinates each one: “Region Location Min X0”, “Region Location Min Y0”, “Region Location

Max X1” and “Region Location Max Y1”. The “Region Spatial Format” and the “Region Data

Type” of each region indicates the type of mode and data within the region. For example M mode

or 2-D mode (tissue or flow) and color bar or spectral (CW or PW Doppler).

Figure 2.2: Calibration regions for the M mode of an echocardiogram acquired with an Agilent
device.

The DICOM image exam can be compressed either lossless or lossy in order to reduce disk

space. The image format is specified in the “Transfer Syntax Unique Identification” header. The

codecs included in DICOM are described in Part 5 of the standard. The image formats supported

for DICOM are raw data, lossless Run Length Encoding, JPEG lossy and lossless mode, JPEG-

LS [46] lossless and near-lossless mode, JPEG 2000 [40] lossless and lossy mode, MPEG-2 MP@ML

and MP@HL image compression, and MPEG-4 AVC/H.264 high profile video compression.

2.1.2 JPEG 2000

JPEG 2000 is an image compression standard that uses the state of the art wavelet technology.

It was created by JPEG committee in 2000 with the intention to solve most of the limitations of

the original JPEG standard (created in 1992) based on discrete cosine transform.

2.1.2.1 JPEG 2000 Features

JPEG 2000 has many features, which were not available in most of the previous image coding

standards. They include:
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Figure 2.3: Structure of the JPEG 2000 encoder and decoder.

• Excellent coding performance. It features superior rate-distortion and subjective image qual-

ity performance especially at low bit rates. This is useful in applications whereby file size or

transmission time is critical.

• Lossless and lossy compression. It is capable of lossless compression, which is important to

some medical imagery and image archival applications.

• ROI coding. It allows certain areas of an image to be encoded at higher fidelity. More

information on this feature can be found in [36].

• Spatial and Signal-to-noise ratio (SNR) scalability. It allows progressive recovery of images

by resolution or quality.

• Good error resilience. It has added bitstream robustness to the presence of bit errors.

• Flexible file format. The JP2 and JPX file formats allow for handling of color-space infor-

mation, metadata, and for interactivity in networked applications as developed in the JPEG

Part 9 JPEG 2000 Interactive Protocol (JPIP) protocol.

2.1.2.2 JPEG 2000 Encoder and Decoder Structure

As depicted in Figure 2.3a, the core structure of the JPEG 2000 encoder follows a typical

sequence of operations used in a transform coding scheme, which consists of transformation, quan-

tization and entropy coding. The JPEG 2000 encoder works as follows. Firstly, the original image

with unsigned data is DC level shifted. Then, the component transformation can be carried out if

the original image has multiple components. This procedure provides decorrelation among image

components and hence improves compression efficiency. There are two component transforms avail-

able: one is reversible and may be used for lossy or lossless coding, while the other is irreversible

and may only be used for lossy coding. Before proceeding further, it should be noted that the

image components can be partitioned into tiles, which are rectangular non overlapping blocks, and

thus creating tile components that can be compressed independently of each other.

Wavelet transform may be performed on the tile components. In the lossy case, an irreversible

Daubechies 9-tap/7-tap filter is employed, whereas in a lossless case, a reversible 5-tap/3-tap filter
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is used. The wavelet transform decomposes the tile-components into different decomposition levels,

each of which contains a number of subbands filled with transform coefficients. Before entering

into the entropy coding phase, the quantization process is carried out to reduce the precision of

the transform coefficients. Note that for the lossless case, the quantizer is set to one, i.e. no loss in

precision.

The remaining encoding process is grouped into two tiers. In the tier-1 encoder, the quantized

transform coefficients associated with each subband are arranged into rectangular blocks called

code-blocks. Then, a bit-plane coding technique with three coding passes is applied to each code-

block, and the symbols that it produces are coded using an adaptive binary arithmetic coder. In

the tier-2 encoder, the inclusion and the order of appearance of bit-plane coding passes along with

the actual coding pass data are assembled together to form the final compressed data.

The core structure of the JPEG 2000 decoder is illustrated in Figure 2.3b. The decoding process

is basically the reverse of the encoding one.

2.2 Compression for Real-time Transmission

The development of medical video streaming has been made possible thanks to the evolution

of efficient video compression techniques. An efficient compression method is extremely important

especially for real-time transmission in wireless networks given that they are band limited, time

varying, and error-prone. The main objectives in the codification process are:

• Improving the compression method. As a result, less bandwidth is required, reducing the

cost, reducing the transmission time and facilitating the arrival of the video at the transmitter

without losing diagnostic information.

• Low complexity of the codification process in order to save battery energy and to allow

transmission in real-time (the codification time has to be shorter than the time of the image

production).

Some of the telemedicine systems dealing with medical video transmission incorporate ROI

codification [34, 47–52]. In some medical modalities an algorithm has been designed to obtain the

regions automatically, as is the case in [47, 50, 52] for carotid artery ultrasound video. However,

obtaining the regions automatically can be a complex process and may introduce excessive delay.

For almost all medical image modalities the regions for each individual image must be defined by

medical specialists [34,48,49,51]. As already mentioned for the storage encoding, in order to easily

extract the echocardiogram regions, the way acquisition devices form the displayed images must be

taken into account. Furthermore, each region has different characteristics. For example, it is not

efficient to encode text regions as images. Some regions remain invariant for a period of time, i.e.

they are images, and as a result it is not efficient to codify these regions as video. Consequently,

if the echocardiogram visualization characteristics are taken into account and different codification

techniques are applied for each region according to its data type and diagnostic importance, better

compression performances can be achieved.

The use of MPEG codecs [53] are widespread due to their high efficiency. The MPEG-4 codec

is one of the most commonly used codecs for compressing video sequences. The Xvid codec [54]
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is an open source implementation of the MPEG-4 standard part 2. The H.264 codec, MPEG-

4 Part 10 or AVC [55], was jointly developed by the MPEG and International Telegraph Union

Telecommunication Standardization Sector (ITU-T) Video Coding Experts Group (VCEG) who

formed the Joint Video Team (JVT). For example, Xvid has been used in [56] and H.264/AVC

in [49–52,57] for telemedicine applications dealing with ultrasound video transmission. H.264/AVC

has also been used for other medical video modalities [34, 58]. The successor of H.264/AVC, High

Efficiency Video Coding (HEVC) [59], has been recently incorporated into ultrasound video trans-

mission systems [60, 61] showing coding efficiency gains compared to the H.264/AVC. Other very

popular compression methods for medical images and video due to their good compression perfor-

mances are SPIHT for images and 3-D SPIHT [62] for video. SPIHT is based on a 2-D wavelet

transform and has features such as embeddedness for progressive transmission, precise rate con-

trol for CBR traffic, low complexity and multi-resolution scalability, which are very good qualities

for real-time transmission. 3-D SPIHT is an extension of SPIHT from two to three dimensions,

two spatial and one temporal, and it shares the SPIHT characteristics. In addition, SPIHT has

been demonstrated to provide good results in the compression of ultrasound images [37, 63, 64],

other medical modalities [64–66] and in telemedicine applications dealing with progressive image

transmission [67, 68]. However, none of the reviewed ultrasound transmission systems implement

this compression technique. Consequently, due to their good performance, SPIHT algorithms are

proposed for the compression of the echocardiogram in this Thesis: for images without color 2-D

SPIHT [41], for images with color 2-D CSPIHT [69] and for video 3-D SPIHT [62]. The main

SPIHT characteristics are described below.

2.2.1 SPIHT

The SPIHT algorithm was introduced the first time by Said and Pearlman [41] for the image

compression. This algorithm can be seen as an extension of Embedded Zero-tree Wavelet (EZW)

introduced by J. M. Shapiro [70]. The EZW technique not only was competitive in performance

with the most complex techniques, but was extremely fast in execution and produced an embedded

bit stream. With an embedded bit stream, the reception of code bits can be stopped at any point

and the data can be decompressed and reconstructed. The encoding algorithms can be stopped at

any compressed file size or let run until the compressed file is a representation of a nearly lossless

image. In order to have lossless compression specific wavelet transform is necessary. Following

that work, in [41] an extension that achieved even better results was developed, SPIHT. EZW was

extended to 3-D by Chen and Pearlman [71] and showed promise of an effective and computationally

simple video coding system without any motion compensation, and obtained excellent numerical

and visual results. 3-D SPIHT algorithm has also been used with excellent results in compression

of video [62, 72], keeping the simplicity of 2-D SPIHT, while still providing high performance, full

embeddedness, and precise rate control. The 2-D SPIHT algorithm and the 3-D extension are

shortly described in the following sections.

2.2.1.1 2-D SPIHT

The SPIHT algorithm utilizes three basic concepts:

• Searching for sets in spatial-orientation trees in a wavelet transform.
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• Partitioning the wavelet transform coefficients in these trees into sets defined by the level of

the highest significant bit in a bit-plane representation of their magnitudes.

• Coding and transmitting bits associated with the highest remaining bit planes first.

Figure 2.4: Example of parent-offspring dependencies in the spatial-orientation tree.

Spatial orientation trees are groups of wavelet transform coefficients organized into trees rooted

in the lowest frequency or coarsest scale subband with offspring in several generations along the

same spatial orientation in the higher frequency (resolution) subbands. Figure 2.4 depicts the key

for parent-offspring relationship of coefficients to tree nodes for a 2-D wavelet transform with two

levels of decomposition. In the spatial orientation trees, each node consists of 2 x 2 adjacent pixels,

and each pixel in the node has four offspring, except at the highest level of the pyramid, that

does not have any offspring. Spatial orientation trees were introduced to exploit self-similarity and

magnitude localization properties in a 2-D wavelet-transformed image. In particular, if a coefficient

magnitude in a certain node of a spatial orientation tree does not exceed a given threshold, it is

very likely that none of its descendants will exceed that threshold.

SPIHT consists of two main stages, sorting and refinement. In the sorting stage, SPIHT sets a

magnitude threshold 2n, where n is called the level of significance, and seeks to identify three entities

in the spatial-orientation trees: isolated coefficients significant at level n (magnitude no less than

2n); isolated coefficients insignificant at level n (magnitude less than 2n); and sets of coefficients

insignificant at level n (all their magnitudes less than 2n). For a given n, the algorithm searches

each tree, partitioning the tree into sets of the three entities above and moves their coordinates

respectively to one of three lists: 1) the list of isolated significant pixels (LSP); 2) the list of isolated

insignificant pixels (LIP); and 3) the list of insignificant sets (LIS). The last set can be identified by

a single coordinate, due to the partitioning rule in the search, where the set of descendants having
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a significant member is split into its (four) offspring and a subset of all descendants of offspring.

When a coefficient is tested and found insignificant, a 0 bit is emitted to the output bit stream

and its coordinate is moved to the LIP for subsequent testing at lower n. When a coefficient is

found significant, a 1 bit and a sign bit are emitted and its coordinate is moved to the LSP. When

an LIS set is tested for significance at level n, a 0 bit is emitted if insignificant. But when found

significant, a 1 bit is emitted and the set is partitioned into offspring and descendants of offspring.

The offspring are moved to the end of the LIP and subsequently tested for significance at the same

n and also to the LIS as roots of their descendant sets that are subsequently tested for significance

at the same n.

The bit significance number n is successively lowered in unit increments from the maximum

nmax of the largest magnitude coefficient. At a given n, the nth of every member of the LSP

found significant at a higher n is emitted to the codestream, adding to the 1s in the nth bit of

the coefficients just found significant for the same n. This is called the refinement stage of the

algorithm. When n is decremented, the LIP is tested for significance, and the test result is emitted

as a 0 or 1 bit for insignificant or significant, respectively. If significant, its coordinates are moved

to the LSP and a sign bit is emitted. Then the LIS is visited and its tree sets are partitioned

according to the results of the significance tests. The process terminates when the desired bit rate

or quality level is reached.

The decoder of the code bitstream receives the outputs of the significance tests and can therefore

build the same lists, the LIP, LIS, and LSP, as in the encoder. Therefore, as input bits are read

from the codestream, it reconstructs the magnitude and sign bits of LSP members seen by the

encoder. The coefficients of the final LIP and LIS sets are set to zero. In the wavelet transform of

an image, large sets of zero values exist which are identified efficiently by SPIHT with a single bit.

Moreover, significant coefficients are never represented by more bits than needed in their natural

binary representation, since the highest 1 bit is always known.

SPIHT has been originally designed for monochrome images, which are very common in medical

applications. A straightforward application to color images is to code the transformed data from

each spectral channel independently without exploiting any correlation that might exist between the

spectral channels. Alternately, in [73] KahunenLoève Transform (KLT) is performed on the spectral

components of the image before coding the decorrelated color planes independently using the SPIHT

scheme, called SPIHT KLT. Conversely, the color-EZW (CEZW) scheme [74,75] attempts to exploit

underlying spectral correlation by expanding the spatial orientation tree structure used in EZW

across the spectral planes for all nodes. However, CEZW has shown to have poorer performance

than SPIHT KLT in [74]. In [69], a simple embedded colorcoding scheme based on SPIHT, called

color-SPIHT (CSPIHT) showed much better quality of reconstruction without the need to perform

a transform of the spectral components of the image. Most recent coding algorithms in which the

correlation between the color and Y components is used (such as the Inter Color Correlation based

Color SPIHT [76]), are not appropriate because the color components for the ultrasound images

are very independent of the Y component.

2.2.1.2 3-D SPIHT

3-D SPIHT is an extension of SPIHT from two to three dimensions and it shares the SPIHT

characteristics. In this way, the compressed bit stream will be completely embedded, so that a
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Figure 2.5: Parent-offspring dependency in 3-D SPIHT at the highest level.

single file for a video sequence can provide progressive video quality, i.e., the algorithm can be

stopped at any compressed file size or let run until nearly lossless reconstruction is obtained.

In 3-D SPIHT, sorting of pixels proceeds just as it would with 2-D SPIHT, the only difference

being 3-D rather than 2-D tree sets. Once the sorting is done, the refinement stage of 3-D SPIHT

will be exactly the same. On the 3-D subband structure, we define a new 3-D spatiotemporal

orientation tree and its parent-offspring relationships. When the spatial and temporal filtering

alternate, so that the decomposition is purely dyadic, a straightforward extension from the 2-D

case is to form a node in 3-D SPIHT as a block with eight adjacent pixels, two extending to each of

the three dimensions, hence forming a node of 2 x 2 x 2 pixels. The root nodes (at the highest level

of the pyramid) have one pixel with no descendants and the other seven pointing to eight offspring

in a 2 x 2 x 2 cube at corresponding locations at the same level. For nonroot and nonleaf nodes,

a pixel has eight offspring in a 2 x 2 x 2 cube one level below in the pyramid. Figure 2.5 depicts

these parent-offspring relationships in the case of a two-level dyadic 3-D decomposition with 15

subbands, produced by a once repeated spatial-horizontal, spatial-vertical, and temporal splitting,

in that order.

The number of temporal subband decomposition directly depends on the number of frames

to be compressed at a time. The typical value for the temporal resolution is of sixteen frames,

although a shorter filter with four or eight frames, such as the Haar or S+P filters, can be also

used. Only two or three decompositions are possible with four or eight frames compressed at a

time, respectively. However, with a spatial resolution of 352 x 288 pixels, for example, five spatial

(dyadic) decompositions can be achieved with the high performance 9/7 biorthogonal filter [77].

The next step is compression of the coefficients into a bit stream. Essentially, it can be done by

feeding the 3-D data structure to the 3-D SPIHT coding kernel. The 3-D SPIHT kernel will sort
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the data according to the magnitude along the spatio-temporal orientation trees (sorting pass), and

refine the bit plane by adding necessary bits (refinement pass). At the destination, the decoder

will follow the same execution path conveyed by the received significance decision bits to recover

the data.
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Figure 2.6: Bit stream of two different methods: (a) separate color coding and (b) embedded color
coding.

A simple application of the SPIHT to color video would be to code each color plane separately,

as does a conventional color video coder. Then, the generated bit stream of each plane would

be serially concatenated. However, this simple method would require allocation of bits among

color components, losing precise rate control, and would fail to meet the requirement of the full

embeddedness of the video codec since the decoder needs to wait until the full bit stream arrives to

reconstruct and display. Instead, one can treat all color planes as one unit at the coding stage, and

generate one mixed bit stream so that we can stop at any point of the bit stream and reconstruct

the color video of the best quality at the given bit rate. In addition, we want the algorithm to

automatically allocate bits optimally among the color planes. By doing so, we will still keep the

claimed full embeddedness and precise rate control of 3-D SPIHT. The bit streams generated by

both methods are depicted in the Figure 2.6, where the first one shows a conventional color bit

stream, while the second shows how the color embedded bit stream is generated, from which it is

clear that we can stop at any point of the bit stream, and can still reconstruct a color video at that

bit rate as opposed to the first case.

Let us consider a tri-stimulus color space with luminance Y plane such as YUV or YCrCb.

Each such color plane will be separately wavelet transformed, having its own pyramid structure.

Now, to code all color planes together, the 3-D SPIHT algorithm will initialize the LIP and LIS

with the appropriate coordinates of the top level in all three planes. Since each color plane has its

own spatial orientation trees, which are mutually exclusive and exhaustive among the color planes,

it automatically assigns the bits among the planes according to the significance of the magnitudes

of their own coordinates. The effect of the order in which the root pixels of each color plane

are initialized will be negligible except when coding at extremely low bit rate. Note also that the

wavelet transforms and sizes may be different among the three planes without affecting the method.

In conclusion, 3-D SPIHT is an embedded subband-based video coder analogous to the 2-D

spatial orientation trees in image coding. The video coder is fully embedded, so that different

degrees of monochrome or color video quality can thus be obtained with a single compressed bit

stream. The cost for this embeddedness is the coding delay (latency) to accept 16 frames into a

buffer and a memory size of the order of the size of the coding unit to execute the 3-D SPIHT
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algorithm. Precise rate control and self-adjusting rate allocations are automatically achieved. In

addition, spatial and temporal scalability can be easily incorporated into the system to meet various

types of display parameters requirements.

2.3 Transmission Protocols

In order to transmit the coded information over Internet networks, Transmission Control Pro-

tocol (TCP)/Internet Protocol (IP) is the suite of communications protocols used to connect hosts

on the Internet. TCP/IP provides end-to-end connectivity specifying how data should be format-

ted, addressed, transmitted, routed and received at the destination. It has four abstraction layers

(see Figure 2.7) which are used to sort all related protocols according to the scope of networking

involved:

Application

Transport

Internet

Link

Figure 2.7: TCP/IP layer protocol stack.

• The link layer contains communication technologies for a single network segment of a local

area network. The link layer depends on the physical medium used for the transmission.

• The Internet layer has the responsibility of sending packets across potentially multiple net-

works. Internet working requires sending data from the source network to the destination

network. This process is called routing. In the Internet protocol suite, the Internet Protocol

performs two basic functions:

– Host addressing and identification: this is accomplished with a hierarchical IP addressing

system.

– Packet routing: this is the basic task of sending packets of data (datagrams) from

source to destination by forwarding them to the next network router closer to the final

destination.

• The transport layer protocol establishes host-to-host connectivity, meaning it handles the

details of data transmission that are independent of the structure of user data and the logis-

tics of exchanging information for any particular specific purpose. Its responsibility includes

end-to-end message transfer independent of the underlying network, along with error control,

segmentation, flow control, congestion control, and application addressing (port numbers).

End to end message transmission or connecting applications at the transport layer can be cat-

egorized as either connection-oriented, implemented in TCP, or connectionless, implemented

in User Datagram Protocol (UDP).
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• The application layer contains the higher-level protocols used by most applications for net-

work communication. Data coded according to application layer protocols are then encapsu-

lated into one or (occasionally) more transport layer protocols, which in turn use lower layer

protocols to effect actual data transfer.

Transport protocols are further distinguished in upper and lower layer, Real-Time Transport

Protocol (RTP), and UDP/TCP respectively. TCP [78] provides reliable, ordered, error-checked

to secure packet delivery to destination. These characteristics may lead to long delay and jitter,

specially when high data flows are transmitted. Thus, TCP is highly adequate for applications

where it is important to guarantee the reliability while the delay is less important. On the other

hand, UDP [79] does not provide any error handling or congestion control mechanisms, allowing

therefore packets to drop out. This properties made UDP highly adequate for applications where

the packets arrive in time is more important than the integrity of the information. Therefore, UDP

is the primarily established as the lower layer transport protocol for real-time transmission of video.

However, as a minimal clinical quality is necessary to achieve an adequate diagnostic error control

methods should be implemented in the upper layer.

RTP [80] is widely used in clinical video steaming applications [49, 50, 57]. RTP provides end-

to-end delivery services for real-time video and audio transmission. RTP itself does not contain

any mechanisms to ensure on time delivery. On the contrary, it relies on UDP or TCP for doing

so. However, it does provide the appropriate functionality for carrying real-time content such as

time-stamping and control mechanisms that enable synchronization of different streams with timing

properties.

Since the echocardiogram is composed of several regions with different type of data (text, image,

video, audio) and different clinical importance and consequently every region can be compressed

with different coding methods, different transmission methods can be applied for each region. RTP

is not suitable for this proposal, since it does not provide delivery of text or images. Given the

aforementioned, a protocol for end-to-end real-time transmission of echocardiograms over IP can

be designed introducing different coding and transmission protocols for every region, UDP or TCP

and further control error methods. The most suitable protocols will depend on the type of region

and its clinical information. For example, in order to transmit a region with the ultrasound video,

UDP is the adequate protocol introducing additionally an error control method in the application

layer. However, in order to transmit the text present in the echocardiogram, TCP is more adequate,

because the reliability of the transmission is required.

In order to decrease header overheads, reduce packet loss and increase security over noisy

wireless links, RObust Header Compression (ROHC) can be used for both UDP [81] and TCP

[82] transport layers. This standard compresses IP and UDP headers to just 3 bytes, including

the checksum field to discard erroneous packets, and the IP and TCP headers to just 10 bytes.

Thanks to this standard, the redundancy introduced in the transmission is decreased, allowing

small packets to be transmitted. This reduces packet loss without an excessive increase in the

number of transmitted bits.

It is important to take into account that some text regions may contain confidential information

about the patient. For this reason, the text has to be protected so that it can only be accessed

by authorized sanitary staff. An easy way to protect this information is by protecting all the
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packets in which the information is contained. Typically, the text information is not protected

in the clinical video streaming systems since the text is included in the video. Transport Layer

Security (TLS) [83] is the most common choice for secure communications and is included in the

medical standards DICOM and Health Level Seven (HL7). The primary advantage of TLS is that

it provides a transparent connection-oriented channel. Thus, it is easy to secure an application

protocol by inserting TLS between the application layer and the transport layer.

2.4 Error Control Methods

In order to provide an accurate diagnosis, it is not only necessary to have a compression method

that guarantees clinical quality, but it is also essential to be able to guarantee the integrity of the

video during the transmission process. It is well known that wireless channels are error prone. Thus,

digital transmission may be affected by erroneous bits that distort the reconstruction of the video

on reception. Hence, the use of error control mechanisms for maintaining acceptable video levels

in wireless communications channels are required [84]. However, for real-time applications dealing

with multimedia data, reliable methods such as the incorporated in TCP are not recommended

due to the resulting delay. Error control methods can be used in the application layer for the ROI

regions in order to minimize distortion, but without introducing excessive delay.

