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A B S T R A C T   

We calculate the thermal conductivity (κ) of highly N- and B-doped cubic silicon carbide (SiC) with defect concentrations (Cdef) from 1016 to 1021 cm− 3 and compare 
the relative importance of the extrinsic phonon-electron and phonon-defect scattering mechanisms. Whereas phonon-electron scattering dominates over phonon- 
defect scattering at low Cdef up to about 1020 cm− 3 at room temperature in N-doped SiC, phonon-defect scattering determines the thermal conductivity reduction 
in the B-doped case. This strong contrast between the electron- and hole-doped cases is related to the much higher ionization energy of B acceptors as compared to 
that of N donors, and to the resonant scattering caused by B substitution, not present for the N impurity. The similar features can be found in hexagonal phase 4H–SiC. 
Our results highlight the importance of considering the phonon-electron scattering mechanism together with other phonon scattering processes when calculating the 
thermal conductivity of doped semiconductors.   

1. Introduction 

Silicon carbide (SiC) has applications in various fields ranging from 
thermal [1] and mechanical [2] sensors to high-power [3] and electro-
nic [4,5] nanodevices, owing to its superior characteristics including 
high breakdown voltage, high intrinsic thermal conductivity and wide 
band gap. Among many polytypes, two hexagonal (4H–SiC and 6H–SiC) 
and one cubic (3C–SiC) phases are the most frequently studied and used. 
3C–SiC, with a simple zinc blende structure, can grow with high crystal 
quality on silicon and 4H–SiC substrates [6–9]. Heavily doped 
(1018–1021 cm− 3) samples of this semiconductor are required for some 
applications [10–12]. In particular, highly B-doped and N-doped 3C–SiC 
can be applied in single-junction solar cells [13,14] and optoelectric 
devices [15,16], respectively. 

Progress has been made recently in the fundamental understanding 
of the themal conductivity reduction in doped 3C–SiC. On the one hand, 
Protik et al. [17] have found that both phonon-electron scattering and 
phonon-defect scattering owing to mass disorder lead to negligible κ 
reduction around room temperature in lightly doped 2H-, 4H- and 
6H–SiC. For 3C–SiC, Wang et al. have demonstrated that 

phonon-electron scattering can be comparable to anharmonic scattering 
in both the electron- and hole-doped cases [18]. It is however unclear to 
what degree phonon-electron scattering affects the thermal conductivity 
when the defect scattering of phonons is also taken into account. Dongre 
et al. [19] showed that in highly doped Si a good agreement with 
experimental results could be obtained only when considering both 
phonon-electron and phonon-defect scattering. However, in 
boron-doped 3C–SiC, phonon-defect scattering is substantially stronger 
due to a resonance in the scattering rates [20]. Although this would 
seem to suggest the importance of describing both phonon-defect and 
phonon-electron scattering in 3C–SiC, a combined study of both types of 
scattering is lacking. 

In this work, we have calculated the κ of heavily N-doped and B- 
doped 3C–SiC taking into account both phonon-electron (ph-el) and 
phonon-defect (ph-def) scattering from first principles. We observe that 
in the N-doped case, both scattering mechanisms can effectively 
contribute to the κ reduction. Specifically, ph-el scattering governs the κ 
reduction at defect concentrations lower than ~1020 cm− 3 at ambient 
temperature. Above this doping level, however, it is ph-def scattering 
that becomes dominant. On the other hand, ph-def scattering exclusively 
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dominates the reduction of κ over the whole temperature and doping 
ranges studied in the B-doped case. Moreover, we also take 4H–SiC as a 
case study of a hexagonal polytype and observe similar features. 

2. Methodology 

Within the framework of the phonon Boltzmann transport equation 
(BTE), the lattice thermal conductivity tensor can be calculated as [21, 
22]: 

κ =
1

kBT2ΩZ
∑

λ
n0

λ(n
0
λ + 1)(ℏωλ)

2vλ ⊗ Fλ, (1)  

where Ω denotes the volume of the unit cell and Z is the total number of 
q points on a regular grid sampling the Brillouin Zone. λ describes a 
phonon mode with branch index s and wave vector q. n0

λ , ωλ and vλ 
correspond to the Bose-Einstein occupancy, the angular frequency and 
the group velocity of phonon mode λ, respectively. Fλ can be interpreted 
as a phonon mean free displacement or as a vector characterizing the 
deviation from equilibrium of the phonon populations in the linear 
regime. Hence the linearized BTE can be expressed as: 