The two main error control techniques are Automatic Repeat ReQuest (ARQ) [85–87] and For-

ward Error Correction (FEC) [88–92]. Both techniques increase the original amount of bits and

therefore there is a trade off between compression fidelity and protection. With retransmission

techniques, only missing packets are retransmitted. If the channel delay is long or if several re-

transmissions of the same packet are required because of channel errors, the resulting delay would

be intolerable for real-time applications. With FEC, redundant bits are added in the transmit-

ted data and the decoder uses these added bits to correct the errors. The amount of redundancy

embedded can be more than is necessary to correct the errors, using more bits than with the re-

transmission mechanism. However, if the amount of redundancy is less than is necessary, no error

can be corrected. But this technique does not need a feedback channel and reduces the time needed

to recover missing packets. The design and performance of a hybrid ARQ with concatenated FEC

for real-time video streaming over wireless networks has been addressed in [93, 94]. In [93], an

adaptive technique in the Medium Access Control (MAC) layer of Worldwide Interoperability For

Microwave Access (WiMAX) was used, but this technique is only valid for the WiMAX channel.

In [94] a more general solution was proposed. Furthermore, the channel conditions can be taken

into account to adapt the error control techniques to the channel conditions and use one or another

techniques.

For telemedicine applications, error resilient implementations for robust diagnosis performance

have been addressed, for example, in [34, 49–52, 57, 95]. A scalable video coding (SCV) employing

spatiotemporal scalability is found in [34, 57]. A flexible macroblock ordering (FMO) technique

for variable quality slice encoding and redundant slices for resilience over error prone mediums,

available in the baseline profile of H.264/AVC, were used in [50, 52]. In [49] a ROI-based and

prediction-based unequal channel error protection implementation to overcome transmission errors

was presented. Another different approach is an optimized cross-layer design (CLD) based on a

reinforcement learning algorithm for real-time medical video streaming [51, 95]. In [51] an error
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Table 2.2: Mobility, data rate and delay of 3G and beyond wireless access technologies.

Wireless technology Max. speed Data rate1 delay

3G UMTS [96] 300 km/h 220 - 384 Kbps <250 ms

HSPA [97,98] 300 km/h 500 kbps - 2 Mbps <250 ms

3.5G HSPA+ [99,100] 300 km/h 1 - 4 Mbps <100 ms

LTE [100,101] 500 km/h 1.5 - 5.8 Mbps <70 ms

4G LTE-Advanced [102] 500 km/h up to 100 Mbps <70 ms

IEEE 802.16e [103] 120 Km/h up to 5.6 Mbps <70 ms
WiMAX

IEEE 802.16m [104] 350 Km/h up to 100 Mbps <70 ms

1 Uplink data rates

concealment technique for the ROI region was used. This last technique is not suitable for real

time applications. However, a hybrid ARQ with a concatenated FEC method in which the channel

conditions are taken into account has not been used in any of the reviewed telemedicine applications

for clinical video streaming.

2.5 Wireless Transmission Technologies

The development of more demanding telemedicine systems has been possible thanks to the

evolution of mobile telecommunication systems. The evolution of mobile systems from 2 Generation

(G) to 2.5G and afterwards to 3G facilitates the provision of higher data rates and lower delays

that enable the development of more responsive telemedicine systems. Furthermore, the later

wireless technologies, 3.5G and beyond, enable the transmission of high quality video resolution

that requires more bandwidth.

Before starting to design a telemedicine system, it is important to know the application re-

quirements such as required bandwidth, delay, and speed in order to choose the appropriate access

technology. Table 2.2 shows the main characteristics of the access technologies for 3G and be-

yond, including maximum speed, typical up link data rates and typical delays. One of the most

frequently used technologies in clinical video streaming applications is WiMAX [49, 51, 52, 95] due

to its improved uplink and downlink rates, increased coverage and throughput, mobility support

enhancement, latencies reduction, quality of service (QoS) services and security enhancement.

2.5.1 Worldwide Interoperability For Microwave Access (WiMAX)

The Institute of Electrical and Electronics Engineers (IEEE) 802.16 standard offers broadband

wireless access (BWA) over long distance. WiMAX was firstly standardized for fixed wireless access

by the IEEE 802.16-2004 [105] and then for mobile access with by the IEEE 802.16e [103] and

802.16m [104] standards. WiMAX is a promising technology to provide wireless services requiring

high-rate transmission and strict QoS requirements in both indoor and outdoor environments. A
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thorough overview of WiMAX standardization process and evolving concepts and technologies up to

IEEE 802.16e standards appears in [106], while recent advances are described in detail in [107–109].

To provide flexibility for different applications, the standard supports two major deployment

scenarios:

• Last-mile BWA: In this scenario, broadband wireless connectivity is provided to home and

business users in a wireless metropolitan area networks (WMAN) environment. The operation

is based on a point-to-multipoint single hop transmission between a single base station (BS)

and multiple subscriber stations (SSs).

• Backhaul networks: This is a multihop (or mesh) scenario where a WiMAX network works

as a backhaul for cellular networks to transport data/voice traffic from the cellular edge to

the core network (Internet) through meshing among IEEE 802.16/WiMAX SSs.

The WiMAX Forum, which is a nonprofit organization, encourages and supports IEEE 802.16-

based BWA. The main role of the WiMAX Forum is to standardize and maintain the process

of testing and the certification program for compatibility and interoperability of IEEE 802.16

equipment [110]. The physical (PHY) and MAC layer protocols are well defined in the IEEE

802.16 standard, efficient radio resource management is still an open issue. Features of PHY and

MAC layers are discussed next.

2.5.1.1 Physical Layer Features

The physical layer of the IEEE 802.16 air interface originally operates at either the 1066 GHz

(IEEE 802.16), 211 GHz band (IEEE 802.16a) [111]. Todays licensed deployment is typically in

the range of 2.3, 2.5-2.7, 3.5, and 5.8 GHz, while 4G frequency bands will facilitate deployment

between 450-3600 MHz [104]. Channel bandwidth allows great flexibility in the sense that it allows

WiMAX operators to consider channel bandwidths between 1.25, 2.5, 5, 10, and 20 MHz (802.16e).

In 802.16m scalable bandwidth between 5-40 MHz for a single radio frecuency carrier is considered,

extended to 100 MHz with carrier aggregation to meet International Mobile Telecommunications-

Advanced (IMT-Advanced) requirements. WiMAX employs a set of high and low level technologies

to provide robust performance in both line-of-sight and non-line-of-site conditions.

The primary features of the physical layer include adaptive modulation and coding (QPSK,

16-QAM, 64-QAM), hybrid ARQ, and fast channel feedback. WiMAX uses scalable orthogonal

frequency division multiple access (SOFDMA) that divides the transmission bandwidth into mul-

tiple subcarriers. The number of subcarriers ranges from 128 for 1.25 MHz channel bandwidth and

extends up to 2048 for 20 MHz channels. In this manner, dynamic QoS can be tailored to an indi-

vidual application requirements. In addition, orthogonality among subcarriers allows overlapping

leading to flat fading. In other words, multipath interference is addressed by employing orthogonal

frequency-division multiplexing (OFDM) while available bandwidth can be split and assigned to

several requested parallel applications for improved systems efficiency. The latter is true for both

downlink and uplink. A Multiple input multiple output antenna system improves communication

performance, including significant increases in data throughput and link range, without additional

bandwidth or increased transmit power.
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2.5.1.2 Medium Access Control Layer Features

IEEE 802.16/WiMAX uses a connection-oriented MAC protocol, which provides a mechanism

for the SSs to request bandwidth from the BS. Although each SS has a standard 48-bit MAC address,

the main purpose of this address is for hardware identification. Therefore, a 16-bit connection

identifier is used primarily to identify each connection to the BS. IEEE 802.16/WiMAX supports

both frequency division duplex (FDD) and time-division duplex (TDD) transmission modes.

The QoS scheduling is the most important feature in WiMAX systems, which makes it an ideal

choice for QoS sensitive applications such as video content streaming. There are three major types

of services supported with different QoS requirements:

• Unsolicited grant service (UGS): This service supports CBR traffic. In this case the BS

allocates a fixed amount of bandwidth to each of the connections in a static manner. UGS

service is suitable for traffic with very strict QoS constraints for which delay and loss need to

be minimized. A typical application is VoIP.

• Polling service (PS): This service supports traffic for which some level of QoS guarantee is

required. The amount of bandwidth required for this type of service is determined dynamically

based on the required QoS performance and the dynamic traffic arrivals for the corresponding

connections. It can be divided into two subtypes:

– Real-time polling service (rtPS). This service is delay sensitive. Typical applications are

audio and video streaming.

– Non-real time polling service (nrtPS). This service can guarantee a certain throughput

guarantee. A typical application is file transfer.

• Best-Effort (BE) Service: This is for traffic with no QoS guarantee. The amount of bandwidth

allocated to BE service depends on the bandwidth allocation policies for the other two types

of service. In particular, the bandwidth left after serving UGS and PS traffic is allocated to

BE service. Typical applications are web and email traffic.

Mobility management is also address in 802.16e and current 802.16m standards. Established

connections can move with speeds between 50-100 km/h for 802.11e and up to 350 km/h for 802.11m

with adequate performance.

2.6 Clinical Quality

The image quality in telemedicine systems is decreased by lossy compression and due to errors

introduced by the network. In medical images, a minimum acceptable quality is required to be

able to make an adequate diagnosis. In order to quantify the clinical distortion introduced in the

transmitted signal, distortion indices should be used. There are two types of indices: objective or

mathematical distortion indices and subjective or clinical distortion indices.



Chapter 2. Tele-Echocardiography Realities: Background and What Can Be Improved? 53

2.6.1 Mathematical Distortion Indices

Mathematical distortion indices [112], thanks to their ease of use, can be useful for preliminary

and fast measurement of quality. Some examples of these indices are: Mean Squared Error (MSE),

Peak Signal-to Noise Ratio (PSNR) and SIMilarity Index [113]. Currently, the most commonly used

objective image and video distortion metric even for medical images is PSNR [49,50,57]. PSNR is

widely used because it is simple to calculate, has clear physical meanings, and is mathematically

easy to deal with for optimization purposes. PSNR measured in decibels (dB) is given by

PSNR = 10 · log10

(
2552

MSE

)
(2.1)

where 255 is the maximum possible value that can be attained by the image signal of 8 bits. MSE

is defined as

MSE =
1

M ·N
·

M∑
m=1

N∑
n=1

|I (x, y)− J (x, y)|2 (2.2)

where M · N is the frame dimension in pixels. I (x, y) is the source frame and J (x, y) is the

compressed frame.

However, PSNR has been widely criticized for not correlating well with perceived quality mea-

surement [114,115] and for not being able to quantify the real clinical distortion [56].

2.6.2 Clinical Distortion Indices

New indices that include degradation in the diagnosis content of echocardiograms are necessary.

There are two main types of test that can be included to calculate a clinical distortion index:

• Semi-blind test: comparison of the compressed images with the original, without knowing

the transmission rate used for the compressed images. Can the same diagnosis be made with

both images?

• Blind-test: evaluation of the compressed images without knowing the transmission rate used.

In general, for medical images this evaluation consists of performing a complete diagnosis and

comparing it to the results of the original images.

There are several works in which medical opinion has been utilized to assess real clinical quality

after codification [48, 50, 56] and transmission [17, 18, 48, 50, 57, 116]. However, these assessments

were not as accurate as the evaluation in [56]. In [56], a testbed that unifies and reflects clinical

evaluation for echocardiogram procedures was developed using both a blind and a semi-blind test.

This testbed gives a precise evaluation of the real degradation in compressed echocardiograms and

provides a minimum recommended transmission rate required for each echocardiographic mode to

achieve adequate clinical quality. However, it has a serious disadvantage in that it is burdensome

and very costly in terms of time dedicated to evaluating the echocardiograms. Furthermore, if a

guarantee of clinical quality for the visualized echocardiogram is desired, it will be necessary to

evaluate a wide range of transmission rates and network scenarios with different channel conditions.

In order to save time in the evaluation process, two different evaluations can be performed. In the

first evaluation, a wide range of transmission rates can be evaluated with a method as accurate as
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that presented in [56], but saving time in the evaluation method. In order to achieve this, a two

phase testbed can be designed. In the first phase, a fast and simple evaluation can be made using

a semi-blind test for different transmission rates in order to select two transmission rates for each

mode that are at the limits of acceptable clinical quality. These two rates can be evaluated in more

detail in the second phase using a blind test in order to provide the recommended transmission

rates. If the transmission occurs without errors and the whole echocardiogram is displayed at

the recommended transmission rate, the same diagnosis as that of the original echocardiogram is

guaranteed. However, if the recommended transmission rate is not received all the time, the same

diagnoses may or may not be possible. Instead of assessing different channel conditions, as has been

described in the literature, an evaluation in which the percentage of time that the echocardiogram

is displayed with a lower transmission rate than the recommended rate can be evaluated. In this

manner, it is possible to know for any channel if the diagnosis on reception will be possible with

a single evaluation. As the starting point of the evaluation is the recommended transmission rate

in the previous evaluation, for the second evaluation it may be sufficient to conduct a semi-blind

test for different percentages of time that the echocardiogram is displayed with a transmission rate

inferior to the minimum.

2.7 Tele Ultrasound Systems Overview

Overviews of m-health systems and more recent wireless medical video transmission systems

were addressed in [26, 28], respectively. This section discusses the most relevant studies dealing

with ultrasound video transmission over wireless channels, the main characteristics of which have

been addressed throughout this chapter. Table 2.3 shows the most important parameters for the

reviewed systems in order to compare the actual systems to each other and with respect to the

system proposed in this Thesis. The most important parameters in a clinical video transmission

over a wireless channel are the spatial and temporal (frame rate) resolution, the encoding and error

resilient method, the transmission rate, clinical evaluation and the access channel.

The video resolution affects the diagnostic capacity of the video and the transmission rate. The

higher the resolution, the higher the quality and the transmission rate [52]. The resolution can be

classified as low video resolution (lower than 480x480 and 15 fps) and original/high video resolution

(equal to or higher than 480x480 and 15 fps). In Table 2.3, the systems are divided into low (light

gray) and high (dark gray) resolution. Higher video resolution requires higher transmission rates,

and consequently wireless technologies with high data transfer rates, 3.5G and beyond. Other

factors that affect the transmission rate are the encoding and error resilient methods used, thus it

is very important to choose these methods correctly. The transmission rate has to be the minimum

possible but without compromising the clinical quality of the video. For this reason, it is very

important to perform an evaluation that defines the minimum transmission rate for the selected

parameters in order to guarantee clinical quality, as in [56], where the lowest transmission rate is

required for high resolution videos, see Table 2.3.
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Table 2.3: Ultrasound video transmission systems summary.

Reference Resolution Encoding Transmission rate Clinical evaluation Channel

Pedersen
2009 [57]

320x240, 10 fps H.264/AVC
(Scalable)

349 kbps Yes 3G and beyond

Martini 2010 [49] 480x256, 15 fps H.264 unequal
error protec-
tion based on
ROI

300 kbps No WiMAX

Panayides
2011 [50]

352x288, 15 fps H.264/AVC
FMO ROI RS

411 kbps Yes 3G and beyond

Alinejad 2012 [95] 352x288, 20 fps Windows Me-
dia Cross-layer

300 - 500 kbps Yes 3G and WiMAX

Alesanco
2009 [56]

720x576, 25 fps Xvid 256 kbps, 756 kbps Yes -

Debono 2012 [51] 640x480, 25 fps H.264/AVC
cross-layer
Error con-
cealment on
ROI

860.16 - 1933.90 kbps No WiMAX

Panayides
2012 [117]

704x576, 15 fps HEVC 1.5 Mbps Yes WiMAX

Panayides
2013 [52]

704x576, 15 fps H.264/AVC
FMO ROI RS

1.3 - 1.5 Mbps Yes WiMAX
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2.8 Conclusions: Thesis approach

This section presents the conclusions of the Chapter: the main improvements that can be

made in the different parts of the tele-echocardiography system. This improvements are the design

premises used in this Thesis to improve tele-echocardiography systems. They are summarized below

for each part of the system.

Compression for storage

• Designing a compression format interoperable with DICOM and taking into account the

DICOM format.

• Taking advantage of the segmentation facilities incorporated in the acquisition devices to

segment the image into regions and compress each region according to its data type (image

or text) and diagnostic importance.

• Compressing the image regions with JPEG 2000 and recommended quality of 1 bpp for the

ROI regions so as to guarantee clinical quality.

Compression for real-time transmission:

• Taking advantage of the visualization characteristics of the echocardiograms and the segmen-

tation facilities incorporated in the acquisition devices to compress each region according to

its data type (video, image, text, signal or sound) and diagnostic importance.

• Compressing the image and video regions with SPIHT algorithms: for images without color

2-D SPIHT [41], for images with color 2-D CSPIHT [69] and for video 3-D SPIHT [62].

Transmission protocols:

• Designing a protocol for end-to-end real-time transmission of echocardiograms over IP where

different transmission protocols are applied for every region, UDP or TCP, and error resilient

methods are applied according to the clinical importance of the region in question.

• The compression of headers, ROHC, can be applied so as to reduce the overhead, reduce

packet loss and increase security over noisy wireless links.

• The TLS protocol can be applied to the text regions in order to protect patients’ confidential

information.

Error control method:

Designing an error control method for the application layer and the regions with relevant clinical

information that does not use a reliable protocol in the upper layers. ARQ and FEC techniques

can be used depending on the channel conditions.
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Clinical evaluation:

• Designing an evaluation methodology that consists of two evaluations so as to reduce time in

the whole process.

• A first evaluation of the transmission rates for each echocardiogram mode to recommend a

minimum transmission rate that guarantees the same diagnosis as that of the original images.

This test is divided into two phases in order to reduce the assessment time. The first phase

is a semi-blind test to discriminate two transmission rates. The second phase is a blind test

for the two transmission rates that has been selected in the previous phase.

• A second evaluation of the percentage of time that the echocardiogram can be visualized with

a transmission rate inferior to the recommended rate. This evaluation consists of a semi-blind

test. It is possible to know if the images have been displayed with adequate quality without

the need to perform an assessment for each channel condition.





Chapter 3

Echocardiogram Compression

This Chapter deals with the first part of tele-echocardiography systems (see Figure 3.1): com-

pression. Compression performance is a key factor for achieving good results in transmission and

for saving storage space. In order to design efficient compression methods, the characteristics of

the echocardiogram have to be taken into account. Since echocardiograms performed for real-time

transmission have different characteristics than those performed for storage purposes, different com-

pression approaches are proposed for each. It is necessary not only to design efficient compression

methods but also to guarantee clinical quality. Thus, an evaluation of transmission rates is needed

in order to recommend a minimum transmission rate that guarantees the same diagnosis as that of

the original echocardiogram. This Chapter is organized as follows. The echocardiogram databases

and characteristics for both storage and real-time transmission purposes are described in Section

3.1. Section 3.2 describes the clinical evaluation methodology. Section 3.3 defines the compression

approach for storage purposes and Section 3.4 provides the compression results compared with

other techniques. Section 3.5 defines the compression approach for real-time transmission purposes

and Section 3.6 sets out compression recommendations and results. The results are compared with

the results of previous systems. Finally, the conclusions of this Chapter are given in Section 3.7.

3.1 Echocardiogram Databases and Characteristics

An in-depth analysis of echocardiogram characteristics is required in order to design efficient

compression and transmission methods. Two types of echocardiograms can be distinguished ac-

cording to whether the echocardiogram is stored or if it is transmitted in real-time:

• Stored echocardiograms: a clinical compression is applied before the echocardiogram is stored.

This avoids having to store the entire echocardiogram video. The stored echocardiogram

consists of several images of different heart visualizations, and several video loops of the same

heart visualization in movement from 1 to 3 cardiac cycles (from 14 to 64 frames).

• Real-time echocardiograms: no clinical compression is applied. The real-time echocardiogram

consists of the whole echocardiogram video.

The composition of both types of echocardiograms is defined by the EAE in [12], and a summary

is shown in Table 3.1. The characteristics of the stored echocardiogram depend on the patient’s

59
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Figure 3.1: Tele-echocardiography system structure followed in this Thesis: compression part.

Table 3.1: Composition of the two types of echocardiogram according to [12].

Type No. Images No. Videos (duration)

Stored ≤ 6 ≤ 13 (≤ 3 seconds)

Real-time - 1 (∼= 30 minutes)

condition. The expert cardiologist may decide to store all the views (see Table 3.1) or only those

views that present abnormalities.

The echocardiograms have different modes of operation. Each mode presents different rep-

resentation of the heart. The main modes of operation has been described in Chapter 1. The

echocardiogram can be divided into regions according to how the echocardiogram devices form the

displayed images, the data type of each region and the clinical relevance of the region. Nevertheless,

the data type of each region may be different for both types of echocardiograms. In order to study

the echocardiogram characteristics, a database was collected for the two types. Moreover, these

databases have been used to carry out different assessments during this Thesis. In the following

sections the databases and the characteristics for the two types of echocardiogram are described.

3.1.1 Stored Echocardiograms Database and Characteristics

3.1.1.1 Database for Stored Echocardiograms

In order to analyze the stored echocardiogram characteristics and to evaluate the compression

performance for the stored echocardiogram, we have echocardiograms available in DICOM format

that correspond to four different devices and different operation modes since each operation mode

has different visualization characteristics. These echocardiograms were captured and stored by
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different cardiologist and from different patients. Table 3.2 shows the echocardiogram devices, the

number of images available for each device, the typical image size of each device and the mean DI-

COM header size for each device. These devices are representative of the typical image distribution

in echocardiogram images. The echocardiograms acquired with the Agilent and Siemens Acuson

devices can be considered as one because both have a similar size and similar characteristics.

Table 3.2: Database for the stored echocardiograms. Echocardiogram devices, number of echocar-
diogram images available, typical image size and mean DICOM header size in bytes of all the exams
for each device.

Device
Number Typical DICOM Header Size

of images Image Size (bytes)

Agilent Sonos 22 600x430 10365

Siemens Acuson 23 576x456 19132

Philips Envisor 28 800x564 19132

Siemens CS2000 32 1024x768 19132

3.1.1.2 Stored Echocardiogram Characteristics

There are three types of regions, as we can see in Figure 3.2:

• Ultrasound: it is the most important because it contains the relevant information for the

diagnosis. The ultrasound is always present and only appears once. In the case of having a

video loop, it is the only region that changes over the time.

• Auxiliary images: they surround and complement the ultrasound region. These auxiliary

images are, for example, the ECG, the color label, other ultrasound images to complement

the information of the main ultrasound image and some symbols regarding the configuration.

• Text: it is always present in all the images and contains information such as patient informa-

tion, date, time, configuration or measurements of the study.

In the case of having a video loop, the only region that change over time is the ultrasound

region, while the rest of the regions remain invariant. For each echocardiogram mode and device,

the distribution and the size of the regions, the number of auxiliary regions and the text are different.

Furthermore, some image regions contain color information that is relevant for the diagnosis and

others not. For example, the Doppler modes have relevant information in color in the ultrasound

image and in the color scale.

3.1.2 Real-time Echocardiograms Database and Characteristics

3.1.2.1 Database for Real-Time Echocardiograms

Three cardiologists experienced in echocardiography recorded and stored original echocardio-

grams from patients with different diagnoses and with three different ultrasound devices (see Table
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Figure 3.2: Echocardiogram regions of a Doppler mode (on the left) and a continuous Doppler
mode (on the right) captured with an Agilent and Acuson devices respectively. The white solid line
contains the ultrasound, the green dotted line the auxiliary images and the yellow dashed line the
text.

Table 3.3: Acquisition devices and cardiac affection for the real-time echocardiograms database.

Device Patient Patient’s Diagnosis

1 Lateral myocardial infarction

2 Medial septal myocardial infarction

Sonosite
SonoHeart
Elite 3 Ventricular septal defect

4 Atrial septal defect

5 Right ventricle hypertrophy and pulmonary insufficiency

Philips
ENVISOR
C HD 6 Mitral and tricuspid regurgitation

7 Normal

8 Tricuspid regurgitationPhilips IE33

9 Pulmonary insufficiency

3.3). Three sessions per device, each session corresponding with one patient, were recorded having

a total of 200 videos. Each device had its specific characteristics and different qualities. First, a

portable device was chosen (see SonoSite, Table 3.3) because the image quality is inferior and the

manner of representation is quite different to that of non-portable devices. The other two chosen

devices were of the same brand, but their quality and the form of representation were different. The

image quality of both was superior to that of portable device. The selected echocardiograms were

representative of typical and abnormal findings in the cardiovascular field. The physical conditions

of the patients were diverse (large, medium, and slim build), as well as their ages (baby, young,

middle-aged, and old).

The acquired videos had a frame rate of 25 fps and a resolution of 720x576 pixels throughout the

screen. This resolution is considered high, allowing make the same diagnosis as the original image.

Each frame was encoded in YUV12 format [12 bpp, 8 bpp for the luminance (Y) component and
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Table 3.4: Database for the real-time echocardiograms. Echocardiograms time and number of
videos for each mode and total number of videos. B is the B mode, D the color Doppler mode, M
the M mode and DP the pulsed/continuous Doppler mode.

Patient
Total time
(minutes)

% time # videos

2-D Sweep Stop B D M DP Total

1 28 68% 22% 10% 5 5 4 4 18

2 25 55% 27% 18% 6 6 4 4 20

3 36 64% 20% 16% 5 6 4 4 19

4 25 76% 9% 15% 8 8 5 4 25

5 30 83% 16% 1% 10 4 3 5 22

6 28 76% 10% 14% 7 9 4 5 25

7 27 52% 33% 15% 8 8 4 5 25

8 27 82% 10% 8% 7 6 24 4 41

9 30 91% 8% 1% 5 7 4 4 20

Table 3.5: Main regions present in the dataset echocardiograms for each device brand and mode.

Mode 2-D modes Sweep modes

Device US Text ECG US Text
Auxiliary

ultrasound

SonoSite 4 4 4 4

Philips 4 4 4 4 4 4

4 bpp for the color components, chrominance (U and V)]. The echocardiographic sessions ranged

from 25 to 36 minutes duration. The echocardiograms only contain the four basic operation modes

according to the EAE described in Section 1.2. The operation modes are visualized one each

time. Stops are introduced when measurements are performed or the mode is changing. The

echocardiogram is composed of several fragments that correspond to a change of operation mode

(videos). Table 3.4 shows for the available echocardiograms, the echocardiogram time distribution,

total time and percentage of time for each mode, and the number of videos for the four modes.

The modes are indicated with 2D, M, PCD and CD labels representing 2D, M, pulsed/continuous

Doppler and color Doppler modes, respectively. The main regions for each device brand and

visualization mode are shown in Table 3.5.

3.1.2.2 Real-Time Echocardiogram Characteristics

The echocardiogram characteristics to be taken into account are the following:

• The echocardiograms present different regions, as shown in Figure 3.3, each region having

different visualization characteristics, diagnostic importance and data type.
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Figure 3.3: Echocardiogram regions of a B mode (on the left) and a M mode (on the right)
captured with a Sonosite device. The white solid line contains the ultrasound, the blue dotted and
dashed line the ECG, the green dotted line the auxiliary images and the yellow dashed line the text.
Each region is identified with a number (ID) on the figure.

• According to their characteristics, five regions can be distinguished (see Figure 3.3):

– Ultrasound: this is a video that contains the relevant diagnostic information. It is always

present in the echocardiogram. This region changes with the mode. Furthermore, the

ultrasound region can be divided into two according to its visualization characteristics:

∗ 2-D ultrasound: this represents a 2-D image of the heart in movement. Examples

are the B and the color Doppler mode.

∗ Sweep ultrasound: this represents a temporal evolution of one cut of the heart.

Examples are M and pulsed/continuous Doppler mode. The ultrasound is displayed

gradually. A new slice is visualized in each frame (see Figure 3.4). When all the

screen is swept, it starts again from the beginning (see Figure 3.4b). Eventually,

the sweep is stopped by the cardiologist in order to take measurements, so the same

image is shown in the following frames.

– ECG: this contains the ECG signal and can be seen as a sweep video (sweep ultrasounds)

or as a signal.

– Auxiliary video: this is a video located around the ultrasound that shows an auxiliary

ultrasound to help to interpret the echocardiogram.

– Auxiliary image: this is an image located around the ultrasound that shows an auxiliary

image to help to interpret the echocardiogram, such as another ultrasound image or

symbols regarding the configuration. It may be merely decorative. These images are

always present in all the echocardiograms, and even more than onces.

– Sound: the echocardiogram may also incorporate sound in order to listen to the heart-

beat.

– Text: this is always present in all the echocardiograms, normally more than onces.

It contains information such as patient information and date, time, configuration or

measurements of the study.
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(a) Frame 3 of a sweep mode. (b) Frame 9 of a sweep mode.

Figure 3.4: Examples of frames for a sweep mode.

• The distribution and size of the regions change with the acquisition device and may change

with the echocardiogram mode of operation. The represented or activated regions change

according to the activated mode. For example, in Figure 3.3 the regions with identification

numbers 1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14 are activated for the B mode. For the M mode

the regions 2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14 are activated. The ultrasound region is always

different for each mode, thus the activated mode depends on the ultrasound region. The

other regions may be common for several modes, for example regions 3, 5, 8, 10, 11, 12, 13,

14 in Figure 3.3 are in both the B and M modes.

• Depending on the data type of each region the regions that correspond with the activated

mode of operation may change with time or may hardly ever change. The auxiliary image

and text remain invariant and only change occasionally. However, the rest of the regions

change each few seconds and thus synchronism between them is necessary.

• Some regions contain color information relevant for the diagnosis while others do not. For

example, the color Doppler modes have relevant information in color in the ultrasound region

and in the color scale region.

• The echocardiogram can be seen like a stored video. It can be stopped and run forward and

back. This only affects the regions that change with time.

In Table 3.6 is summarized the regions that may be presented in an echocardiogram, its data

type and if the regions need synchronism between them.
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Table 3.6: Data type of the echocardiogram regions for real-time transmission.

Regions Data type Synchronism

Ultrasound Video or sweep video Yes

ECG Signal or sweep video Yes

Auxiliary video Video Yes

Auxiliary image Image No

Sound Audio Yes

Text Text No

3.2 Clinical Evaluation Methodology for Compression Recommen-

dations

This section presents an accurate clinical evaluation methodology for compressed echocardio-

grams and the four basic modes of operation according to the EAE recommendations. A two

phase evaluation is proposed in order to simplify the evaluation process and save time compared

to other accurate methodologies presented in the literature. The first phase is a semi-blind test to

discriminate two transmission rates. The second phase is a more extensive blind test for the two

transmission rates that are selected in the previous test. The evaluation leads to a recommendation

for the compression of echocardiograms. Both tests are described in the following sections.

3.2.1 First Phase: Semi-blind Test

The objective of this test is to determine in a fast and subjective way whether the cardiologist

would be able or not to make the same diagnosis with the original and the compressed video.

This test consists of three different parts, see Figure 3.5. The first part permits us to measure the

cardiologist’s opinion about the similarity between the compressed echocardiogram and the original

video. The second part is a question about whether the cardiologist’s diagnosis would be the same

for both videos, the original and the compressed. The third part invites comments, if any. These

questions are answered for each echocardiogram mode.

1. Measure of similarity between the original X mode video and the compressed one.

1: very different 2: different 3: acceptable 4: similar 5: identical

2. Would you give the same diagnosis with both videos for the X mode?

YES NO

3. Comments.

Figure 3.5: Semi-blind test: comparison of compressed echocardiogram with the original video.
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In order to have an estimation that directly reflects the distortion in the diagnosis content of

every mode in the echocardiogram, a clinical distortion index for the semi-blind test (CDISB) is

calculated with all the information collected for each mode, cardiologist and transmission rate.

This is defined as

CDISB =
1

2
· (5− C)

5
+

1

2
· (1−D) (3.1)

where C is the measurement of similarity between the original and the compressed video (1-5)

and D is the answer to the boolean question about the diagnosis (1-YES, 0-NO) for the mode being

evaluated (see Figure 3.5).

The CDISB is directly related to the clinical distortion of the echocardiogram. The lower the

value of CDISB, the lower the distortion in the diagnosis content of the compressed echocardio-

gram. The CDISB could be grabbed into quality ranges thus making it possible to classify the

echocardiograms. Cardiologists involved in the study considered that it would be more practical

to split the CDISB values (0-0.9) into three ranges. The three defined ranges are:

• The same diagnosis is possible (D = 1) with acceptable quality (C ≥ 3): CDISB ≤ 0.2

• The same diagnosis is possible (D = 1) but with low quality (C < 3): 0.2 < CDISB ≤ 0.4

• The same diagnosis is not possible (D = 0) with low quality (C < 3): CDISB > 0.7

It is important to note that there are no CDISB values between 0.4 and 0.7. It is because the

cardiologists decided that it is not possible to have that the same diagnosis is not possible (D = 0)

with acceptable quality (C ≥ 3). This implies that if the same diagnosis is not possible the quality

has to be unacceptable. The CDISB values are used to discard the transmission rates that are in

the not acceptable range (CDISB > 0.4) and to obtain the two transmission rates that are between

acceptable or low quality but with the same diagnosis (CDISB ≤ 0.2 and 0.2≤ CDISB ≤ 0.4) for

each mode. In order to assess the test at least three cardiologist should participate and for each

mode several videos of different patients and ultrasound devices should be evaluated. Once the

CDISB has been calculated for all the patients, the two transmission rates are selected as follows:

the upper rate is the first transmission rate with all the CDISB values of the different patients

equal or lower than 0.2 and the lower rate is the immediately inferior. These two rates are the ones

selected for a deep evaluation using a more extensive test, the blind test.

3.2.2 Second Phase: Blind Test

This test corresponds to the same blind test proposed in [56] and consists of three different parts,

which are much more extensive than in the semi-blind test. We have maintained this test because

it is very complete, and now with the advantage that we just have to evaluate the transmission

rates selected in the previous test, saving in this way a lot of time in the evaluation process. The

objective of this test is evaluate whether the same diagnostic is possible or not with both videos,

the original and the compressed video. In Figures 3.6, 3.7 and 3.8 the three parts of the test for

the four basic modes of operation are shown. The first part, Figure 3.6, shows the overall score

given by cardiologists to the general video quality. The second part, Figures 3.7 and 3.8, consists

of some questions that cardiologists have to complete based on the interpretations of the structures
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and flows measured in a standard echocardiogram examination (the modes for each interpretation

are shown in brackets). If these interpretations are the same as for the original video the same

diagnostic is possible. Finally, there is a part for comments from the specialists, if any.

1a. General quality score for the B mode.

1: very bad 2: bad 3: tolerable 4: good 5: excellent

1b. General quality score for the M mode.

1: very bad 2: bad 3: tolerable 4: good 5: excellent

1c. General quality score for the color Doppler mode.

1: very bad 2: bad 3: tolerable 4: good 5: excellent

1d. General quality score for the pulse and continuous Doppler mode.

1: very bad 2: bad 3: tolerable 4: good 5: excellent

Figure 3.6: Blind test: part I.

The clinical distortion index for the blind test (CDIB) is defined as

CDIB = max

{
Qo −Qr

2 ·Qo
, 0

}
+

∑
|sgn (I0i − Iri)|

2 ·K
(3.2)

where Qo and Qr are the general quality scores (see Figure 3.6) of the original and compressed

videos for the mode being evaluated, respectively. For the scores rating special attention has been

paid to the sharpness and definition of the edges of structures, their clear separation from other

structures and the clarity in blood floods. Ioi and Iri are the interpretation of the ith parameter

of the original and reconstructed videos, respectively. These interpretations are translated into

numeric factors in order to be used in the equation. A zero value is assigned if the cardiologist

can not answer the question due to bad video quality. The rest of the questions are assigned a

value larger than 0. K is the number of questions that contribute to each echocardiographic mode.

K is nine for the B mode, six for the M mode, five for the color Doppler mode and six for the

pulsed/continuous Doppler mode.

As described before at least three cardiologists should participate and for each mode several

videos of different patients and ultrasound devices should be evaluated. As was established in [56],

the maximum CDI value obtained by a compressed echocardiogram in order to be considered

acceptable should be at most 0.25, being the CDI the mean between CDIB and CDISB. In other

words, the minimum transmission rate to guarantee the clinical quality will be the lower with all

the CDI values lower than 0.25. For example, let consider we evaluate a color Doppler mode
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2. Provided with an interpretation.

B and

(B, M) Normal

M study

Aortic root Dilated

(transversal diameter) Dissected

(B, M) Normal

Left atrium Dilated

(transversal diameter) Intra-arterial mass-clot

LVDD Normal

Left (M) Dilated

ventricle LVSD Normal

(M) Dilated

Hyperkinetic

(B) Normal

Global Light

contractility Depressed Moderate

Severe

Asynergy

Thin

Normal

(M) Light

IVS Ca Moderate

Left ventricular Severe

hypertrophy Light

Left Ab Moderate

ventricle Severe

wall Thin

thickness Normal

(M) Light

PW Ca Moderate

Left ventricular Severe

hypertrophy Light

Ab Moderate

Severe

Mitral Normal

(B) Abnormal

Valve Aortic Normal

Morphology (B) Abnormal

Tricuspid Normal

(B) Abnormal

Pericardial effusion Yes

(B) No

Ca: Concentric, Ab: Asymetric

Figure 3.7: Blind test: part II.
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3. Provided with an interpretation.

Doppler

Normal

Study

Sten.

Light

(PCD) Moderate

Pulmonary Max. velocity Severe

flow

Ins.

Light

Moderate

Severe

Yes

Light

Syst. Regurgitation Moderate

(PCD, CD) Severa

Mitral No

Flow Normal

E. wave, A. Pseudonormal

Diast. pattern Relaxation

(PCD) Abnormality

Restrictive

Normal

Max.

Sten.

Light

Syst. Velocity Moderate

Aortic (PCD) Severa

flow

Yes

Light

Regurgitation Moderate

Diast. (PCD, CD) Severe

No

Yes

Light

Tricuspid Regurgitation Moderate

flow (PCD, CD) Severe

No

ASD Yes

Septal (2D,CD) No

defects VSD Yes

(2D,CD) No

Figure 3.8: Blind test: part III.
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(K = 5), in which the original echocardiogram has general quality of 4 (Qo = 4), the compressed

echocardiogram of 3 (Qr = 3), and for the first four interpretations the values are the same for both

echocardiograms and for the last interpretation the original value is septal defect yes (Io4 = 2) and

with the compressed echocardiogram the cardiologist can not answer (Ir4 = 0). The value of CDIB

would be 0.325 [(4-3)/(2·4) + (0+0+0+0+2)/(2·5)]. If the CDISB value is lower than 0.125, the

CDI value would be lower than 0.25 thereby acceptable, other case the CDI value would be not

acceptable.

3.3 Compression for Storage

An image format for storage purpose is proposed in this section. As mentioned in Chapter 2,

the proposed storage file has to be interoperable with DICOM and has to take into account the

DICOM file format. The final file follows the DICOM format, and consequently has two parts (see

Section 2.1.1): the DICOM header and the proposed image format. No changes have to be made

in the DICOM header to integrate the proposed image format in the DICOM standard. It is only

necessary to define a “Transfer Syntax Unique Identifier” for the proposed format in the standard

in order to identify that the image format used is the proposed format.

The design of the proposed image format takes into account the characteristics of the stored

echocardiograms described previously and the encoding recommendations in Chapter 2. Further-

more, we take advantage of the facilities of segmentation already incorporated in the acquisition

devices. The acquisition device provides the regions and their type: ultrasound, text or auxiliary.

An appropriate selection of the compression algorithms for each region is very important in

order to save storage space. In a previous study we proposed SPIHT algorithms [118]. However,

although good results were obtained, these algorithms were rejected because they are not included

in the DICOM standard. JPEG 2000 was chosen because similar results to those of the SPIHT

algorithm were achieved and it is included in the DICOM standard.

Since each echocardiogram has a different distribution of the regions, it is necessary to define the

configuration for each stored echocardiogram. A ROI coding as the Maxshift method specified in

JPEG 2000 [35] or the context based coding [119] are not proposed because they do not support text

compression. It is important to compress the text without losing quality and efficiently since it can

contain relevant information for the diagnosis. Furthermore, if the regions are encoded separately,

the image can be easily edited after being stored. The edition of the image is very useful for

the laboratories, because important information for the diagnosis can be added afterwards. We

proposed a first approach in [118], where some headers were added to the global file and the

encoded regions to indicate global configuration, position and size. This solution is highly efficient

from the point of view of saving space. However, the solution is neither flexible nor portable.

Extensible Markup Language (XML) [120] is a markup language that defines a set of rules for

encoding information. It uses human language, not computer language, which is readable and

understandable. It is an expandable language, meaning that new tags can be created or previously

created tags can be used. It is also extremely portable. Furthermore, XML is similar to the DICOM

headers system [121]. For these reasons, XML is proposed for the configuration of the image format.

The final proposed image format has two parts: an XML file, where the information relating

to the configuration of the regions is included, and the encoded regions. Both parts are described
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below.

<?xml version="1.0" encoding="UTF-8"?>

<!ELEMENT format (tsize?,region+)>

<!ELEMENT tsize EMPTY>

<!ATTLIST tsize w CDATA #REQUIRED>

<!ATTLIST tsize h CDATA #REQUIRED>

<!ELEMENT region (pos,(roi|img|text))>

<!ELEMENT pos EMPTY>

<!ATTLIST pos x0 CDATA #REQUIRED>

<!ATTLIST pos y0 CDATA #REQUIRED>

<!ATTLIST pos x1 CDATA #IMPLIED>

<!ATTLIST pos y1 CDATA #IMPLIED>

<!ELEMENT roi (size+)>

<!ELEMENT size (#PCDATA)>

<!ATTLIST roi cod CDATA "jpeg2000">

<!ATTLIST roi frames CDATA #IMPLIED>

<!ELEMENT img EMPTY>

<!ATTLIST img L CDATA #REQUIRED>

<!ATTLIST img cod CDATA "jpeg2000">

<!ELEMENT text (#PCDATA)>

Figure 3.9: DTD file for the configuration of the stored echocardiograms.

• XML file: The XML syntax has to be defined, for example, with a Document Type Definition

(DTD) or an XML Schema file [122]. The proposed DTD file is defined in Figure 3.9. An

example of an XML file for three regions of the Doppler mode is shown in Figure 3.10. The

XML file contains the following information, including in brackets the XML fields:

– The size of the whole image (tsize: w, h), although this information is already in the

DICOM header.

– The regions’ configuration (region), one for each region that appears in the image. The

type of regions are: ultrasound or ROI (roi), auxiliary image (img) and text (text). All

the regions have a rectangular shape.

– The position of the regions (pos). The initial position (x0, y0) has to be defined for all

the types of region and also the final position (x1, y1) except for the text region since

its size is adjusted to the available space.

– The type of codification (cod) may be indicated for the ultrasound and image regions,

the default codec being JPEG 2000.

– The sizes in bytes of the ultrasound (size) and image (L) regions have to be specified in

bytes.

– In the case of having several frames, the ultrasound is the only region that changes in

every frame. The ultrasound regions of every frame share the same configuration, so
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(a) Echocardiogram image of a color Doppler mode.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE configuration SYSTEM "roiformat.dtd">

<format>

<region>

<pos x0="44" y0="75" x1="564" y1="597"></pos>

<roi><size>33893</size></roi>

</region>

<region>

<pos x0="0" y0="0"></pos>

<text>PATIENT’S DATA</text>

</region>

<region>

<pos x0="77" y0="574" x1="615" y1="573"></pos>

<img L="149"></img>

</region>

</format>

(b) XML.

Figure 3.10: XML example for the Philips device in the image.
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only one region (roi) has to be indicated in the XML file. The number of frames is

indicated in the ultrasound region (frames). The field size (size) of every ultrasound

frame can be added in the case that the size changes for each one, otherwise it only has

to appear once.

– The text regions (text) include the text in the XML file.

Although some of the XML information may already be included in the DICOM header, it

is necessary to include it in the image format to have an image with a self-contained format.

This means that the image can be decoded without any additional data. If the acquisition

devices incorporate the proposed format they have to provide the XML file. This task is not

difficult since there are similar headers in the DICOM file that the devices already provide,

such as the file size or the calibration regions.

• Encoded regions: The second part is the encoded regions, except the text that is included

in the XML file. The regions appear in the same order as in the XML file. The auxiliary

images and ultrasound image or images, if there are several frames, are compressed with

JPEG 2000 by default, which is included in the DICOM standard. Other compression image

formats can be used. The method is indicated in the configuration part. As a result of the

compression method, each image region may be compressed with different quality according

to its diagnostic relevance. This encoding process does not add complexity to the acquisition

device since the codification method is already included in devices complying with the DICOM

standard.

3.4 Results and Discussion for Compression for Storage

A clinical evaluation of the proposed compression is not necessary since previous evaluations

have been carried out for ultrasound images compressed with JPEG 2000 [44]. Thus, in this section

we focus on the compression rates obtained with the storage format proposed in this Thesis and

the storage gain compared to compression without distinguishing regions. An application has been

developed in Matlab that converts the typical medical images available in laboratories and hospitals

into the proposed storage format and vice versa. This functionality allows studies to be stored with

the proposed format, thus saving disk space and reducing the transmission time of the studies.

This tool can also be used for the evaluation of the results in this section. Furthermore, the tool

allows the image that has been stored in the proposed format or other formats to be displayed and

edited, and for measurements to be performed. The tool takes advantages of the proposed format

based on regions.

3.4.1 Stored Echocardiogram Tool: Format Converter, Display and Measure

The main functionality of the tool is the conversion into the proposed format (see Figure 3.11).

The application input is a DICOM file or another image file format used for medical images [29].