Fλ = τλ(vλ +Δλ). (2)  

Here, Δλ is a linear combination of Fλ vectors, as described in Ref. [21]. 
Therefore, in practice, Eq. (2) can be solved accurately with an iteration 
scheme starting from the relaxation-time approximation of neglecting 
the Δλ term. τλ denotes the phonon relaxation time, whose inverse is the 
scattering rate, which comprises the contributions from three-phonon 
processes (1 /τ3ph

λ ), isotopic mass disorder (1 /τiso
λ ), ph-el scattering 

(1 /τph− el
λ ) and ph-def scattering (1 /τph− def

λ ) in doped semiconductors, as 
expressed by the Matthiessen rule: 

1
τλ

=
1

τ3ph
λ

+
1

τiso
λ

+
1

τph− el
λ

+
1

τph− def
λ

(3) 

Three-phonon scattering rates, including the absorption and emis-
sion processes allowed under the conservation of energy and mo-
mentum, dominate the intrinsic thermal conductivity around room 
temperature. They can be obtained from density functional theory and 
density functional perturbation theory. The effect of isotopic mass dis-
order reflects the natural isotopic distributions of the elements involved. 
The detailed expressions of the above two scattering rates are included 
in Ref. [21]. 

2.1. Phonon-electron scattering 

In the last two decades, the predictive calculation of electron-phonon 
interaction (EPI) has become feasible using first-principles approaches. 
The ph-el scattering rates, directly related to the coupling matrix ele-
ments of EPI, can be calculated as [23–25]: 

1
τph− el

λ

= 2
2π
ℏ
∑

mn,k

⃒
⃒φi

mn(k, q)
⃒
⃒2
(fnk − fmk+q)δ(ϵ), (4)  

where δ(ε), with ε = Emk + q − Enk − ℏωλ, is the Dirac delta function 
arising from the energy conservation. fnk is the Fermi-Dirac distribution 
for electrons in the equilibrium state and Enk denotes the eigenenergy of 
an electron in a state {nk}. The factor of 2 appearing before the sum-
mation accounts for the spin degeneracy. φi

mn(k, q) is the screened 
coupling matrix element of a ph-el scattering process in which a phonon 
from mode λ and two charge carriers with band indices m and n and 
wave vectors k and k + q, respectively, participate. Strictly speaking, the 
product |φ|2 is an approximation to φbφ* where the bare matrix φb is 
replaced by the screened φ [25]. Very recently it has been shown that 
this doubly screened approximation is very reliable due to its designed 
error cancellation to first order [26,27]. Although using one bare φb 

[28] could in principle improve the results, it is challenging in practice 
and relies on the achievable precision of the screened φ. Furthermore, 
another neglected screening effect due to the presence of 
doping-induced free carriers can reduce the Fröhlich coupling, which 
overestimates the LO phonon contribution to electron scattering rates 
[29]. On the other hand, the LO phonon scattering rates due to electrons 
could also be affected. However, this effect on thermal transport should 
be small since LO phonons barely contributed to κ. 

We also point out that electrons are taken to be in equilibrium when 
calculating ph-el scattering rates, which thus leads to the decoupled 
BTE. More rigorously, those interactions between non-equilibrium 
electrons and phonons should also be considered within the coupled 
el-ph BTEs [30]. Recent studies have found that it has significant effects 
on Seebeck coefficient and mobility in doped semiconductors [31]. 
However, the effect on κ is overall weak as demonstrated in Refs. [32, 
33]. 

Note that ph-el scattering, even though negligible in intrinsic semi-
conductors, can lead to a non-negligible κ reduction in highly doped 
semiconductors and metals due to a larger number of free carriers [34]. 
However, in contrast to metals, the ph-el scattering in highly doped 
semiconductors is strongly temperature-dependent [19]. 

2.2. Phonon-defect scattering 

In the context of the atomistic Green’s function formalism for 
describing the defect-induced phonon transition rate, the ph-def scat-
tering can be calculated using the optical theorem [20,35]: 

1
τph− def

λ

= − Cdef
Ω
ωλ

Im{〈λ|T|λ 〉 }, (5)  

where Cdef denotes the volume concentration of defects. T, the matrix 
bridging the Green’s function between perturbed and unperturbed sys-
tems, can be built as: 

T = [I − Vg+]
− 1V, (6)  

where I is the identity matrix and g+ is the retarded Green’s function for 
the system without defects. The detailed calculation of g+can be found in 
Ref. [36]; V is the perturbation describing the changes introduced in the 
dynamical equations by the introduction of a defect and can be rewritten 
as [20]. 