It is important that the input image has sufficient quality to be able to extract the text and for

the doctor to make a diagnosis. If the text is highly distorted it is difficult to recognize it. The

transformation to the proposed format has three main parts that are represented in Figure 3.11

and described below.
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DICOM header and image extraction
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Figure 3.11: Process of converting the stored image into the proposed storage file.
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Figure 3.12: Process of converting the proposed format into another format.
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• Header and image extraction. In the case of having a DICOM file, it is necessary to extract

the header for the final format and the image or images for the following steps. In many cases,

depending on the device, the DICOM file incorporates a calibration section which indicates

where the ultrasound region is, and consequently the segmentation process is simplified. The

header can also be useful because it contains information about the device.

• Proposed image format. This part has three steps: the segmentation of the images, the coding

of the regions and the composition of the image format (XML file and the coded regions). The

segmentation identifies the regions and the type, ultrasound, text or auxiliary, of the input

images. In the case of having several frames, as the only part that changes is the ultrasound

region, it is necessary to extract the text and the auxiliary images of only one frame, and

extract the ultrasound region of all the frames. Furthermore, it is also necessary to know if

the images (ultrasound and auxiliary regions) contain color or not and to identify the text

to convert it into American Standard Code for Information Interchange (ASCII) code. In

the case of having the calibration regions, the process is simplified as it is known where the

ultrasound and ECG regions are. It is also possible, knowing the device, to know where

the regions are, because for the same device and mode the regions are located in the same

position. Our tool is able to divide the studies for all the echocardiograms included in the

available database with a standard configuration file and without identifying the device. The

text is recognized by Optical Character Recognition (OCR), using an open-source software

GOCR [123]. The tool also allows the doctor to select the quality of the regions having the

possibility of changing the quality if it is not adequate for the diagnosis. A standard quality

has been set as default value.

• The last part is to generate the final file with the proposed storage file (DICOM header and

the proposed image format).

The another main functionality of the application is the reverse process. This permits converting

studies stored in the proposed format into one or several images and into a DICOM file with

other image formats. This functionality is useful to display the images or if it is necessary to

interchange the studies with other systems not compatible with the proposed format. The steps

for the transformation process are shown in Figure 3.12 and described below:

• Extraction of the DICOM header, regions and positions. The first step is to extract the

images and their position, the texts and their position, the total size, and the number of

frames from the proposed format (XML file and encoded regions).

• Generation of the image. The image is generated with the specified format and with all the

information provided by the previous step.

• Generation of the DICOM file. The image is joined with the header extracted in the first

step and the DICOM file is generated.

Moreover, more functionalities have been added to achieve a more complete application that

fulfills the requirements of laboratories and takes advantages of the proposed format based on

regions. The application has been designed with the collaboration of three expert cardiologists.
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(a) Main window of the tool.

(b) Edition window the tool.

(c) Measurements window of the tool.

Figure 3.13: Screen shots of the stored echocardiogram tool: compression, edition and measure-
ments.
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Screen shots of the application are shown in Figure 3.13. The additional implemented functionalities

are the following:

• Visualization of the studies (Figure 3.13a). The tool is compatible with DICOM, images in

other formats [29] and the proposed storage format.

• A tool to modify, add and remove regions (Figure 3.13b). The tool is also able to change

the text or add more regions with text. This functionality is very helpful since it allows the

specialist doctor to add or delete information and consequently store more complete studies.

• Measurements tool (Figure 3.13c). This is a very useful functionality to measure after the

acquisition. The tool is able to charge the calibration parameters, if they are available in

the DICOM header, or to perform the calibration and store these parameters in the DICOM

header. It is also able to store the study including the measurements.

3.4.2 Results for Compression of Stored Echocardiograms

The compression gain can be calculated previously to the compression process. The compression

rate (CR) for the proposed compression format with respect to the raw image with and without

including the DICOM header follows the expression:

CR =
widthT ∗ heightT ∗N ∗ 3 ∗ 8 ( + headerDICOM )

header + widthU ∗ heightU ∗N ∗ bpp ( + headerDICOM )
(3.3)

widthT and heightT are the total size of the image, N is the number of frames, 3 corresponds

to the three color components, and 8 to the bits per pixels. The header is the header size of the

proposed format including the XML file and auxiliary images, widthU and heightU are the size of the

ultrasound region, and bpp are the bits per pixels or bit rate for the compressed ultrasound region.

The headerDICOM is the DICOM header that may or may not be considered. The DICOM header

is taken into account if the compression rate of the whole file needs to be calculated. However, the

DICOM header is not included in the expression if the compression rate of the image format is to

be evaluated.

The following expression 3.4 is the percentage of gain in storage space of the proposed compres-

sion with respect to the compression study using JPEG 2000, which does not distinguish regions.

The DICOM header may or may not be included. The ultrasound regions are compressed with the

same quality for both methods.

Gain =
widthT ∗ heightT ∗N ∗ bpp− header − widthU ∗ heightU ∗N ∗ bpp

header + widthU ∗ heightU ∗N ∗ bpp ( + headerDICOM )
∗ 100 (3.4)

where the parameters are the same as those defined for CR.

In order to evaluate the improvement of the proposed compression format compared to JPEG

2000, the echocardiograms database has been compressed with both methods. Table 3.7 shows for

each echocardiogram device and mode available, the ultrasound size, average header size (XML file

and auxiliary images) for one frame, the CR for the proposed format and the percentage of gain (G)
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Table 3.7: Parameters and compression results for the echocardiogram devices and modes of the
database.

Device Mode
Header ROI CR/CRDICOM G/GDICOM(%)

(Bytes) Size 1 frame 16 frame 1 frame 16 frame

M 4401 576x295 31/19 - 28/16 -

DP 5036 569x295 30/20 - 24/15 -

D 2746 404x417 29/21 32/31 20/14 32/32

Agilent/
Acuson

B 825 551x480 27/20 28/27 14/9 16/16

M 6161 692x387 35/25 - 48/32 -

DP 6838 641x369 39/25 - 61/37 -

D 3510 538x521 36/21 39/37 49/27 62/60
Philips

B 2729 442x521 39/27 42/41 62/41 75/73

M 11489 1024x504 34/28 - 41/32 -

DP 11637 1024x499 33/26 - 35/28 -

D 3227 845x739 28/22 29/29 19/14 23/23
Siemens

B 3481 824x739 29/23 31/30 22/17 27/27

of the proposed format with respect to JPEG 2000. The last two values have been calculated for

the average of all the frames stored separately and considering 16 frames of the same visualization

stored in the same file and sharing the configuration file. Furthermore, the results not taking into

account the DICOM header and those taking into account the DICOM header are shown. The

ultrasound regions have been compressed with 1 bpp (bit per pixel) for both formats and the

auxiliary regions with 0.5 bpp for the proposed format. 1 bpp and 0.5 bpp have been selected

because these bit rates have shown good clinical quality for ultrasound images compressed with

JPEG 2000 [44].

In order to provide a visual inspection of the proposed method, Figure 3.14 shows the original

images and the images after segmentation, compression and decompression. The ultrasound region

has been compressed with 1 bpp and the auxiliary regions with 0.5 bpp for both images. The

top images were acquired with an Agilent device corresponding to the Color Doppler mode. The

PSNR of the ultrasound part is about 40 dB. The size for the proposed format is 24 kbytes and

the original size is 774 kbytes, having a CR of 32. The bottom images were acquired with Acuson

device corresponding to the M mode. The PSNR of the ultrasound region is about 35 dB. The size

of the proposed format is 26 kbytes instead of 788 kbytes, having a CR of 30.

3.4.3 Discussion for Compression of Stored Echocardiograms

According to the compression rate and gain expressions given in the previous section, the

compression efficiency mainly depends on the header length (XML file and auxiliary images) and

ultrasound size (ROI), and consequently depends on the acquisition devices. For example, in Table

3.7, the Agilent/Acuson device and B mode shows the worst compression results (CR = 27 for 1

frame). This is due to the ROI size (551x480 of 600x430). The ROI covers almost the whole image.

On the other hand, the best compression results are for the Philips device and B mode (CR =
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Figure 3.14: Samples of echocardiogram images before and after compression with the proposed
method. Images on the left are the original images and on the right the reconstructed images with
the proposed method. The upper images were acquired with an Agilent device and the lower images
with an Acuson device.
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39 for 1 frame) due to its small ROI size (442x521 of 800x564) and header length (2729 bytes).

Consequently, the smaller the ROI and header, the better the compression results.

Another important factor is the number of frames (N). If more frames are compressed together,

sharing the same headers, better compression efficiency is achieved. This is easily visualized if

we compare the results taking into account and without taking into account the DICOM header

(see Table 3.7). The compression results considering the DICOM header are worse than those not

considering it. However, the compression results depend more on the DICOM header when only

one frame is stored in a DICOM file.

In conclusion, we can observe that for a typical quality the proposed format overcomes the

JPEG 2000 standard for all the echocardiograms of the database. Furthermore, the obtained CR

enhances the results of the ROI coding included in the JPEG 2000 standard, Maxshift method,

that obtains a CR of 16 [35] for medical images with smallest ROI region than the ultrasound.

Furthermore, although the compression results depend on the acquisition device and mode, a saving

in the storage space is achieved for all the available devices and modes, which are representative of

typical echocardiogram image distribution. It is expected that similar results will be obtained for

other image codecs.

The proposed format is specially designed for ultrasound images, but can also be applied to

other medical image modalities. However, the compression performance depends on the image

visualization. Thus, the compression results will have to be evaluated for each image modality.

3.5 Compression for Real-time Transmission

An encoded algorithm is presented for each data type according to the previously presented

echocardiogram characteristics. The encoding recommendations in Chapter 2 are taken into ac-

count. As the ultrasound region is the largest and the most important for the diagnosis, it is

necessary to take special care in the design of the compression method for this region.

In a previous study [124] we proposed a compression method for the ultrasound region based

on visualization modes (sweep and 2-D modes) and the use of SPIHT algorithms. The proposed

approach was compared with the typically used video approaches, Xvid and H.264/AVC, showing

better results for the compression by visualization modes in terms of PSNR for all the echocardio-

gram modes. For this reason, the visualization characteristics have been taken into account and

SPIHT algorithms are proposed in this thesis for compression for real-time transmission. Some

changes have been added to the proposal in [124] for the 2-D modes since the database was in-

creased and the design was optimized for a wide set of echocardiograms. In [124], Run Length

Encoding (RLE) was proposed for the compression of the color components and the 2-D modes.

This algorithm is efficient for echocardiograms acquired with low color resolution devices such as the

Sonosite device used in [124]. Nevertheless, it is not efficient for devices with high color resolution.

The final encoded recommendations for every data type is summarize in Table 3.8 and described

bellow.

• Video. For the video compression, 3-D SPIHT [62] is proposed due to its good performance.

The resolution time, time between frames encoded together, is the corresponding to 16 frames.
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As the available database has 25 frames per second, the resolution time for the database is

of 0.64 seconds.

• Sweep mode. The visualization characteristics of the sweep modes have been previously

described. The image is visualized gradually. A new slice appears in each frame, remaining

the rest invariant. The proposed approach compresses the new slice each frame. The slices are

compressed with 2-D SPIHT due to the reasons named in Chapter 2. The images can contain

color or not. If the image contains color 2-D CSPIHT [69] is proposed. On the contrary, if

the image does not contain color, 2-D SPIHT [41] is proposed. The compression efficiency

can be affected by the slice width. The slice height is large enough. A minimum slice width

of 32 pixels has been considered suitable. If the slice width is less than 32 pixels, several

slices are joined to reach this value and the rest of pixels form the next slice. This introduces

a visualization delay in real-time applications, but it is always less than 32 pixels (the time

delay depends on the device and the sweep speed). Time between slices encoding is always

lower than 0.3 seconds for the ultrasound region. As each slice is coded separately, if an error

occurs in the transmission it only affects to the quality of one slice. That is an important

advantage compared with the MPEG-4 codecs that spread the error along the image and

through several frames.

• Image. The codecs for the images are the same as slice codecs for the sweep video, 2-D

SPIHT for image without color and 2-D CSPIHT for color image.

• ECG Signal. In [125] a real-time automatic ECG coding method that guarantees signal

interpretation quality was designed. This coding method is based on 1-D SPIHT. It is the

proposed solution in case of compress the ECG as signal.

• Audio. The sound has to be encoded with an audio codec for real time, such as Opus [126].

Opus is a highly versatile audio codec. Opus can handle a wide range of audio applications,

but it is particularly suitable for interactive real-time applications over the Internet due to

its low delay (22.5 ms by default). It can scale from low bit-rate narrowband speech to very

high quality. Opus supports constant and variable bitrate encoding from 6 kbit/s to 510

kbit/s, frame sizes from 2.5 ms to 60 ms, and certain sampling rates from 8 kHz (with 4 kHz

bandwidth) to 48 kHz (with 20 kHz bandwidth).

• Text. The text has to be encoded with a text codec, such as the ASCII 8-bit Unicode

Transformation Format (UTF-8) [127]. The text is lossless coded.

In order to guarantee clinical quality of the encoded regions, a clinical evaluation of the ROI

regions is necessary.

3.6 Results and Discussion for Compression for Real-Time Trans-

mission

Previous results of clinical quality are not available for the proposed compression approach for

real-time transmission of echocardiograms. Thus, a clinical evaluation following the methodology

proposed in Section 3.2 was carried out for the compression method for real-time echocardiogram
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Table 3.8: Codec for every data type for compression for real-time transmission.

Data Type
Codec

Black&White Color

Video 3-D SPIHT [62]

Sweep video 2-D SPIHT [41] 2-D CSPIHT [69]

Image 2-D SPIHT [41] 2-D CSPIHT [69]

ECG Signal ECG SPIHT [125] -

Audio Opus [126] -

Text UTF-8 [127] -

transmission and for different transmission rates. A precise evaluation of the real degradation in

the compressed echocardiogram and a recommendation for the echocardiogram compression are

provided. The recommended rates are compared with the transmission rates used in previous

systems.

3.6.1 Evaluation Setup for Compression Recommendations

The database described in 3.1.2.1 has been used to carry out the evaluation described in the

previous Section 3.2. Since the ultrasound region is the region that contains the most relevant

clinical information, the evaluation has been carried out only for this region. The resolution of the

ultrasound region for the different devices were: 668x496 for the Sonosite, 644x488 for the Envisor,

and 634x462 for the IE33. Since not all the session revealed clinical information and much of the

time was taken up with the process of measuring cardiac features (removed from the original video

to avoid providing hints for later evaluations), the sessions were edited so as to remove these parts.

The resultant duration of each video mode was approximately 1 min in the B and color Doppler

modes and 30 s in the M and pulsed/continuous Doppler modes. Each session contained at least

four videos of each mode and up to ten videos, having a total of 61 videos for the B mode, 63 for the

color Doppler mode, 37 for the M mode and 39 for continuous/pulsed Doppler mode. The number

of videos per device and mode are shown in Table 3.4. Audio was excluded from this study.

Three cardiologists experts in echocardiography interpretation, participated in the clinical eval-

uation. In order to evaluate the intra-observer variability, three sessions were evaluated twice for

both tests and by the three cardiologists. The repeated sessions corresponded to different devices

and rates. For the semi-blind tests, seven transmission rates were evaluated: 100, 150, 200, 250,

300, 400 and 500 kbps for the B and color Doppler modes, and 10, 15, 20, 25, 30, 40 and 50 kbps

for the M and pulsed/continuous Doppler modes. These rates were chosen because their PSNR

are considered adequate from the point of view of suitable clinical quality. In order to simplify the

evaluation process, each pair of transmission rates and sessions was evaluated by two cardiologists.

Thus, each cardiologist evaluated six sessions for each rate instead of nine. The total number of

semi-blind tests carried out by each cardiologist was 180 (seven rates and six sessions, plus the three

repeated sessions and 4 modes per session making a total of 180 tests). In each visualization the

original and the compressed videos were visualized at the same time. Each cardiologist saw only

two or three sessions (the four modes) per day so that this first evaluation lasted for approximately
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one month. Regarding the blind test, the three cardiologists evaluated two rates and the nine

original sessions. Hence, the total number of blind tests carried out by each cardiologist was 120

(two rates plus the original session and nine sessions plus the three repeated sessions and 4 modes

for session, making a total of 120 tests). Each cardiologist assessed a maximum of two sessions per

day and six per week so that the evaluation took approximately two months.

The evaluation in [56] took two months too, but only four transmission rates were evaluated

versus seven in the proposed evaluation. Furthermore, the second test, which is very burdensome,

is only carried out for two transmission rates in the proposed evaluation versus four in [56].

3.6.2 Results for Compression for Real-Time Transmission

The results for the semi-blind test are shown in Tables 3.9-3.12, one table for each mode (B,

color Doppler, M, and pulsed/continuous Doppler, respectively). The CDISB values (mean ±
standard deviation of scores obtained from two cardiologists) for the nine patients and the three

devices at different transmission rates are listed. The CDISB rated as inadequate are shown in dark

gray, the CDISB with unacceptable quality but for which the same diagnosis is possible in light

gray, and the CDISB with acceptable quality and which the same diagnosis is possible in white.

As it has been described in the evaluation methodology, Section 3.2, the two rates selected are

between the two latter ranges (light gray and white). Therefore, the highest selected transmission

rate is the lowest rate with all the CDISB in white, and the lowest selected transmission rate is

the rate immediately inferior. The two transmission rates selected for each mode appear in Tables

3.13. There is a clear effect of the transmission rate on the CDISB values for all the modes. The

higher the transmission rate, the lower the CDI. Analysis of variance (ANOVA) confirmed that

the CDISB values obtained for the different rates show significant differences (p<0.05) for all the

modes.
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Table 3.9: Semi-blind test: CDI values for the B mode.

Patient
Transmission rate (Kbps)

100 150 200 250 300 400 500

1 0.85± 0.07 0.25± 0.07 0.20± 0.00 0.20± 0.00 0.20± 0.00 0.20± 0.00 0.05± 0.07

2 0.90± 0.00 0.80± 0.00 0.25± 0.07 0.15± 0.07 0.15± 0.07 0.15± 0.07 0.10± 0.00

3 0.80± 0.14 0.75± 0.07 0.20± 0.00 0.20± 0.00 0.20± 0.00 0.15± 0.07 0.10± 0.00

4 0.25± 0.07 0.20± 0.14 0.20± 0.14 0.15± 0.07 0.10± 0.00 0.15± 0.07 0.05± 0.07

5 0.35± 0.07 0.20± 0.00 0.15± 0.07 0.10± 0.00 0.15± 0.07 0.15± 0.07 0.05± 0.07

6 0.85± 0.07 0.25± 0.07 0.15± 0.07 0.20± 0.00 0.15± 0.07 0.05± 0.07 0.05± 0.07

7 0.25± 0.07 0.15± 0.07 0.15± 0.07 0.15± 0.07 0.10± 0.00 0.15± 0.07 0.05± 0.07

8 0.30± 0.00 0.25± 0.07 0.15± 0.07 0.15± 0.07 0.20± 0.00 0.15± 0.07 0.05± 0.07

9 0.25± 0.07 0.20± 0.00 0.10± 0.00 0.15± 0.07 0.15± 0.07 0.05± 0.07 0.05± 0.07
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Table 3.10: Semi-blind test: CDI values for the color Doppler mode.

Patient
Transmission rate (Kbps)

100 150 200 250 300 400 500

1 0.25± 0.07 0.20± 0.14 0.15± 0.07 0.15± 0.07 0.10± 0.00 0.15± 0.07 0.05± 0.07

2 0.25± 0.07 0.15± 0.07 0.15± 0.07 0.10± 0.00 0.15± 0.07 0.15± 0.07 0.05± 0.07

3 0.20± 0.00 0.20± 0.07 0.10± 0.00 0.15± 0.07 0.15± 0.07 0.10± 0.00 0.10± 0.00

4 0.25± 0.07 0.25± 0.07 0.20± 0.00 0.15± 0.07 0.10± 0.00 0.15± 0.07 0.05± 0.07

5 0.20± 0.00 0.20± 0.00 0.15± 0.07 0.10± 0.00 0.15± 0.07 0.10± 0.14 0.05± 0.07

6 0.75± 0.07 0.25± 0.07 0.05± 0.07 0.10± 0.00 0.05± 0.07 0.00± 0.00 0.00± 0.00

7 0.20± 0.00 0.15± 0.07 0.15± 0.07 0.15± 0.07 0.05± 0.07 0.10± 0.00 0.05± 0.07

8 0.25± 0.07 0.25± 0.07 0.15± 0.07 0.15± 0.07 0.15± 0.07 0.10± 0.14 0.00± 0.00

9 0.25± 0.07 0.25± 0.07 0.15± 0.07 0.15± 0.07 0.15± 0.07 0.05± 0.07 0.10± 0.00



C
h
a
p
ter

3.
E
ch
o
ca
rd
io
gra

m
C
om

p
ression

87

Table 3.11: Semi-blind test: CDI values for the M mode.

Patient
Transmission rate (Kbps)

10 15 20 25 30 40 50

1 0.90± 0.00 0.80± 0.00 0.35± 0.07 0.25± 0.07 0.25± 0.07 0.20± 0.00 0.05± 0.07

2 0.90± 0.00 0.85± 0.07 0.25± 0.07 0.25± 0.07 0.25± 0.07 0.20± 0.00 0.10± 0.00

3 0.85± 0.07 0.30± 0.00 0.25± 0.07 0.25± 0.07 0.20± 0.00 0.20± 0.00 0.05± 0.07

4 0.30± 0.00 0.25± 0.07 0.20± 0.14 0.20± 0.14 0.00± 0.00 0.10± 0.14 0.05± 0.07

5 0.80± 0.00 0.20± 0.00 0.15± 0.07 0.10± 0.00 0.10± 0.14 0.10± 0.14 0.00± 0.00

6 0.80± 0.00 0.25± 0.07 0.25± 0.07 0.25± 0.07 0.10± 0.14 0.10± 0.14 0.05± 0.07

7 0.25± 0.07 0.25± 0.07 0.25± 0.07 0.15± 0.07 0.15± 0.07 0.15± 0.07 0.00± 0.00

8 0.85± 0.07 0.35± 0.07 0.10± 0.14 0.20± 0.14 0.20± 0.00 0.15± 0.07 0.00± 0.00

9 0.20± 0.00 0.20± 0.00 0.15± 0.07 0.15± 0.07 0.15± 0.07 0.10± 0.00 0.00± 0.00
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Table 3.12: Semi-blind test: CDI values for the pulsed/continuous Doppler mode.

Patient
Transmission rate (Kbps)

10 15 20 25 30 40 50

1 0.85± 0.07 0.55± 0.35 0.30± 0.00 0.25± 0.07 0.25± 0.07 0.20± 0.00 0.00± 0.00

2 0.35± 0.07 0.30± 0.00 0.25± 0.07 0.20± 0.00 0.20± 0.14 0.10± 0.00 0.00± 0.00

3 0.80± 0.00 0.30± 0.00 0.25± 0.07 0.25± 0.00 0.20± 0.14 0.10± 0.00 0.00± 0.00

4 0.30± 0.00 0.25± 0.07 0.20± 0.14 0.10± 0.00 0.10± 0.14 0.10± 0.14 0.00± 0.00

5 0.30± 0.00 0.30± 0.00 0.10± 0.00 0.15± 0.07 0.05± 0.07 0.10± 0.14 0.00± 0.00

6 0.85± 0.07 0.30± 0.00 0.25± 0.07 0.20± 0.00 0.15± 0.07 0.05± 0.07 0.05± 0.07

7 0.80± 0.00 0.25± 0.07 0.20± 0.00 0.15± 0.07 0.15± 0.07 0.10± 0.14 0.00± 0.00

8 0.30± 0.00 0.30± 0.00 0.20± 0.14 0.15± 0.07 0.15± 0.07 0.10± 0.14 0.05± 0.07

9 0.85± 0.07 0.25± 0.07 0.25± 0.07 0.15± 0.07 0.15± 0.07 0.05± 0.07 0.00± 0.00



Chapter 3. Echocardiogram Compression 89

Table 3.13: Selected transmission rates to be evaluated in the blind test.

B D M DP

200 kbps 150 kbps 30 kbps 30 kbps

250 kbps 200 kbps 40 kbps 40 kbps

The results for the blind test are shown in Table 3.14. The transmission rates shown in this

table are those selected from the semi-blind test (Table 3.13). The first row shows the operation

mode and the second the target transmission rate. The other cells contain the CDI values (mean

± standard deviation of scores obtained from the three cardiologists) for the nine patients and the

three devices at different transmission rates. The CDI values higher than the maximum acceptable

(0.25) are colored in gray.

In order to test the intra-observer variability each cardiologist evaluated three sessions twice for

both tests and the four modes. ANOVA study was performed using Matlab to see whether there

were significant differences between the repeated measures. There are four different statistics to

calculate the significance value. They are Pillai’s trace, Hotelling-Lawley’s trace, Wilk’s lambda

and Roy’s largest root. For the semi-blind test two studies were performed. One for the D values

and other for the C values. The study was divided because it is very important that the D does not

change since it is indicating whether the diagnostic is valid or not. However it is not so important

a little variation in the subjective measurement of the similarity. For the blind test the reasoning

is the same. We separated the Q quality scores of the I interpretations. For both tests, the D

and I values were the same for the repeated tests and the three cardiologists, having a significant

value of 1 in all the cases and statistics. For the C and Q values the significant values were in all

the cases higher than 0.8, thus the null hypothesis was tested, there are not significant differences

between the repeated measurements.
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Table 3.14: Blind test: CDI values for the four modes.

Patient

Bit rate (Kbps) per mode

B Doppler M P/C Doppler

200 250 150 200 30 40 30 40

1 0.15± 0.03 0.15± 0.03 0.16± 0.12 0.13± 0.04 0.15± 0.06 0.15± 0.06 0.19± 0.10 0.16± 0.02

2 0.15± 0.06 0.08± 0.05 0.14± 0.06 0.11± 0.06 0.31± 0.20 0.16± 0.02 0.25± 0.18 0.13± 0.04

3 0.13± 0.05 0.13± 0.03 0.21± 0.09 0.12± 0.03 0.14± 0.07 0.11± 0.02 0.14± 0.07 0.08± 0.02

4 0.16± 0.14 0.11± 0.08 0.20± 0.12 0.14± 0.04 0.09± 0.14 0.02± 0.04 0.10± 0.11 0.10± 0.10

5 0.18± 0.11 0.13± 0.05 0.19± 0.05 0.16± 0.07 0.13± 0.10 0.13± 0.10 0.10± 0.11 0.07± 0.04

6 0.15± 0.13 0.14± 0.04 0.20± 0.12 0.08± 0.09 0.13± 0.14 0.08± 0.12 0.14± 0.11 0.05± 0.08

7 0.14± 0.14 0.12± 0.07 0.19± 0.13 0.15± 0.07 0.12± 0.07 0.10± 0.07 0.13± 0.05 0.12± 0.10

8 0.19± 0.09 0.11± 0.10 0.25± 0.06 0.15± 0.10 0.16± 0.10 0.13± 0.08 0.16± 0.07 0.11± 0.13

9 0.15± 0.02 0.11± 0.08 0.20± 0.06 0.11± 0.07 0.14± 0.04 0.07± 0.04 0.14± 0.07 0.03± 0.04
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3.6.3 Discussion for Compression for Real-Time Transmission

3.6.3.1 Compression Recommendations

As explained in Section 3.2, the CDISB values were considered to obtain the two transmission

rates that were used in the blind test. The standard deviation of the CDISB values is very low for

all the modes, indicating low inter-observer variability. This is because the cardiologists have the

same opinion about the cases in which both videos have the same diagnosis and similar opinions

in all the cases about the similarity of the videos, but it is not always the same. The higher the

transmission rate, the higher the visible quality. This is consistent with the clinical results shown

in Tables 3.9-3.12.

Now the recommended transmission rates for the proposed compression method are provided,

as explained in Section 3.2. Table 3.14 shows the CDI values for the two selected transmission rates

for each mode. It can be seen that the CDI values for both transmission rates are very similar.

This is because very good results were obtained for both rates and the diagnosis was practically

identical to the original in most cases. Thus the CDI values are more affected by the quality score.

In general, the standard deviation of the CDI values is lower for the highest transmission rates.

The reason is that for the highest rates the image quality is clearly good whereas for the lowest

rates it is a little less clear and the cardiologists have slightly different opinions. In Table 3.14, we

can see in gray the CDI values which are higher than the maximum acceptable value (0.25). The

selected transmission rates are the lowest rates with all the CDI values below 0.25. This constraint

leads to the recommendations for transmission rates shown in Table 3.15. If we look at the CDISB

values of the semi-blind test (Tables 3.9-3.12) for the recommended transmission rates, we can see

that all the values are equal or lower than 0.2 except for one mode. Hence for all the modes except

for the B mode a recommended transmission rate with only the semi-blind test can be given, being

the recommended transmission rate that with all the CDISB values equal or lower than 0.2. For

the B mode the blind test is necessary, because this mode contains a lot of information and it is

more difficult to evaluate.

In Figure 3.15 two different images compressed at different transmission rates are shown. Figures

3.15b and 3.15d show images compressed at the recommend rate for two modes. The images

with lower transmission rates than the recommended can present some artifacts, such as a loss of

clarity and sharpness in the edges and structures that may cause clinicians to provide an erroneous

diagnostic (see Figures 3.15a and 3.15c). For the M mode and the lowest transmission rate, we can

see a loss of clarity in the slice edges. This is due to the compression method for the sweep modes,

that compresses each slice separately. However, this artifact is no visible for the recommended rate.

In order to test the inter-observer variability, a study similar to the intra-observer variability

has been performed. The variance study has been performed for the selected rate and every mode

proving the results that there are not significant differences between the cardiologist measurements.

It is very important to comment that the transmission recommendations are only applicable to

the proposed compression method and a general echocardiogram examination. The results obtained

are independent of the devices and diagnosis and therefore the recommendations may be generalized

to any echocardiogram device and any diagnosis.

Tabla 3.16 shows the codecs and compression recommendations for each region depending on

the data type. The ultrasound regions are compressed with the recommended rates previously
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(a) B mode, 100 kbps (b) B mode, 200 kbps

(c) M mode, 10 kbps (d) M mode, 40 kbps

Figure 3.15: Images of the B and M modes compressed at different rates with the proposed method.
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assessed. The rest of images are compressed with 0.5 bpp, which presents a good quality in medical

image compression [37]. The ECG signal recommendation is in [125]. The auxiliary video, which

has a small size, and sound are compressed with typical compression rates.

Table 3.15: Recommended transmission rates per mode to obtain good clinical quality.

B D M DP

200 kbps 200 kbps 40 kbps 40 kbps

3.6.3.2 Codecs Comparison

Section 2.7 lists the resolution, codecs and transmission rates for the most relevant ultrasound

video systems. It can be seen that the recommended transmission rates using the compression

proposed in this Thesis are lower than those used in the other systems, even for the transmission

rates with low resolution video. The best compression result for high video resolution was presented

in [56]. The recommended transmission rates were 768 Kbps for the B and M mode, and 256 Kbps

for the color Doppler and pulsed/continuous Doppler. Hence, the proposed method requires less

than 26% of the amount of data for the B mode, 78% for the Color Doppler mode, 5.2% for the M

mode, and 16% for pulsed/continuous Doppler.

We can conclude that the results obtained with the proposed technique clearly show an improved

performance in terms of the transmission rate as compared with the other codecs presented in

the literature for ultrasound videos (Xvid, H.264/AVC, Windows Media and HEVC). The low

transmission rates are obtained mainly because the echocardiogram characteristics have been taken

into account in the compression design and a clinical evaluation has been carried out in order to

obtain the minimal recommended rates. This saving in the transmission rate will lead to better

transmission performance.

3.7 Conclusions

The main objective of this Chapter is to achieve the efficient compression of echocardiograms.

This overall objective has been divided into three: to develop a clinical evaluation methodology for

transmission rate recommendations, to design a compression method to store echocardiograms and

to design a compression method to transmit echocardiograms in real-time. The main conclusions

relating to these three specific objectives are listed below:

• An evaluation methodology which is accurate but not very time consuming has been designed

for compressed echocardiogram. The proposed method can be used to assess any video codec

and to recommend a minimal transmission rate which guarantees clinical quality. For all the

modes except the B mode it is only necessary to perform the semi-blind test because it gives

the same result as the blind test. This evaluation methodology may be adapted to other

ultrasound techniques or modes, or even to other medical image modalities.
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Table 3.16: Codecs and recommended transmission rates and bits per pixel for each type of region.

Regions Data type Codec Compression

Video 3-D SPIHT [62] 200 Kbps
Ultrasound

Sweep video 2-D SPIHT [41], 2-D CSPIHT [69] 40 Kbps

Signal ECG SPIHT [125] 500 bps
ECG

Sweep video 2-D SPIHT [41], 2-D CSPIHT [69] 0.5 bpp

Auxiliary video Video 3-D SPIHT [62] 100 Kbps

Auxiliary image Image 2-D SPIHT [41], 2-D CSPIHT [69] 0.5 bpp

Sound Audio Opus [126] 10 Kbps

Text Text UTF-8 [127] 1-4 bytes per character

• An image compression format for storage purposes has been proposed that takes advantage

of the segmentation facilities of the device to enhance the compression performance. This

compression format is easily integrable in the acquisition device without adding complexity

to devices that already incorporate the DICOM standard. The proposed method shows

better results than compression without using regions for all the available dataset, having

a compression gain ranging from 14 % up to 75 % for a typical bit rate. Although the

compression results depend on the acquisition devices, how the image is displayed, and the

compression quality, the compression ratios obtained for the DICOM file ranged from 19

to 41 without losing diagnostic information. Furthermore, a tool that makes conversions

between different image formats has been developed. This tool allows interoperability between

medical centers and devices, and also enables echocardiogramsto be stored with the proposed

format, thus saving storage space. Options to edit the image (edit/add/remove regions)

taking advantage of the proposed format based on regions have been also included.

• An echocardiogram compression method for real-time transmission based on regions and vi-

sualization modes has been designed. Codecs and transmission rate recommendations have

been given for each region. Since the ultrasound region contains the most important infor-

mation from a medical point of view, a comprehensive evaluation has been preformed for

this region. Minimum transmission rates have been recommended for each mode in order to

guarantee suitable clinical quality for the transmission and storage of echocardiogram videos

using the proposed technique. The recommended transmission rates for the ultrasound re-

gions are the following: 200 Kbps for the 2-D and the color Doppler modes, and 40 Kbps for

the M and the pulsed/continuous Doppler modes. These are very good results in terms of

bandwidth use, especially for the M and pulsed/continuous Doppler modes that have been

obtained thanks to the fact that the compression method takes into account the stationary

characteristics of the sweep modes and only a thin slice is compressed for each frame. The

compression recommendation for the other regions has also been provided. Moreover, these

results make possible the transmission of echocardiogram videos over 3G wireless networks

and beyond. The recommended transmission rates for previous ultrasound transmission sys-

tems are considerably higher than those given for the proposed method which allows better
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transmission results.





Chapter 4

Echocardiogram Transmission in

Real-time

This Chapter deals with the second part of the tele-echocardiography systems (see Figure 4.1):

transmission and display. Once the compression recommendations have been established, it is

necessary to guarantee that the echocardiogram is received without diagnostic information being

lost. If the transmission is completed without errors, and consequently the whole echocardiogram

is visualized with the recommended transmission rate, the same diagnosis as that of the original

echocardiogram is guaranteed. However, if errors occur in the transmission process, some echocar-

diogram parts will be visualized with a transmission rate lower than the recommended rate. In that

case the diagnosis may be possible or not. For this reason, an evaluation for the echocardiogram

display recommendations has been designed and carried out for the echocardiograms compressed

with the method proposed in this Thesis for real-time transmission. The display recommendation

allows us to know if the echocardiogram is visualized without losing diagnostic information for

any transmission conditions instead of having to carry out different assessments for each channel

condition. In addition, a protocol is required for the real-time end-to-end transmission of echocar-

diograms over IP that defines how to transmit each encoded region and the synchronism between

them. In the case of WiMAX channels, which introduce packet losses, an error control method is

also required for the regions with relevant clinical information. The echocardiogram database and

characteristics for real-time transmission purposes used in this Chapter were described in the previ-

ous Chapter, Section 3.1. This Chapter is organized as follows. Section 4.1 describes the evaluation

methodology for display recommendations of medical images after transmission, and specifically

for echocardiograms that have been encoded with the method proposed in this Thesis for real-time

transmission. Section 4.2 gives the display recommendations for the echocardiogram after compres-

sion with the proposed method and recommended transmission rates for real-time transmission as

listed in Chapter 3. Section 4.3 describes the echocardiogram transmission protocol. Section 4.4

discusses the error control method and the configuration for each type of region. Section 4.5 pro-

vides the results and discussion relating to simulations of real-time echocardiogram transmission

over WiMAX channels carried out both with the compression and transmission methods proposed

in this Thesis and without them in order to evaluate the improvements of each proposed method.

Finally, the conclusions of this Chapter are given in Section 4.6.

97



98 4.1. Clinical Evaluation Methodology for Display Recommendations

Acquisition
&

visualization
without
errors

Compression
for Storage

Compression
for real time
Transmission

Real-time
transmission
• Error control
• Protocols Wireless

channel

raw video

images

Real-time
reception
• Error control

Decoding
Visualization
with errors
& storage

Clinical quality

Transmission

Display

Figure 4.1: Tele-echocardiography system structure followed in this Thesis: transmission and
visualization parts.

4.1 Clinical Evaluation Methodology for Display Recommenda-

tions

This section presents an evaluation methodology to give recommendations for the display of

echocardiograms after transmission. The starting point of the evaluation is the recommendations

already given for the compression. If errors occur in the transmission, some parts of the echocar-

diogram are visualized with a transmission rate lower than the recommended rate, but this does

not mean that the diagnosis is not possible. The maximum acceptable time during which the

echocardiogram is visualized with a transmission rate lower than the recommended rate has to be

determined. In order to give recommendations that are independent of the transmission channel,

the worst case scenario has to be evaluated. The evaluation methodology has been designed taking

into account the compression approaches followed in this Thesis for real-time transmission of the

ultrasound regions. Different evaluations are proposed for each visualization mode:

• 2-D modes. The evaluation establishes the maximum percentage of time that the echocardio-

gram can be visualized with a transmission rate lower than the recommended rate. Different

percentages of time and transmission rates have to be assessed for a 2-D video.

• Sweep modes. For the sweep modes, the echocardiogram is compressed by slices. The im-

portant part for the diagnosis is when the sweep is stopped and the screen is filled with slices.

For this reason, instead of evaluating the percentage of time with a lower than recommended

transmission rate, the number of slices that can be visualized with a lower transmission rate

is evaluated. Different numbers of slices and transmission rates have to be assessed for an

image. This image is that used by the cardiologist to perform the diagnosis.

The evaluation for the two types of visualization modes consists of a semi-blind test. In this case

a blind test is not necessary because there is already adequate clinical quality resulting from the

previously recommended transmission rates. The objective of this test is to determine whether or
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not the cardiologist would be able to make the same diagnosis with the video or images compressed

at the transmission rate recommended in Chapter 3 and with the video or image with some parts

compressed with a lower transmission rate due to transmission errors. This test consists of giving

an opinion about the similarity between the two compared videos or images (see Figure 4.2). It is

also established whether the diagnosis would be the same with both videos and images. The same

diagnosis is not possible if the mark is lower than 3; otherwise, the same diagnosis is possible with

either videos or images.

1. Measure of similarity between the two videos or images.

1: very different 2: different 3: acceptable 4: similar 5: identical

Figure 4.2: Semi-blind test: comparison of compressed echocardiogram with the recommended
transmission rates.

A clinical distortion index (CDI) is calculated in order to have an estimation that directly

reflects if the evaluated video or image having some parts with a lower than recommended trans-

mission rate is of sufficient clinical quality for an adequate diagnosis. A CDI is calculated for each

echocardigram operation mode, video or image, with different percentages of time of the total time

or numbers of slices with lower than recommended transmission rates. This is defined as

CDI = min {Di} (4.1)

where Di is the measurement of the test in Figure 4.2 by different cardiologists and images or

videos compressed with the conditions to be evaluated. The minimum Di value is selected, because

in the event that one of the evaluated visualizations is not correct, the conditions are not suitable

for a valid diagnosis.

The CDI value can be divided into two quality ranges:

• CDI < 3: the same diagnosis is not possible and the quality is not sufficient for the evaluated

videos or images.

• CDI ≥ 3: the same diagnosis is possible and the quality is sufficient for all the evaluated

videos or images.

With the calculated CDI value, the maximum percentages of time or maximum number of

slices with the different transmission rates lower than the recommended rate will be chosen for

each mode. These values are the highest with CDI values higher or equal to 3. This is because

the cardiologists have decided that the minimum acceptable value is 3.

This evaluation methodology is valid for compression based on visualization modes. However,

if no visualization modes are distinguished in the compression process, the methodology for 2-D

modes can be applied for all other modes.

These recommendations determine whether each fragment of the echocardiogram that corre-

sponds with a change of operation mode has sufficient clinical quality. Each fragment has to be
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checked separately. If all the fragments are valid, the whole echocardiogram is valid. In the event

that a mode is not suitably visualized, the whole mode has to be transmitted again, delaying the

diagnosis process.

4.2 Results and Discussion for Display Recommendations

The clinical evaluation proposed in Section 4.1 was carried out for the echocardiograms that

are compressed with the method proposed in this Thesis and the recommended transmission rates

listed in Chapter 3. Display recommendations are provided for each echocardiogram operation

mode independently of the transmission channel. Thus, the display recommendations allow us to

determine whether the echocardiogram fragments that correspond to a mode have adequate clinical

quality without needing to perform an evaluation for each transmitted echocardiogram.

4.2.1 Evaluation Setup for Display Recommendations

The database described in Section 3.1.2.1 has been used to carry out the evaluation. Since the

ultrasound region is the region that contains the most relevant clinical information, the evaluation

has been carried out for this region only. The echocardiograms were edited so as to remove the

part without clinical information. The number of videos per device and mode are shown in Table

3.4. Each session contains videos of about 1 minute of duration for the 2-D modes and one image

per video for the sweep modes.

Two cardiologists expert in echocardiography interpretation participated in the clinical evalu-

ation. In order to evaluate the intra-observer variability, three sessions were evaluated twice for

both tests and by the two cardiologists. The repeated sessions corresponded to different devices,

percentages of time and numbers of slices with transmission rates lower than recommended, and

transmission rates lower than recommended. The echocardiograms were compressed with the pro-

posed techniques and recommended transmission rates for each mode for the ultrasound region

(200 kbps for the 2-D modes and 40 kbps for the sweep modes). We have to take into account

that an error affects to all the bits encoded together, 16 frames for 2-D modes and 1 slice for the

sweep modes. As the compression algorithms are embeddedness, for the bits that are encoded

together, only the first error affects. When an error occurs the rest of bits are ignored and the

region is decompressed with the received previous bits. For the sweep modes, the numbers of slices

evaluated with transmission rates inferior to the recommend rate were 2, 4, 6, 7, 8, 9 and 10. The

transmission rates were 20 kbps (50 % of the recommended transmission rate) and 0 kbps. The

0 kbps transmission rate simulates the case in which no packets are received. The slices with the

lowest transmission rate were located in the middle of the screen to simulate the worst case, with

the worst clinical quality in order to give recommendations that do not depend on the transmission

channel. In Figure 4.3 two samples of images that have been evaluated for a M mode are illustrated.

Figure 4.3a shows an example of an image with two slices with a transmission rate of 0 kbps and the

rest of the slices with 40 kbps (recommended transmission rate). Figure 4.3b shows an example of

an image with eight slices with a transmission rate of 20 kbps (50 % of the recommended rate) and

the rest of the slices with a transmission rate of 40 kbps. The total number of slices for the whole

screen depends on the device but is about 20 for the available database. For the 2-D modes, the

evaluated percentages of time with transmission rates lower than the recommended rate were 5%,
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20% and 50%. The transmission rates were 160 kbps (80 % of the recommended transmission rate),

100 kbps (50 % of the recommended transmission rate) and 0 kbps. The bandwidth with inferior

quality is continuous and is located in the middle of each evaluated video to simulate the worst

possible case. This is so that the recommendations do not depend on the transmission channel.

A continuous distribution of the bandwidth with a lower transmission rate than the recommended

rate is worse than a burst distribution. Figure 4.4 shows the bandwidth distributions over time for

a video with 20 % of the time with 160 kbps (drawn in dark blue) and for another video with 5 %

of the time with 0 kbps (drawn in sky blue). Each cardiologist saw only one visualization quality

of the same mode per day so that the evaluation took approximately 17 days.

(a) Image with two slices (in red) with transmission
rate of 0 kbps.

(b) Image with eight slices (in red) with transmis-
sion rate of 20 kbps.

Figure 4.3: Samples of M mode images for the evaluation of the display recommendations.

4.2.2 Results for Display Recommendations

The results of the test are shown in Tables 4.1 and 4.2, one table for each type of visualization

mode (2-D and sweep modes, respectively). The CDI values rated as adequate are shown in dark

gray and the CDI values with inadequate quality are in white. The maximum acceptable number

of slices and percentages of time that the echocardiogram is visualized with a transmission rate

lower than the recommended rate is the highest with a CDI value higher or equal to 3. There is

a clear effect of the transmission rate, percentage of time and number of slices on the CDI values.

The higher the transmission rate, the higher the CDI value. The higher the percentage of time

and number of slices, the lower the CDI value.

As regards inter-observer variability, both cardiologists were of the same opinion as to whether

or not the video or image had adequate clinical quality (CDI value higher or equal to 3 or lower

than 3). However, they had slightly differing opinions about the quality (in the same CDI range,

but different values). The intra-observed evaluations show that there are no diagnostic differences

between the repeated measurements.
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Figure 4.4: Samples of visualized bandwidth distribution for the evaluation of the display recom-
mendations of a 2-D mode video of 1 minute duration. The bandwidth with 20 % of the time with
160 kbps is shown in dark blue. The bandwidth with 5 % of the time with 0 kbps is shown in sky
blue.

Table 4.1: CDI values for the 2-D modes.

% time

Transmission rate (kbps)

B mode Doppler mode

160 100 0 160 100 0

5 3 3 3 4 3 3

20 3 2 2 3 3 2

50 2 2 1 2 2 1

4.2.3 Discussion for Display Recommendations

Given the results in Tables 4.1 and 4.2 and the methodology in Section 4.1, the following display

recommendations are given for each mode:

• B mode.

– Up to 5% of the time the B mode can be visualized with any transmission rate.

– Up to 20% of the time the B mode can be visualized with a transmission rate of 160

kbps or higher.

• Color Doppler mode.

– Up to 5% of the time the color Doppler mode can be visualized with any transmission

rate.
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Table 4.2: CDI values for the sweep modes.

# slices

Transmission rate (kbps)

M mode DP/DC mode

20 0 20 0

2 3 3 4 3

4 3 1 3 2

6 3 1 3 2

7 3 1 3 2

8 3 2 3 2

9 2 2 3 1

10 2 1 2 1

– Up to 20% of the time the color Doppler mode can be visualized with a transmission

rate of 100 kbps or higher.

• M mode.

– Up to 2 slices can be visualized with any transmission rate (see Figure 4.3a).

– Up to 8 slices can be visualized with a transmission rate of 20 kbps or higher (see Figure

4.3b).

• Pulsed/continuous Doppler mode.

– Up to 2 slices can be visualized with any transmission rate.

– Up to 9 slices can be visualized with a transmission rate of 20 kbps or higher.

There are two display recommendations for every mode. The display recommendations listed

first, corresponding to any transmission rate, are valid for any video codec for the 2-D modes and

for any image codec for the sweep modes if the recommended transmission rates for the compression

have being previously defined. However, the second display recommendations are only valid for

the proposed compression method for the ultrasound regions. In the event of using a compression

without distinguishing modes and with 3-D SPIHT for all the modes, the visualization recommen-

dations will be the same as the B mode for all the modes. It is important to emphasize that in

order to determine whether the echocardiogram is visualized with adequate diagnostic information,

each operation mode fragment has to be checked separately.

4.3 Protocol for Echocardiogram Transmission in Real-time

A first approach to the problem of echocardiogram transmission was described in [128]. An

enhanced protocol for real-time transmission was proposed. Although good transmission results

were obtained, the protocol did not make use of the visualization characteristics and segmentation

of echocardiograms. All the visualization modes were encoded and transmitted in the same way,

and as a result the maximum transmission rates of the modes were used. After studying new



104 4.3. Protocol for Echocardiogram Transmission in Real-time

improvements, a similar protocol was proposed in [129] but this time encoding the echocardiogram

by visualization modes. A lower transmission rate was used in the sweep modes and consequently

better transmission performance was obtained with this technique. However, it did not incorporate

region segmentation.

Finally, after taking into account all the research experience and know-how developed over

the years together with previous versions of the protocol [128,129], we propose an Echocardiogram

Transmission Protocol (ETP) application protocol for real-time and end-to-end transmission over IP

of echocardiograms encoded by visualization modes and regions. This is described in the following

sections.

4.3.1 ETP Overview

ETP takes advantage of the visualization characteristics and the facilities of segmentation that

the acquisition devices already incorporate. Since each region is encoded separately, it is proposed to

send each region separately to obtain better results in the transmission process. Furthermore, this

way of encoding and sending each region separately allows to allocate different degrees of priority

and to use either a TCP or a UDP transport layer protocol for each region. Each echocardiogram

device has its own distribution of regions and even the distribution can change during transmission.

Therefore, not only is it necessary to send the encoded regions, but it is also necessary to send

control information such as the configuration of the regions or the synchronism between them.

There are thus, two types of packets: control and data packets.

• The control packets contain the control information. This consists of configuration param-

eters such as the image size and region parameters such as the type of region, its size and its

position. It also contains information to establish the data connections. The configuration

is codified with an XML file. XML is proposed because of the advantages mentioned in the

previous Chapter 3 for the compression for storage. The encoded text and auxiliary images

are also included in these packets because they do not need to be synchronized with the rest

of the regions (see Table 3.6).

• The data packets contain the encoded information of each region. There are different flows

of packets for each region that need to be synchronized (see Table 3.6). Each region is

encoded according to its data type (see Table 3.16), image, video, sweep video, sound or

text. The specific codec is defined in the configuration for each region although the default

recommended codecs and the used in this Thesis are shown in Table 3.16.

Figure 4.5 shows the protocol flow for a Sonosite echocardiogram, where for each mode only

the ultrasound region has data connection. The control packets are sent at the beginning, before

the data packets are sent, to set the initial configuration and to open the data connections. They

are also occasionally sent when some text, auxiliary image or region change. When the data con-

nections have been established, the data packets of the activated regions are sent. The ultrasound

region indicates the mode that is activated in each moment, and consequently the activated regions

that correspond with the activated mode. Furthermore, the ultrasound part can be stopped for

measurements to be taken, during which time no data packets are sent. A control packet is also

sent to finish the transmission, the connections are closed and the echocardiogram display ends.
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Figure 4.5: Protocol flow diagram for the Sonosite device echocardiogram transmission. The
control packets (configuration and confirmation) are in white and the data packets in blue. N is
the number of packets sent each resolution time and RT is the resolution time.
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TCP is proposed for sending the control packets because it is important to guarantee their

reliability while their arrival time is less important. The text has to be protected so that it can

only be accessed by authorized sanitary staff. An easy way to protect this information is by

protecting all the configuration packets in which the information is contained. The TLS protocol

has been proposed because it is the most common choice for secure communications in medical

standards and it does not introduce overhead to the transmitted packets.

UDP is proposed for sending the data packets since the flow of packets is high and it is well

known that UDP works well for real time transmission of medical video flows. Thus, for each region

a UDP connection is open in the port indicated in the control packets. In order to support the

UDP protocol, considering that UDP does not implement reliability, an error control method is

essential in clinical videos in order not to lose diagnostic information. The appropriate reliability

method depends on the channel used for the transmission and also on the region flow and clinical

relevance. The used error control method will be indicated in the control packets for each region

allowing the use of the ETP protocol for any channel. In Section 4.4 an error control method is

proposed for the transmission of echocardiograms over wireless networks.

In order to decrease header overheads, reduce packet loss and increase security over noisy

wireless links, ROHC can be used for both UDP [81] and TCP [82] transport layers. This standard

compresses IP and UDP headers to just 3 bytes, and IP and TCP headers to just 10 bytes.

4.3.2 Control Packets Coding

There are two types of control packets: configuration and confirmation packets. The configu-

ration packets, which the transmitter sends to the receiver, contain the global configuration (see

Table 4.3), the configuration of each region that is common to all the regions (see Table 4.4), the

particular configuration of each region and the coding of the regions that hardly changes (see Table

4.5), i.e. text and auxiliary images. The contents of the XML file are described in Tables 4.3-4.5.

The syntax has to be defined, for example, with a DTD or an XML Schema file. The proposed

DTD file is defined in Appendix A. An example of an XML file for the color Doppler and pulsed

Doppler mode from Figure 4.7 and for regions with ID 1, 2, 3, 4, and 10 is shown in Table 4.6.

The XML file proposed for real-time transmission is not the same as that proposed for storage

(see Section 3.3) because echocardiograms for storage and for real-time transmission purposes have

different characteristics. However, as both echocardiogram types have the same distribution of re-

gions, the XML files share some fields, for example the region and tsize fields. The echocardiogram

can be stored at the same time that it is visualized by the cardiologist. The cardiologist chooses

the relevant images for the diagnosis to be stored. The translation of the XML file to storage

format is easy to perform since both XML files contain common information. Table 4.7 shows the

XML files, real-time transmission configuration and storage format for the regions with ID 1 and

2 for the B and M modes of the Sonosite devices in Figure 3.3 and their equivalent. For the whole

echocardiogram, it is necessary to add the other regions and the regions that correspond to the

other modes.

The confirmation packets (see Figure 4.6) contain the confirmation of the receiver to the trans-

mitter that the data connections are open or closed. Since there is a data connection for each region

that needs synchronism, the connection is identified with the region identifier (ID).
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Table 4.3: Global parameters of the control data.

Field Content

tsize total size of the image, width and height.

device manufacturer and model.

delay visualization delay.

end end of echocardiogram transmission.

Table 4.4: Common configuration parameters for the regions of the control data.

Field Content

type type of region. Each type has a different codification, which has been described in the
previous section, and needs different information. The types are: ultr (ultrasound),
vid (auxiliary video), img (auxiliary image), text (text), sound (audio), ecg (ECG).

position indicates the first coordinates of the rectangle where the region is situated.

size indicates the size of the region, width and height.

codification modifies the codification of the region. By default the codecs in Table 3.16.

reliability indicates the reliability method used for that region. For instance, it may be RCVTP.
The parameters of the method (if any) follow, separated by a comma.

ID identifier of the region. This is used to identify each region and to open the UDP
connections for the data of the region in the port number 1024 + ID.

mode indicates the mode/s in which the region is visualized. The active mode is defined
for the ultrasound regions. The rest of the regions can be in more than one mode.
In this case, the names of the modes are separated by colons. If the region is fixed
for all the modes, this field is set to ’all’.

delete in the case that a region disappears.

mps indicates the maximum packet size in bytes for the data packets of each region. If
no value is specified no fragmentation is applied.
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Table 4.5: Region specific configuration parameters of the control data.

Field Content ultrasound region

color indicates if the ultrasound has color or not.

type indicates if the ultrasound mode is 2-D or sweep.

fps frames per second to have temporal synchronization.

pps swept pixels per second in the sweep modes to have temporal synchronization.

bitrate kilobits per second used for this region.

video to stop, go back and forward.

resolution number of frames used together in the codification for the 2D modes or pixels per
slice for the sweep modes.

calibration how many centimeters, seconds or cm/s correspond to each pixel. The measurement
is to change the units.

Field Content auxiliary video region

color indicates if the ultrasound has color or not.

fps frames per second to have temporal synchronization.

bitrate kilobits per second used for this region.

video to stop, go back and forward.

resolution number of frames used together in the codification.

Field Content auxiliary image region

color indicates if the ultrasound has color or not.

bpp bits per pixel for this region.

codim coded image.

Field Content text region

fsize size of the font.

Field Content sound region

configuration configuration of the codec.

channels number of audio channels.

bitrate kilobits per second to have temporal synchronization.

sampler time between samples to have temporal synchronization.

Field Content ECG region

cod ECG encoding. As signal or as a sweep video.

der number of leads.

block size of the block in bits.

fact factorization level for the wavelet for the 1-D codification.

sf samples per second or pixels per second, depending on the codification, to have
temporal synchronization.

time time of ECG that is represented on the screen so as to support measurements.

bpp bits per pixels used in the 2-D codification to have temporal synchronization.

ppslice pixels per slice used in the 2-D codification.

width width in centimeters so as to support measurements.
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Table 4.6: XML example for the configuration packets of the Philips Envisor device in the Figure
4.7.

<?xml version="1.0"?>

<!DOCTYPE configuration SYSTEM "conf.dtd">

<configuration>

<tsize w=’720’ h=’576’/>

<device> Philips Envisor </device>

<region id=’1’ mode=’Doppler’, reliability=’SECM,3,1,3,10,2,80,112,120’>

<ultr color=’yes’ fps=’25’ bitrate=’200’ resolution=’16’/>

<position x=’77’ y=’0’/>

<size w=’512’ h=’385’/>

<mps>200</mps>

</region>

<region id=’2’ mode=’B, Doppler’>

<ecg sf=’90.8’ bpp=’0.5’ ppslice=’128’/>

<position x=’494’ y=’52’/>

<size w=’454’ h=’32’/>

</region>

<region id=’3’ mode=’DP’, reliability=’SECM,1’>

<ultr color=’no’ type=’sweep’ fps=’25’ pps=’121.43’ bitrate=’40’ resolution=’32’/

>

<position x=’200’ y=’0’/>

<size w=’544’ h=’321’/>

</region>

<region id=’4’ mode=’DP’>

<img color=’no’ bpp=’0.5’/>

<position x=’77’ y=’211’/>

<size w=’150’ h=’130’/>

</region>

<region id=’10’ mode=’all’>

<text> PATIENT’S DATA </text>

<position x=’0’ y=’0’/>

</region>

</configuration>
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Table 4.7: XML equivalence for real-time transmission configuration file and storage format file
of the echocardiogram in Figure 3.3 captured with a Sonosite device.

XML file for real-time transmission XML files for storage

<?xml version="1.0"?>

<!DOCTYPE configuration SYSTEM "conf.dtd">

<configuration>

<tsize w=’720’ h=’576’/>

<device> Sonosite </device>

<region id=’1’ mode=’B’>

<ultr color=’no’ fps=’25’ bitrate

=’200’ resolution=’16’/>

<position x=’76’ y=’52’/>

<size w=’573’ h=’420’/>

</region>

<?xml version="1.0"?>

<!DOCTYPE configuration SYSTEM "roiformat.dtd">

<format>

<tsize w=’720’ h=’576’/>

<region>

<pos x0=’76’ y0=’52’ x1=’659’ y1

=’472’><\pos>

<roi><size>30083<\size><\roi>

<\region>

<\format>

<region id=’2’ mode=’M’>

<ultr color=’no’ type=’sweep’ fps

=’25’ pps=’200’ bitrate=’40’

resolution=’32’/>

<position x=’55’ y=’104’/>

<size w=’512’ h=’456’/>

</region>

<?xml version="1.0"?>

<!DOCTYPE configuration SYSTEM "roiformat.dtd">

<format>

<tsize w=’720’ h=’576’/>

<region>

<pos x0=’55’ y0=’104’ x1=’567’ y1

=’560’><\pos>

<roi><size>29184<\size><\roi>

<\region>

<\format>
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Region ID Open/closed
· · ·

Region ID Open/closed

(8 bits) (1 bit) (8 bits) (1 bit)

Figure 4.6: Confirmation packets.

Figure 4.7: Echocardiogram regions of a color Doppler mode (on the left) and a pulsed Doppler
mode (on the right) captured with a Sonosite device. The white solid line contains the ultrasound,
the blue dotted and dashed line the ECG, the green dotted line the auxiliary images and the yellow
dashed line the text. Each region is identified with a number (ID) on the figure.

4.3.3 Data Packets Coding

A UDP connexion is used for the transmission of each encoded region. However, a high data

flow has to be transmitted. Furthermore, for error prone channels it is recommended to transmit

small packets to enable the easy recovery of lost packets [128]. In order to support segmentation,

it is necessary to establish the maximum packet size (mps) for the data packets and to include

a sequence number in each data packet. The data packets follow the structure shown in Figure

4.8. The length of the sequence number depends on the type of region: 8 bits for sound, ECG,

auxiliary video and sweep ultrasound, and 16 bits for 2-D ultrasound. The sequence number is used

to distinguish each datagram of each connection that corresponds with each region. In this way,

the datagrams can arrive out of order. The size of the encoded region field depends on the type

of region, but it always has a size equal or inferior to the mps whose value is selected according to

the channel and type of region. It is not necessary to specify the total size of any type of codified

packets because this is known thanks to the configuration, as we will see below.

Seq no. Encoded region

(8 or 16 bits) (≤ mps bits)

Figure 4.8: Data packets.

The coding process for each region is shown in Figure 4.9a (labelled DATA). RT is the resolution

time, referring to the time between data that is codified together. B bits are the bits after the

coding. N are the packets after the fragmentation, having packets of X bits. These packets
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Table 4.8: Codification parameters expressions that correspond with the encoder in Figure 4.9.

Parameters Videos Sweep videos ECG Sound

RT seconds fps ∗ resolution resolution
pps

ppslice
sf sampler

B bits bitrate ∗ RT + 4 bitrate ∗ RT bpp ∗ h ∗ ppslice sampler ∗ bitrate

if B ≤ mps, 1 packet (no fragmentation)
N packets

if B > mps,
⌊

B
mps

⌋
packets (fragmentation)

if B ≤ mps, (B + header) bits

if B > mps, (N − 1) packets with (mps+ header) bits andX bits

1 packet with (B − (N − 1) ∗mps+ header) bits

correspond to the data packet shown in Figure 4.8. Thus, for each region N packets of X bits are

generated every RT seconds. It is important to highlight that when the packets are segmented, the

last packet may have smaller size than the rest. These parameters, shown in Table 4.8, have different

values depending on the type of region and the selected parameters in the control information (see

Tables 4.3-4.5). For the 2-D modes and the auxiliary video a header of 4 bits is added to indicate

how many frames are codified every RT seconds. This header is necessary because the last time

that data of a region is codified the data can contain fewer number of frames than the rest, which

have resolution frames. It is important to note that if some error control method is applied, the

number of transmitted bits may increase and the data packets may change.

4.3.4 ETP Working Procedure

The transmitter and the receiver protocol flowcharts are shown in Figure 4.9. If an error control

method is added to some region, the flowcharts will change for the respective data connections.

The protocol performance for the transmitter, see Figure 4.9a, is now described.

• Control: the transmitter opens the control connection to send the initial configuration,

where all the initial settings are defined. Then, a configuration packet is sent every time

that the configuration changes, some region is added or deleted, the text or auxiliary image

regions change, or the visualization ends. When a region with data connection is deleted, the

data connection corresponding to that region is closed. After sending a configuration packet

creating a new region with data connection, the data connection is opened after receiving the

confirmation of the receiver that the data connection has been opened. After sending a config-

uration packet ending the transmission, all the connections are closed when the confirmation

from the receiver arrives. The transmission has then finished.

• Data: for every region with data connection that belongs to the activated mode, the data

packets are sent through its data connection each RT seconds, except when the visualization

is stopped.

The protocol performance for the receiver, see Figure 4.9b, is described below.
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• Control: the receiver opens the control connection and listens until a confirmation packet is

received. The data packets cannot be received until the first confirmation packet arrives with

the initial configuration and the data connections are opened. The configuration packets can

indicate the end of the transmission in which case a control packet is sent with all the closing

confirmations (see Figure 4.6) and all the connections are closed. When new regions are

added, the data connections are opened and a confirmation packet is sent with the opening

confirmations (see Figure 4.6). If regions are deleted, the connection for those regions are

closed. The text or image regions can be changed. All the parameters and new text and

image regions are given to the screen in order to visualize the echocardiogram.

• Data: two types of data connections can be distinguished, those for ultrasound regions and

those for other regions. The only difference between them is that when an ultrasound data

packet is received, its mode is activated, and consequently the regions that belong to the

mode are activated too. The received data packets are stored in the region buffer when a

new data packet arrives. The buffer time starts the countdown when the first data packet

of a mode is received. The buffer time value is sent in the configuration packets. When the

buffer time expires each RT seconds, N packets (see Table 4.8) are picked up for the activated

regions to be decoded and the monitoring process begins for these regions. Each frame time

the regions are picked from the monitoring buffer and are displayed on the screen.
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4.4 Error Control Method for Transmission over Wireless Chan-

nels

Wireless channels are error prone, band limited and time varying. Consequently, it is necessary

to introduce error control methods in order to guarantee clinical quality on reception. In [128]

we proposed a Reliable Clinical Video Transmission Protocol (RCVTP). RCVTP was designed for

clinical video encoded with a 3-D SPIHT algorithm, and the transmission of 2-D echocardiogram

modes was tested over 3G and WiMAX channels. In this Chapter, the State Error Control Method

(SECM) is proposed based on the technique described in [128] but with some added improvements.

Different configurations are proposed for the data connections of ETP that correspond to different

regions. The characteristics of the encoded regions are taken into account.

In [128] an error control protocol with two states that adapts to the channel conditions was

proposed for the 2-D modes. The first state is used when there are few packet losses in the channel.

In this state, the retransmissions mechanism is used because the use of error correction codes

in these channel conditions would use a greater amount of bits than is necessary and the extra

transmitted bits required would be unjustified. When more than a certain percentage of errors

occur, the model turns into the second state in which both retransmissions and FEC techniques

are used. The error correction code is now worth the extra amount of transmitted bits, because

errors occur with the retransmissions mechanism. In this way, retransmissions adapt the bits used

to the amount needed and the FEC code provides extra protection. The FEC uses Reed−Solomon

(RS) code, which is a systematic block code [130].

4.4.1 SECM Working Procedure

After having explored error control methods developed over recent years, SECM is now pro-

posed. A similar error control method to that proposed in [128] has been designed, but introducing

a three states model (see Figure 4.10). Instead of using FEC and retransmissions techniques at

the same time in the second state, only FEC is used. However, this has states with different FEC

codes in order to adapt the bits used to the amount needed so as not to produce more delay as a

result of the retransmissions. The percentage of blocks not successfully received is the number of

blocks among the last 100 that have not been received successfully.

• State 1. This is the initial state. A FEC code is used to provide protection in case of

transmission errors. However, this FEC code may not be enough. If the percentage of blocks

not successfully received is more than h21 the model turns into state 2. On the other hand,

if errors do not occur in the h10 last blocks, the bandwidth is not efficiently used and the

model turns into state 0. This state is the initial state because it is conservative, in case

errors occur.

• State 0. This is the state used when no errors have occurred in the last h10 blocks. In

the event that errors start occurring and the percentage of blocks not successfully received

exceeds a certain amount, the model turns into state 1. In this state retransmissions are used

to recover the occasional errors and to use the bandwidth efficiently.

• State 2. This is the state when the FEC code used in state 1 is not sufficient to recover the

transmission errors and another FEC code is used with greater protection. In the event that
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errors reduce in number and the percentage of blocks that are not successfully received are

less than h21, the model returns to the initial state, state 1.

More states with FEC codes having greater protection can be added to the model. The last two

states can even be removed, leaving only the first state with retransmissions. The three states model

is the basic proposal. The transaction parameters (see h01, h10, h12 and h21 in Figure 4.10 for the

three states model) are selected according to the display recommendations. Two more transaction

parameters are added for each added state, and two transaction parameters are removed for each

state removed from the three states model. Figures 4.11 and 4.12 show the coding and decoding

respectively for SECM and the three states model. N , K and resolution parameters are defined in

Table 4.8 for ETP. Different methods are applied depending on the state. The RS code is applied

to N packets that correspond to a block, so that they do not cause more coding delay and to avoid

the effects of burst errors. The RS code generates K or W packets, depending on the state. N is

the number of packets of the coded video and (N −K) or (N −W ) are the number of packets of

the correction. N , K or W packets are transmitted through the network, but Y packets arrive at

the receiver. If N or more packets arrive correctly, the RS code is able to recover the lost packets

and the video is visualized with the recommended transmission rate. Otherwise, the RS code is

not able to recover the lost packets and the video is visualized with a lower transmission rate. The

SECM parameters that have to be selected by the user are illustrated in Table 4.9.

State 1
FEC 1

State 2
FEC 2

State 0

> h01 % blocks not successfully received

h10 last blocks received without errors

> h12 % blocks not successfully received

< h21 % blocks not successfully received

Figure 4.10: SECM three states model.

SPIHT
codec

fragments
of X bytes

state? RS FEC 1

RS FEC 2

RT time

resolution

block

B bytes

N packets K packets

W packets

State 1

State 2

State 0 N packets

Figure 4.11: SECM encoder for three states model.

In order to support retransmissions, a new type of data packet has to be introduced. The

acknowledge (ACK) packets (see Figure 4.13) are used to acknowledge the reception of data packets

and to indicate the actual state from receiver to transmitter. The length of the sequence number for

the ACK depends on the type of data packets. For ETP the length depends on the type of region:

8 bits for the sound, ECG, auxiliary video and sweep ultrasound, and 16 bits for 2-D ultrasound.
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RSY < N
SPIHT
decodec

SPIHT
decodec

Y packets No

Yes

less than N packets

N packets

resolution

frames

Figure 4.12: SECM decoder for three states model.

Table 4.9: SECM configuration parameters.

Parameter Content

States Number of states in the model. By default this value is 3.

Transactions Transaction parameters between the states. This values cor-
respond to h01, h10, h12 and h21 in Figure 4.10 for three
states model. There are two parameters for each state ex-
cept for the first state.

No. packets Number of packets per resolution time that are send for
each state. There are indicated as many number of packets
as states in the model. This values correspond to N , K and
W in Figure 4.11.

The SECM working procedure for transmitter and receiver are depicted in Figures 4.14 and 4.15.

If SECM is used for the regions of ETP, a SECM transmitter and receiver have to be added for

every region. The encoder and decoder are shown in Figures 4.14 and 4.15 for the three states

model. The retransmission working procedure for the transmitter and the receiver, which works

for state 1, are explained in the following paragraphs.

ACK no. 1 ACK no. 2 ACK no. 3 ACK no. 4 State

(8 or 16 bits) (8 or 16 bits) (8 or 16 bits) (8 or 16 bits) (8 bits)

Figure 4.13: ACK packets.

• Transmitter. The transmitter has three possible events: each RT second, when an ACK

arrives and when retransmission time-out (RTO) expires.

– For each frame resolution time (RT ), the ACK count is updated to the maximum number

of retransmissions possible, and the data packets are generated. In order to limit the

amount of transmitted bits used in channels with a high incidence of error, in which

many retransmissions may be required, a maximum number of retransmissions that can

be made in the frame resolution time according to the bandwidth of the network has

been established. Each data packet has a sequence number that identifies it. The data

packets are sent and stored in a retransmission buffer awaiting acknowledgment. A RTO

timer is set each time a data packet is sent.
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WAIT

update state,
RTT and RTO

RTO
deactivated

update
ack count

RTO starts

ENCODER
Retransmission

buffer

send DATA

T < Tup

+ TB

Retransmission
finished

acks send
< ack
count?

Update acks,
retransmission

RT region Z

send data packets

store
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ACK

delete data packets

RTO expires
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No

Yes

No

send data
packets

delete
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Figure 4.14: SECM transmitter working procedure.
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Figure 4.15: SECM receiver working procedure.

– Each time an ACK packet is received, the state information is picked up from the ACK

packet, the RTO timers associated to the acknowledged data packet are deactivated,

the data packets are removed from the retransmission buffer, and the round-trip time

(RTT), transmission time coming and going, is updated. The RTO time is calculated

as follows

RTOi =

 1.1 ·RTT ifRTT ≤ RTOi−1;

0.9 ·RTOi−1 ifRTT > RTOi−1.
(4.2)

Low RTO gives low delay, but RTO values lower than RTT will lead to the duplication

of packets in reception and saturate the network. Thus, the RTO value is configured to

decrease each time that an ACK packet is received, but only if the RTT is higher than

the RTO.
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– When an active RTO expires (no acknowledgment has been received for this data packet),

the receiver checks if the current time (T) is lower than the transmission time of this

packet (Tup) plus the buffer time (TB) to avoid retransmitting packets that are not going

to arrive in time. If the time is higher, the packet is removed from the retransmission

buffer. Otherwise, the transmitter checks if the number of sent ACKs is less than the

ACKs allowed, for the restriction of transmitted bits. If it is lower the retransmission is

made.

• Receiver. The receiver has two possible events:

– Each time a data packet is received, the current mode is updated if the region is ultra-

sound, an ACK packet is sent and the data packet is stored in the buffer. The buffer

time starts when the first data packet is received. The monitoring process starts when

the time of buffer (TB) expires. The ACK packet acknowledges the last four data packets

received and sets the current state. The mechanism of this multiple acknowledgment is

similar to that used by the TCP SACK protocol [131]. Since ACK packets can also be af-

fected by transmission errors, transmission efficiency may be improved by acknowledging

not only the received packet but also some of the most recently received ones [131].

– Each RT time, the data packets of the next block to be visualized are picked out from

the buffer. The receiver checks if all the data packets of the block have been received. If

they have not, the block has not been successfully received. A frame is picked up from

the monitoring buffer and is visualized.

4.4.2 SECM Configuration for ETP

Two different configurations for SECM are proposed depending on the region characteristics

to be included in ETP. Each time that the echocardiogram changes the operation mode, the

error control method starts working without using previous parameters, starting again from the

beginning. The SECM working procedure for the receiver and transmitter (see Figures 4.14 and

4.15) has to be added to the ETP working procedure of each region (see Figure 4.9) in the part

labelled DATA. One configuration is proposed for the 2-D ultrasound video and the other for the

rest of the regions with data packets. The 2-D ultrasound video is the most challenging region

because it contains relevant clinical information and it has higher bandwidth requirements. Both

configurations are described below.

• For the 2-D ultrasound videos, a three states configuration is set. The transactions between

states have been carefully chosen so as not to lose diagnostic information and use the band-

width efficiently. The selected transaction values are h01 = 1, h10 = 3, h12 = 10 and h21 = 2.

• For the rest of the regions only one state is set. Retransmissions are used in this state because

its transmission rate is very low compared to the 2-D regions, and consequently to the channel

bandwidth. This leads to fewer errors and less transmission time, permitting more time for

the retransmissions.
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4.5 Results and Discussion for Echocardiogram Transmission

In this section the whole proposal for echocardiogram real-time transmission is tested with a

WiMAX access network, using OPNET Modeler to perform the simulated transmissions.

4.5.1 Evaluation Setup for Echocardiogram Transmission

The echocardiogram database described in Section 3.1.2.1 has been used for transmission in the

simulation scenarios. Important aspects of the database are the echocardiogram time and video

distribution, each video corresponding to a change of operation mode (see Table 3.4), and the

regions for each type of device and visualization mode (see Table 3.5). Other important aspects

are the quality parameters to be evaluated. In this section, the simulation scenarios, the quality

parameters and the ETP and SECM selected parameters are described.

4.5.1.1 Simulation scenarios

The two simulation scenarios are illustrated in Figure 4.16. The first scenario has fixed access

and the second has mobile access, both to a WiMAX network. The first scenario is used to select

the ETP and SECM parameters and the second scenario to test the proposed methods working

separately and as a whole. The echocardiogram acquisition is thus performed in a remote location

with fixed or mobile WiMAX access connected to the Internet. The echocardiogram is sent in

real-time to the expert cardiologist located in a hospital with an Asymmetric Digital Subscriber

Line (ADSL) access where the diagnosis is made.

Figure 4.16: Simulation scenarios for tele-echocardiography with WiMAX access.

The scenarios have been created using OPNET modeler. The WiMAX (IEEE 802.16e) config-

uration parameters are presented in Table 4.10 and the WiMAX QoS parameters in Table 4.11.

The distance between the access point and the WiMAX base station for the fixed scenario is 1 km.

For the mobile scenario the distances are from 100 meters up to 2 km. The speed of the vehicle for

the mobile scenario ranged between 60 km/h and 120 km/h. This configuration covers the possible

mobility cases and a wide variety of channel conditions. The WiMAX base station is connected
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Table 4.10: WiMAX configuration parameters.

Parameter Value

Access technology OFDMA 5 MHz

Base frequency 2.5 GHz

Frame/symbol duration 5 ms/100.8 µs

Modulation and coding QPSK 1/2

Duplexing technology TDD

Multipath channel model ITU vehicular B

Pathloss model Vehicular environment

Table 4.11: WiMAX QoS parameters.

Parameter Value

Maximum sustained traffic rate 1 Mbps

Maximum reserved traffic rate 0.5 Mbps

Maximum Latency 30 ms

to the Internet via a Digital Signal 3 (DS3) Wide Area Network (WAN) link (44.736 Mbps). The

hospital intranet has a router that connects to the Internet cloud through a DS3 link. The hospital

intranet has a bandwidth of 100 Mbps. The approximate distance between the two subnets is 3342

km, which corresponds to approximately 11.1 ms propagation delay. The packet loss ratio in the

Internet cloud is 0.001 %. The cloud has a 1 ms delay in addition to the propagation delay of the

WAN link.

4.5.1.2 Quality Parameters

The following parameters measure the quality of the transmission:

• Transmitted bandwidth (BWtransm): quantifies the number of bits per second (bps) used

in the application layer of the communication. It is used to measure the efficiency of the

protocol in the transmission process. Note that retransmissions and FEC techniques increase

the transmitted bandwidth.

• Effective bandwidth (BWeffective): quantifies the useful number of bits per second (bps) used

to decode the ultrasound region. Note that the effective bandwidth does not correspond to

the transmitted bandwidth due to errors in the transmission, retransmissions and FEC. As

the ultrasound regions are compressed with SPIHT algorithm and it is embeddedness, when

an error occurs the rest of bits are ignored and the region is decompressed with the received

previous bits. This parameter is used to measure the quality of the display echocardiogram,

and to check if the display recommendations are achieved for each fragment that corresponds

to a mode.
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• Percentage of time with guaranteed clinical quality: This is the percentage of the time that

the ultrasound region of the echocardiogram is visualized with the display recommendations.

• Number of fragments without guaranteed clinical quality: This is the number of fragments

that do not fulfill the display recommendations. Each fragment is checked separately. The

echocardiograms are composed of fragments that correspond to a change of operation mode

(number of videos in Table 3.4).

• Delay: This is the time from the moment when the video is captured until it is visualized in

the receiver. A simplified point-to-point delay equation would include the following terms

TD = TB + T1p +RT + Tpr (4.3)

where TD is the delay time, TB is the buffer time, T1p is the transmission time of the first

packet (this depends on the network and fragment size), RT is the resolution time, and Tpr

is the processing time. The longest times are the RT , which is 0.64 s for the 2-D modes, and

TB, which is determined by the user.

4.5.1.3 Parameters Selection

The ETP configurations for the main regions are shown in Table 4.6 for the Philips Envisor

and in Table 4.7 for the Sonosite device. The encoding parameters are those recommended in

Chapter 2 (see Table 3.16). The main ETP parameters were described in Table 4.8 and the SECM

parameters in Table 4.9. There are some ETP and SECM configuration parameters, such as the

maximum packet size, the FEC codes and the buffer time, that are very important for the good

performance of the echocardiogram transmission. In order to choose suitable parameters, some

simulations have been performed in the fixed scenario described previously. These simulations are

performed for a 2-D ultrasound video of 1 minute of duration, since this region presents the most

demanding characteristics. The error control methods used are various FEC codes since FEC is

the core technique of SECM. The simulations have been carried out for maximum packet sizes

(mps) of 200, 400 and 800 bytes, FEC codes of 40% and 50% of protection (FEC 1 and FEC 2,

respectively), and buffer times (TB) of 0.4, 0.45 and 0.5 seconds. Whether the diagnosis with the

mode is possible or not is shown in Table 4.12 for the two FEC codes. The transmitted bandwidth

is shown in Table 4.13, this being independent of the buffer time.

Table 4.12: Is diagnosis possible for a 2-D ultrasound mode region with the fixed scenario and
correction codes of 40% and 50 %?

TB
mps (bytes) for FEC 1 mps (bytes) for FEC 2

200 400 800 200 400 800

0.4 NO NO NO NO NO NO

0.45 YES NO NO YES YES NO

0.5 YES YES NO YES YES NO

The selected ETP and SECM parameters for the different regions of the available devices are

shown in Table 4.14 and discussed below.



Chapter 4. Echocardiogram Transmission in Real-time 123

Table 4.13: Transmitted bandwidth in kbps for a 2-D ultrasound mode region with the fixed sce-
nario.

FEC code
mps (bytes)

200 400 800

FEC 1: 40% 281 279 278

FEC 2: 50% 301 299 298

• Maximum packet size (mps). The encoded blocks are fragmented in packets of mps bytes.

The mps value changes for each region. Fragmentation is applied for the 2-D mode ultrasound

video regions only. Since the rest of the regions have a block size lower than 1500 bytes and

these regions are less affected by errors than the 2-D regions, fragmentation is not necessary.

The selected mps value for the 2-D modes ultrasound video is of 200 bytes, as in [128]. This

value was selected because although it introduces more overhead than higher values (see Table

4.13), this value is less affected by errors and the errors are more easily recovered (see Table

4.12). This leads to a value of 80 packets for N .

• TB seconds. A buffer time of 0.45 seconds is selected. This is the lowest value that allows

the errors introduced by the channel to be recovered (see Table 4.12). The same TB value

has to be selected for all the regions in order to display them all with the same delay.

• FEC codes. FEC codes are used for the 2-D ultrasound regions only. The selection of

protection codes is restricted as the available codes depend on the fragment size (mps). For

the packet size used in this Thesis, 200 bytes, the available protection codes are 40 %, 50 %

and 75% of the total block size. Thus we have chosen 40 % for FEC 1 and 50 % for FEC

2. Both correction codes introduce enough protection to guarantee clinical quality (see Table

4.12) for the simulated scenario, which corresponds to 11 % of lost packets. These parameters

lead to values of 112 packets for K and of 120 packets for W .

4.5.2 Results for Echocardiogram Transmission

In this section the proposed system as a whole is tested with the evaluation setup described

in the previous section for echocardiogram transmission. The different proposals for each part are

tested separately in order to see how each proposed part contributes to the improvement of the

overall system. Furthermore, several SECM configurations are compared in order to verify the

improvements of the proposed configuration. The results have been split into two sections, the

first without using SECM and the second using SECM. In both sections the results using ETP and

without using ETP are also shown.

4.5.2.1 Results for Echocardiogram Transmission without SECM

No error control method is used in this section to test the advantages of using ETP, and

consequently of using different codification and transmission techniques for each type of region.
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Table 4.14: ETP and SECM parameters for the different regions. S., P. Envisor and P. IE33 are
the three available devices.

Parameters 2-D ultrasound
Sweep ultrasound ECG

(S./P. Envisor/P. IE33) (S./P. Envisor/P. IE33)

RT (s) 0.64 0.16/0.28/0.18 -/1.69/1

mps (bytes) 200 - -

B (bytes) 2000 800/1400/900 -/512/656

X (bytes) 200 800/1400/900 -/512/656

N (packets) 80 - -

K (packets) 112 - -

W (packets) 120 - -

TB (s) 0.45 0.45 0.45

The nine available echocardiograms have been transmitted using the mobile scenario under two

different configurations:

• Without ETP. The echocardiograms have been transmitted without distinguishing modes

or regions. The echocardiogram is sent using the same codification algorithm, transmission

rate (200 kbps) and configuration as for the 2-D ultrasound regions in ETP, since these

regions are the most restrictive. A sequence number of 16 bits is added to the encoded part

for each sent packet as for 2-D ultrasound regions in ETP to allow out of sequence arrival of

the packets.

• With ETP. The echocardiograms have been transmitted distinguishing modes and regions,

using ETP but without using an error correction method.

In Tables 4.15, 4.16 and 4.17 the transmitted bandwidth, the percentage of time with guaranteed

clinical quality and the number of fragments without guaranteed clinical quality are shown for both

configurations. As we can see in Table 4.15, using ETP, less bandwidth is transmitted than without

using ETP for all the available echocardiograms. The transmitted bandwidth without considering

modes is the same for all the echocardiograms, 200 kbps of encoded video plus the sequence number

header. However, the transmitted bandwidth when ETP is used depends on the mode distribution

of the echocardiograms. The control packets used in ETP represent less than 4 % of the total

transmitted data for the nine echocardiograms. In general, the higher the percentage of time that

the 2-D modes are presented in the echocardiogram, the higher is the transmitted bandwidth.

The 2-D ultrasound regions have a transmission rate of 200 kbps, while the sweep ultrasound

regions have a transmission rate of 40 kbps. The bandwidth saving using ETP ranges from 15 kbps

(echocasrdiogram 9) to 81 kbps (echocasrdiogram 7) for the available echocardiograms. As we can

observe in Table 4.16, the percentage of time with guaranteed clinical quality using ETP is higher

than without using ETP for all the available echocardiograms. The increase in the percentage of

time ranges from 6 % (echocardiogram 9) to 19 % (echocardiogram 8). As we can see in Table
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4.17, no fragments are visualized with guaranteed clinical quality for the configuration without

distinguishing modes. The number of fragments without guaranteed clinical quality are the total

number of fragments for each echocardiogram (see number of videos in Table 3.5). The number of

fragments without guaranteed clinical quality using ETP has dropped by at least 10 fragments, 53

% of the total fragments.

Although the echocardiograms are visualized with guaranteed clinical quality for higher per-

centages of time when ETP is used than without using ETP, between 16 % and 25 % of the time

the available echocardiograms are visualized without guaranteed clinical quality using ETP. Fur-

thermore, between 2 and 9 echocardiogram fragments are not visualized with guaranteed clinical

quality using ETP.

Table 4.15: Transmitted bandwidth without using SECM.

Configuration
Bandwidth per echocardiogram (kbps)

1 2 3 4 5 6 7 8 9

without ETP 202 202 202 202 202 202 202 202 202

with ETP 147 123 139 159 174 159 121 171 187

Table 4.16: Percentage of time with guaranteed clinical quality without using SECM.

Configuration
Percentage of time per echocardiogram

1 2 3 4 5 6 7 8 9

without ETP 76.58 75.76 83.61 77.13 74.92 75.91 77.64 74.65 74.54

with ETP 90.47 82.94 93.22 87.73 92.2 88.52 94.21 93.77 80.7

Table 4.17: Number of fragments without guaranteed clinical quality without using SECM.

Configuration
No. of fragments per echocardiogram

1 2 3 4 5 6 7 8 9

without ETP 18 20 19 25 22 25 25 41 20

with ETP 5 6 9 3 5 8 5 2 9

In Figures 4.17, 4.18 and 4.19 the effective bandwidth over the time is shown without using

ETP for echocardiograms numbers 3, 7 and 9, respectively. The effective bandwidth when the

fragments are not visualized with sufficient clinical quality is shown in red and when the fragments

are visualized with sufficient clinical quality is shown in blue. The expected effective bandwidth

for each fragment in order to visualize the echocardiogram with sufficient clinical quality is shown

in gray. We can observe in these figures that the case without using ETP (see Figure 4.17) is the

most affected by errors since modes are not distinguished and the highest bandwidth is transmitted

independently of the operation mode. In the case where the operation modes are distinguished,

(see Figures 4.18 and 4.19) the 2-D modes, the modes with the highest transmission rate, are more
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Figure 4.17: Effective bandwidth over the time without using SECM or ETP for echocardiogram
number 3 is drawn in blue and the expected effective bandwidth to visualize the echocardiogram with
sufficient clinical quality is drawn in gray.

affected by the errors of the channel than the other modes with lower transmission rates. Note

that there are fragments that are visualized with sufficient clinical quality although the effective

bandwidth is lower than the expected bandwidth due to display recommendations.

4.5.2.2 Results for Echocardiogram Transmission with SECM

Different error control methods for the 2-D ultrasound region are compared in this section in

order to identify which is the most suitable. Different configurations and modifications to the

basic three states SECM have been tested, using one-state, two-state and three-state models.

Furthermore, FEC and retransmission techniques have been tested in the different states and

even working both techniques together. When ETP is used, the error control method for the

sweep ultrasound regions is SECM with one state model with retransmissions. The nine available

echocardiograms have been transmitted using the mobile scenario, with and without using ETP

and using the following error control methods:

• One state:

– FEC 1 (40% of protection).

– FEC 2 (50% of protection).

• Two states:

– State 1 : ACK, state 2 : FEC 1 (40% of protection).
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Figure 4.18: Effective bandwidth over the time without using SECM and using ETP for echocar-
diogram number 7. The effective bandwidth when the fragments are not visualized with sufficient
clinical quality is shown in red and when the fragments are visualized with sufficient clinical qual-
ity is shown in blue. The expected effective bandwidth for each fragment in order to visualize the
echocardiogram with sufficient clinical quality is shown in gray.
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Figure 4.19: Effective bandwidth over the time without using SECM and using ETP for echocar-
diogram number 9. The effective bandwidth when the fragments are not visualized with sufficient
clinical quality is shown in red and when the fragments are visualized with sufficient clinical qual-
ity is shown in blue. The expected effective bandwidth for each fragment in order to visualize the
echocardiogram with sufficient clinical quality is shown in gray.
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– State 1 : ACK, state 2 : FEC 2 (50% of protection).

– State 1 : ACK, state 2 : ACK + FEC 1 (40% of protection).

– State 1 : ACK, state 2 : ACK + FEC 2 (50% of protection).

• Three states:

– State 1 : ACK, state 2 : FEC 1 (40% of protection), state 3 : FEC 2 (50% of protection).

Tables 4.18 and 4.19 show the transmitted bandwidth and the number of fragments without

guaranteed clinical quality for the different error control methods and the nine available echocar-

diograms using ETP. When no fragments are visualized without guaranteed clinical quality, then

100 % of the time the echocardiogram is visualized with guaranteed clinical quality. As we can

see, the proposed error control method with three states uses the lowest bandwidth displaying all

the fragments with adequate clinical quality for the nine echocardiograms. All the fragments are

correctly visualized with only one state and both FEC codes. The drawback of using only one state

is that more bandwidth than necessary is used when the channel introduces few errors. In the case

of the two states model, the only configuration which achieves all the fragments with adequate

clinical quality is that using the most protective FEC code. When a less protective FEC code is

used, less bandwidth is transmitted, but not all the fragments are visualized correctly for the nine

echocardiograms. When retransmissions and the FEC techniques are used at the same time in the

second state, as in [128], more bandwidth is used and more fragments without clinical quality are

displayed than when using the FEC technique alone, because a longer buffer time is necessary to

recover the errors with the retransmissions. The best results are obtained using SECM and the

proposed three states model because the state model adapts to the channel conditions. All the

fragments are visualized with adequate clinical quality and the transmitted bandwidth ranges from

154 kbps to 244 kbps for the available echocardiograms.

Table 4.18: Transmitted bandwidth for various error control methods and ETP.

Methods
Bandwidth per echocardiogram (kbps)

1 2 3 4 5 6 7 8 9

FEC 1 203 168 191 222 241 221 163 238 260
1 state

FEC 2 216 179 204 237 258 236 173 255 278

ACK, FEC 1 187 156 173 215 222 204 153 221 240

ACK, FEC 2 197 162 181 228 232 213 162 233 251

ACK, ACK+FEC 1 201 165 181 232 235 215 162 234 255
2 states

ACK, ACK+FEC 2 207 170 187 245 244 225 170 244 265

3 states ACK, FEC 1, FEC 2 189 157 174 225 226 206 154 222 244

Figures 4.20 and 4.21 show the transmitted and effective bandwidth over the time for the

proposed transmission method using ETP and SECM with three states for two different echocar-

diograms. If we compare these figures with Figures 4.18 and 4.19 we can see that more bandwidth

is used in the modes with more errors, where the highest bandwidth is used due to the FEC code.

Therefore, the three states model adapts to the channel conditions.
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Figure 4.20: Effective and transmitted bandwidth over the time with ETP and SECM for echocar-
diogram number 7. The effective bandwidth is shown in blue and the transmitted bandwidth in
green.

Figure 4.21: Effective and transmitted bandwidth over the time with ETP and SECM for echocar-
diogram number 9. The effective bandwidth is shown in blue and the transmitted bandwidth in
green.
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Table 4.19: Number of fragments without guaranteed clinical quality for various error control
methods and ETP.

Methods
Number of fragments per video

1 2 3 4 5 6 7 8 9

FEC 1 0 0 0 0 0 0 0 0 0
1 state

FEC 2 0 0 0 0 0 0 0 0 0

ACK, FEC 1 0 0 0 0 0 0 0 1 0

ACK, FEC 2 0 0 0 0 0 0 0 0 0

ACK, ACK+FEC 1 0 0 1 0 0 0 0 1 0
2 states

ACK, ACK+FEC 2 0 0 0 0 0 2 0 1 0

3 states ACK, FEC 1, FEC 2 0 0 0 0 0 0 0 0 0

Table 4.20 shows the transmitted bandwidth and the maximum number of fragments without

guaranteed clinical quality of the nine echocardiograms for various error control methods when ETP

is not used (all the echocardiograms are considered as 2-D mode). The transmitted bandwidth is the

same for all the echocardiograms since it is independent of the operation mode distribution without

using ETP. Without using ETP more bandwidth is transmitted than using ETP, and consequently

the echocardiogram visualization is more affected by the errors. The only error control methods

that guarantee adequate clinical quality for the whole echocardiogram is when FEC 2 is used and

with the 3 states model. For these two methods the bandwidth used is similar because for the three

states method the model is in state 3 almost all of the time when the FEC 2 code is applied. The

transmitted bandwidth for the three states model is 308 kbps for all the echocardiograms.

Table 4.20: Transmitted bandwidth and maximum number of fragments without guaranteed clinical
quality for various error control methods and without using ETP.

Methods Bandwidth # fragments

FEC 1 286 3
1 state

FEC 2 310 0

ACK, FEC 1 287 3

ACK, FEC 2 307 2

ACK, ACK+FEC 1 313 2
2 states

ACK, ACK+FEC 2 335 2

3 states ACK, FEC 1, FEC 2 308 0

4.5.3 Discussion for Echocardiogram Transmission

The use of ETP allows a saving in the transmitted bandwidth, as is shown in Table 4.15, since

the visualization characteristics are taken into account in the compression and transmission of the

echocardiograms. The saving of bandwidth depends on the mode distribution of the echocardio-
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grams. The 2-D modes present the highest transmission rate while the sweep modes present a

very low transmission rate. Hence the fact that a higher percentage of 2-D modes leads to higher

transmitted bandwidth. The modes with lower transmission rates are less affected by the errors

introduced by the channel, as is shown in Figures 4.17, 4.18 and 4.19. Therefore, the lower the

transmitted bandwidth, the higher is the percentage of time with guaranteed clinical quality, as

shown in Tables 4.15 and 4.16. If the regions and modes are not taken into account, the high-

est bandwidth has to be used for all the modes, the echocardiograms being more affected by the

transmission errors. The percentage of time with adequate clinical quality using ETP increases

between 6 % and 19 %, while the number of fragments without adequate clinical quality using

ETP decreases between 10 and 39 compared to not using ETP, as is shown in Tables 4.16 and

4.17, respectively. The percentage of time with guaranteed clinical quality depends on the error

distribution and the time distribution of the operation modes, especially on the time distribution

of the 2-D modes. The number of fragments that are visualized without guaranteed clinical quality

not only depends on the error distribution but also on the number of fragments that correspond

with 2-D modes.

Although the echocardiograms are less affected by errors when ETP is used, there are still

some parts that are visualized without guaranteed clinical quality when the channel introduces

errors. Therefore, an error control method is necessary in order to guarantee clinical quality

when transmission errors occur. SECM has been designed to adapt the error control method

to the channel conditions with the proposed configuration. Error control methods increase the

transmitted bandwidth in order to protect against errors. If FEC is used in a channel without

errors, the bandwidth is inefficiently used. Retransmissions can cause long delay when many errors

occur. Thus, in the proposed state model the retransmission method is used when few errors occur.

When retransmissions are not sufficient, the FEC method is used with different correction codes.

The selected configuration for SECM has been demonstrated to adapt to the channel conditions, as

is shown in Figures 4.20 and 4.21. Furthermore, if the proposed SECM configuration is used, the

echocardiograms are visualized with adequate clinical quality for a mobile network with WiMAX

access and representative settings, as can be seen in Tables 4.19 and 4.20. However, without SECM,

the available echocardiograms are visualized without guaranteed clinical quality for between 16.39

% and 25.46 % of the time, as shown in Table 4.16.

If both techniques ETP and SECM are used together, a saving in the transmitted bandwidth is

achieved compared to not using ETP. Furthermore, all the available echocardiograms are received

with guaranteed clinical quality with the proposed SECM configuration. The bandwidth saving

depends on the modes distribution of the echocardiogram and on the error distribution. For a mobile

network with WiMAX access and representative settings, the transmitted bandwidth is between

154 kbps and 244 kbps for the available echocardiograms , as shown in Table 4.18. However, if ETP

is not used and the echocardiogram is transmitted without distinguishing modes, the transmitted

bandwidth is 308 kbps, as can be seen in Table 4.20. Thus there is a bandwidth saving of up to 154

kbps, 100 % of bandwidth saving. Without ETP the operation modes are not distinguished, all the

modes are considered as 2-D modes and consequently more bandwidth is transmitted. Furthermore,

blocks are not successfully received due to the fact that 2-D modes are more affected by errors and

that the model for all the echocardiograms is in the last state (with more protection) almost all

the time, which transmits more packets.

A comparison of the results with previous works (see Table 2.3) shows that the bandwidths using
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a WiMAX channel in the previous works are higher than that used with the proposed system,

even for clinical videos with lower resolution. Comparing the results for clinical videos with a

resolution similar to the echocardiograms used in this Thesis and having acceptable clinical quality

on reception reveals that the saving in the bandwidth used in the present work is greater than 1

Mbps. The saving is due to several factors:

• The compression method based on regions takes into account the visualization characteristics

of the echocardiograms, hence the echocardiogram is compressed efficiently.

• The compression recommendations give the minimal transmission rate to guarantee clinical

quality for the ultrasound regions of each operation mode.

• ETP allows the transmission by regions, and consequently compresses each region with its

minimal recommended bandwidth.

• SECM adapts the error control method to the channel conditions using the bandwidth more

efficiently.

• The display recommendations establish whether the echocardiogram is visualized with clinical

quality even if errors occur, and as a result not all the errors have to be recovered to be able

to visualize the echocardiogram with guaranteed clinical quality.

4.6 Conclusions

The main objective of the work described in this Chapter is to achieve the transmission and

the display of the echocardiograms without losing diagnostic information. In order to fulfill this

objective, three tasks have been carried out: the design of a clinical evaluation for the display rec-

ommendations, a proposal of a protocol for real-time transmission of echocardiograms compressed

by regions, and the design of an error control method. The main conclusions resulting from these

three tasks are the following:

• An evaluation methodology has been designed to give recommendations for the display of

echocardiograms after transmission with errors. The methodology has been specially de-

signed for the echocardiogram compression methodology proposed in this Thesis based on

visualization modes. However, any medical video can be evaluated using the evaluation de-

signed for the 2-D modes. The proposed evaluation is easy to perform because it starts from

the previous recommendations given for the transmission rate for compression. The evalu-

ation gives the display recommendations, the time and the range of the transmission rates

for the visualization of the video with a lower transmission rate than the recommended rate

due to transmission errors. It has a major advantage over making an evaluation for each

visualized echocardiogram after transmission. With only one evaluation we are able to know

if the echocardiogram is visualized with adequate quality without the need to carry out an

assessment for each transmission. Display recommendations are given for the echocardiogram

compressed with the proposed method. For the 2-D modes, the ultrasound part can be visu-

alized at any transmission rate up to 5 % of the time. For the sweep modes, up to two image

slices (about 10 % of the screen) can be visualized at any transmission rate.
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• A protocol for the end-to-end transmission of echocardiograms in real-time has been designed,

known as the Echocardiogram Transmission Protocol (ETP). ETP allows transmitting the

echocardiogram compressed by regions. The regions are transmitted separately, and conse-

quently different transmission rates and error control methods can be used depending on the

clinical importance of the region and on the network. ETP can be used for transmission

in any network. The simulated transmissions have demonstrated that by transmitting the

echocardiogram by regions, less bandwidth is used and the echocardiogram is visualized with

adequate clinical quality for a greater percentage of time than when transmitting without

considering the regions and modes.

• An error control method based on states is proposed, known as the States Error Control

Method (SECM). SECM adapts to the channel conditions using different states depending

on the errors occurring. Furthermore, different numbers of states can be set depending on the

data and the network characteristics. SECM has been demonstrated to adapt the bandwidth

used to the channel conditions and to guarantee quality on reception. This method can be

used for any data to be transmitted over error prone channels.
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Conclusions and Future Work

This last Chapter sets out the conclusions of the Thesis and future work. The research objec-

tives presented in Chapter 1 have been discussed throughout the Thesis. The most challenging key

factors in tele-echocardiography systems have been addressed. These include encoding algorithms,

transmission protocols, error control methods, wireless transmission technologies and clinical qual-

ity. This Chapter is organized as follows. Section 5.1 describes the objectives achieved in the Thesis

chapter by chapter. Section 5.2 enumerates the contributions of this work and the accomplished

results. Finally, future work is described in Section 5.3.

5.1 Research Objectives Achieved

Chapter 1 describes the motivations and evidence of the benefits that telemedicine systems in

general and tele-echocardiograhy systems in particular can provide to patients and to the healthcare

system. The main challenges and critical issues involved are described in Section 1.2 and the

objectives are established in Section 1.3. The main aim of this Thesis is to investigate telemedicine

systems applied in cardiology environments. All the detailed objectives listed in Chapter 1 are

addressed throughout the remaining chapters.

• Reviews on the state of the art in general aspects of compression methods for both image

and video, clinical quality, wireless technologies and transmission protocols have been carried

out in Chapter 2. Specifically, a review of the literature on compression and transmission

techniques used in wireless medical video transmission systems is also described in Chapter

2.

• The design, evaluation and recommendations for use of compression methods for the storage

and real-time transmission of echocardiograms are addressed in Chapter 3.

• The design and evaluation of protocols for the transmission of echocardiograms in real-time

and recommendations for the echocardiogram visualization after transmission are addressed

in Chapter 4.

The detailed conclusions and objectives achieved of each section and chapter are listed in Sec-

tions 2.8, 3.7 and 4.6.
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5.2 Contributions and accomplished results

The major contribution of this Thesis is to provide support to tele-echocardiography systems.

The most challenging issues have been addressed and efficient solutions have been proposed. This

Thesis thus provides a framework for the real-time transmission and storage of echocardiograms,

preserving diagnostic information and making an efficient use of resources (disk space and trans-

mission rate). The work involved in achieving this main objective has also resulted in several minor

contributions:

• A two phase evaluation methodology for the compression and transmission of clinical images

has been designed. This methodology is accurate but less burdensome than other tests pro-

posed in the literature. The evaluation consists of two tests. The first provides compression

recommendations and the second provides display recommendations. These tests enable the

transmission of clinical videos with a minimal transmission rate and establish whether the

clinical image is visualized without losing diagnostic information and without the need to

carry out other evaluations for each transmitted video. The tests have been designed for an

echocardiogram compression method based on visualization modes, but the same method-

ology can be used for other clinical images and compression methods. The testbed for the

compression recommendations has been split into two, maintaining the degree of accuracy but

reducing the assessment process. The starting point of the evaluation is the recommendations

given for the compression in order to simplify the assessment process.

• An image compression format for storage purposes has been proposed that saves storage

space with respect to the conventional image formats incorporated in the DICOM standard.

The proposed storage format takes advantage of the segmentation facilities of the device to

enhance the compression performance without adding complexity to the device that already

incorporates the DICOM standard.

• A tool that makes conversions between different image formats has been developed. This tool

allows interoperability between medical centers and devices, and also enables echocardiograms

to be stored with the proposed format and thus saves storage space. Options to edit the image

(edit/add/remove regions) taking advantage of the proposed format based on regions have

been also included.

• An echocardiogram compression method for real-time transmission purposes based on regions

and visualization modes has been designed. An encoded algorithm is proposed according to

the type of data and visualization characteristics for each region. This compression method

that takes advantage of the segmentation facilities and the visualization characteristics of the

devices has demonstrated that it compresses echocardiograms more efficiently than conven-

tional video codecs. Furthermore, each region can be compressed with different transmission

rate according to its clinical quality. Very good results in terms of bandwidth use have been

obtained, especially for the M and pulsed/continuous Doppler modes, thanks to the fact that

the compression method takes into account the stationary characteristics of the sweep modes

and only a thin slice is compressed for every frame.

• An Echocardiogram Transmission Protocol (ETP) for end-to-end and real-time transmission

of echocardiograms compressed by regions has been designed. The regions are transmitted
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separately, and consequently different transmission rates and error control methods can be

used depending on the clinical importance of the region and on the network. Therefore, ETP

can be used for transmission in any network. The simulated transmissions have demonstrated

that by transmitting the echocardiogram by regions, less bandwidth is used and the echocar-

diogram is visualized with clinical quality for a greater percentage of time when errors occur

than without considering the regions and modes.

• A States Error Control Method (SECM) that adapts to the channel conditions has been

proposed. Different error control methods are used depending on the channel errors. Fur-

thermore, different configurations can be set depending on the data and the network charac-

teristics. SECM has been demonstrated to adapt the transmitted bandwidth to the channel

conditions and to guarantee quality on reception. This method can be used for any type of

data to be transmitted over error prone channels.

• An overall system for real-time echocardiogram transmission over wireless networks has been

proposed. The system makes use of all the previous proposals, compression, ETP, SECM

and clinical evaluation. The configuration parameters for the echocardiogram transmission

in a network with WiMAX access have been proposed. The proposed system and configura-

tions have been demonstrated to save transmitted bandwidth with the echocardiogram being

received with guaranteed clinical quality when compared to other compression techniques

that do not distinguish regions and visualization modes, and compared to other error control

methods.

• A general methodology to design a framework for the storage and transmission of any clinical

video has been proposed. This methodology guarantees the reception of the video without

losing diagnostic information and making efficient use of resources as a result of taking into

account the data characteristics to compress the video efficiently, carrying out an evaluation,

and designing transmission techniques that adapt to the channel conditions.

These contributions have been demonstrated in tele-echocardiography systems, leading to the

following accomplished results:

• For the proposed compression format for storage purposes, the compression results depend on

the acquisition devices, how the image is displayed, and the compression quality. However,

the compression ratios obtained for the proposed format ranged from 19 to 41 and a com-

pression gain of up to 75 % compared to JPEG 2000 was achieved without losing diagnostic

information.

• For the proposed compression for real-time transmission purposes, compression and transmis-

sion rate recommendations have been given for each region. Minimum transmission rates have

been recommended for each operation mode and the proposed echocardiogram compression

technique in order to guarantee suitable clinical quality for transmission and storage using

the proposed evaluation methodology. The recommended transmission rates for the ultra-

sound regions are the following: 200 Kbps for the 2-D and the color Doppler modes, and 40

Kbps for the M and the pulsed/continuous Doppler modes. These results make possible the

transmission of echocardiogram videos over 3G wireless networks and beyond. The recom-

mended transmission rates for the previous ultrasound transmission systems are considerably
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higher than those given for the proposed method which allows better transmission results.

The proposed method requires less than 26% of the amount of data for the B mode, 78% for

the Color Doppler mode, 5.2% for the M mode, and 16% for the pulsed/continuous Doppler

mode compared with previous works.

• The use of ETP allows a saving in the transmitted bandwidth since the visualization charac-

teristics are taken into account in the compression and transmission of the echocardiograms.

The saving of bandwidth depends on the mode distribution of the echocardiograms. The per-

centage of time with adequate clinical quality increases between 5 % and 19 % for a mobile

network with WiMAX access, representative settings, nine available echocardiograms and

without an error control method.

• The selected configuration for SECM has been demonstrated to adapt to the channel con-

ditions. Furthermore, the echocardiograms are visualized with adequate clinical quality for

a mobile network with WiMAX access, representative settings and nine available echocar-

diograms. However, without SECM, the available echocardiograms are visualized without

guaranteed clinical quality between 16.39 % and 25.46 % of the time for the same network.

• The proposed overall system for real-time echocardiogram transmission over wireless networks

achieves a saving in the transmitted bandwidth while ensuring all the available echocardio-

grams are received with adequate clinical quality. This bandwidth saving depends on the

mode distributions of the echocardiogram and on the error distribution. For a mobile net-

work with WiMAX access and representative settings, and the available echocardiograms, the

transmitted bandwidth is between 154 kbps and 244 kbps. If the results are compared with

previous works where clinical videos with similar resolution are transmitted over WiMAX net-

works, the saving in transmitted bandwidth is higher than 1 Mbps. This bandwidth saving

leads to savings in energy, money and transmission time.

5.3 Future Work

Although the objectives have been fulfilled and very good results have been obtained, slight

improvements can be made in order to simplify the set up process. Moreover, the proposed methods

can be used in other fields and can also be extended to other previously developed clinical image

techniques as well as new techniques arising in the future.

• The configuration parameters of ETP and SECM have been set for a good performance using

a WiMAX network with variant channel conditions. Although this configuration is expected

to fit other networks, other parameters may be better for them. An automatic adjustment of

the buffer time will be useful. The optimization of other parameters is more dependent on the

type of access network, while the buffer time optimization is more dependent on the whole

network configuration and the particular conditions for each transmission. This adjustment

can be performed by sending some packets to test the network delay and the recovery time

prior to transmission, after having selected the rest of the parameters.

• Simulations in other access networks can be carried out in order to set the appropriate pa-

rameters for each type of access network and to check if the obtained results are equivalent

to the results obtained for the simulated network with WiMAX.
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• A new scenario in which a multicast communication is established can be added. In this way,

the captured echocardiogram could be transmitted to several destinations at the same time.

In order to be able to make a multicast communication, a new application protocol must be

designed. It is important to take into account that ETP uses communication over TCP and

UDP to transmit the echocardiogram.

• The proposed echocardiogram storage format and the proposed compression method for

echocardiogram transmission can be extended to other clinical image modalities in order

to save storage space and to compress the images efficiently. The compression gain for other

modalities depends on the image distribution of the different regions, but a saving in the

storage space and transmission rate with respect to current compression formats and codecs

is expected, as well as greater simplicity in the compression process.

• The evaluation methodology may be extended to other recent developments, such us 3-D

echocardiography, which can be incorporated into the overall system. Moreover, the eval-

uation methodology can be used for any medical technique in order to use resources more

efficiently and to use the minimal transmission rate or compression rate.

• The overall system for real-time echocardiogram transmission over wireless networks proposed

in this Thesis can be applied to other clinical image modalities. The same steps and methods

that have been followed in the design for echocardiograms may be adapted for other clinical

videos.





Appendix A

Document Type Definition example

for ETP

<?xml version="1.0" encoding="UTF-8"?>

<!ELEMENT configuration (tsize?,device?,delay?,end?,region+)>

<!ELEMENT tsize EMPTY>

<!ATTLIST tsize w CDATA #REQUIRED>

<!ATTLIST tsize h CDATA #REQUIRED>

<!ELEMENT device (#PCDATA)>

<!ELEMENT delay (#PCDATA)>

<!ELEMENT end EMPTY>

<!ELEMENT region ((ultr|vid|img|text|sound|ecg), position?, size?, codification?, mps?)>

<!ATTLIST region reliability CDATA #IMPLIED>

<!ATTLIST region id ID #REQUIRED>

<!ATTLIST region mode CDATA #REQUIRED>

<!ATTLIST region delete (yes|no) "no">

<!ELEMENT ultr (calibration?)>

<!ATTLIST ultr color (yes|no) "no">

<!ATTLIST ultr type (sweep|2D) "2D">

<!ATTLIST ultr fps CDATA #IMPLIED>

<!ATTLIST ultr pps CDATA #IMPLIED>

<!ATTLIST ultr bitrate CDATA #IMPLIED>

<!ATTLIST ultr video (stop|forward|back) #IMPLIED>

<!ATTLIST ultr resolution CDATA #IMPLIED>

<!ELEMENT calibration (t?,d?,v?)>

<!ELEMENT t (#PCDATA)>

<!ATTLIST t measurements CDATA #IMPLIED>

<!ELEMENT d (#PCDATA)>

<!ATTLIST d measurements CDATA #IMPLIED>

<!ELEMENT v (#PCDATA)>

<!ATTLIST v measurements CDATA #IMPLIED>

141



142

<!ELEMENT vid EMPTY>

<!ATTLIST vid color (yes|no) "no">

<!ATTLIST vid fps CDATA #IMPLIED>

<!ATTLIST vid bitrate CDATA #IMPLIED>

<!ATTLIST vid video (stop|forward|back) #IMPLIED>

<!ATTLIST vid resolution CDATA #IMPLIED>

<!ELEMENT img EMPTY>

<!ATTLIST img color (yes|no) "no">

<!ATTLIST img bpp CDATA #IMPLIED>

<!ATTLIST img codim CDATA #IMPLIED>

<!ELEMENT text (#PCDATA)>

<!ATTLIST text fsize (8|10|12) "8">

<!ELEMENT sound EMPTY>

<!ATTLIST sound configuration CDATA #IMPLIED>

<!ATTLIST sound channels CDATA #IMPLIED>

<!ATTLIST sound bitrate CDATA #IMPLIED>

<!ATTLIST sound sampler CDATA #IMPLIED>

<!ELEMENT ecg EMPTY>

<!ATTLIST ecg cod (1D|2D) "2D">

<!ATTLIST ecg der CDATA #IMPLIED>

<!ATTLIST ecg block (128|256|512|1024) "128">

<!ATTLIST ecg fact (3|4|5|6) "4">

<!ATTLIST ecg sf CDATA #IMPLIED>

<!ATTLIST ecg time CDATA #IMPLIED>

<!ATTLIST ecg bpp CDATA #IMPLIED>

<!ATTLIST ecg ppslice CDATA #IMPLIED>

<!ATTLIST ecg width CDATA #IMPLIED>

<!ELEMENT position EMPTY>

<!ATTLIST position x CDATA #REQUIRED>

<!ATTLIST position y CDATA #REQUIRED>

<!ELEMENT size EMPTY>

<!ATTLIST size w CDATA #REQUIRED>

<!ATTLIST size h CDATA #REQUIRED>

<!ELEMENT codification (#PCDATA)>

<!ELEMENT mps (#PCDATA)>
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