V = VM + VK , (7)  

where VM and VK are the mass and interatomic force constants (IFCs) 
perturbation matrices between the host and defect-laden systems, 
respectively. Here, VM is a diagonal matrix, whose only nonzero ele-
ments are the onsite terms of defects, with values: 

Viα,jβ
M = −

M′
i − Mj

Mi
ω2

λδijδαβ, (8)  

where i and j are atomic site indices, α and β identify Cartesian axes, and 
Mi and M′

i denote the masses of the host atom and the defect atom 
replacing it at the i-th site. On the other hand, VK characterizes the 
systematic IFCs changes, the matrix elements of which are expressed as: 

Viα,jβ
K =

K′
iα,jβ − Kiα,jβ

̅̅̅̅̅̅̅̅̅̅̅
MiMj

√ . (9)  

here, K′
iα,jβ and Kiα,jβ are the second derivatives of the potential energy of 

the defect-laden and perfect systems, respectively, evaluated at 
equilibrium. 

Since defects can exist in different charge states (q) in the doped 
system, the total defect concentration Cdef =

∑
qCXq , where CXq is the 

concentration of specific defect X in charge state q. Correspondingly, the 
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total ph-def scattering rate due to a specific type of defects can be 
expanded as [37]: 

1
τph− def

λ

= −
∑

q
CXq

Ω
ωλ

Im
{〈

λ
⃒
⃒Tq|λ

〉 }
. (10)  

2.3. Calculations of carrier concentrations 

In the doped system, ph-el scattering rates, similar to ph-def scat-
tering, are related to carrier concentrations. The electron and hole 
concentrations (n and p) are determined by the Fermi level μ. Consid-
ering a system with given donor and acceptor concentrations (CD and 
CA), the charge neutrality condition, determining μ, is expressed as [37, 
38]: 

n + C−
A = p + C+

D , (11)  

with 

C−
A =

CA

1 + gA⋅exp[(EA − μ)/kBT]
(12)  

and 

C+
D =

CD

1 + gD⋅exp[(μ − ED)/kBT]
, (13)  

where C−
A (C

+
D ) represents the concentration of ionized acceptors (do-

nors), and EA(ED) and gA(gD) are the energy level and spin degeneracy 
factor of acceptors (donors), respectively. gD and gA take the values 2 and 
6 in our calculations due to the triply degenerate valence band in 
3C–SiC. 

Within the parabolic band approximation, the density of states (DOS) 
depends on the DOS effective mass m∗

e and m∗
h for the conduction and 

valence bands, respectively. Consequently, 

n =
2(2πm∗

ekBT)3/2

h3
2̅
̅̅
π

√ F1/2

(
μ − Ec

kBT

)

, (14)  

and 

p =
2(2πm∗

hkBT)3/2

h3
2̅
̅̅
π

√ F1/2

(
Ev − μ

kBT

)

, (15)  

where Ec and Ev represent the energy of the conduction and valence band 
edges, respectively. The Fermi-Dirac integral F1/2 is defined as 

F1/2(x) =
∫ ∞

0

ϵ1/2

eϵ− x + 1
dϵ. (16) 

The parameters involved in the calculation are taken from experi-
ments. m∗

e and m∗
h are taken as 0.72m0 and 0.6m0 with free electron mass 

m0 respectively [39,40]. The band gap (Ec − Ev) is 2.416 eV, and 
considered independent of the doping and temperature [41]. In princi-
ple, the ionized defect concentrations (CXq ) and free carrier concentra-
tions in terms of μ at specific T, can be obtained by solving Eq. (11) 
self-consistently [37,42]. 

In this work we examine two prevalent substitutional defects of N 
(donor) and B (acceptor) atoms in 3C–SiC, which can in principle occupy 
Si sites (NSi and BSi) and C sites (NC and BC). Here we assume that these 
defects are introduced into 3C–SiC in Si-rich conditions at high growth 
temperature (Tg) [43] and the quenching process leaves Cdef unchanged, 
but the ratio of neutral and ionized defects changes at lower temper-
atures [37,44]. In the N-doped case with a total concentration Cdef =

CD(NC) + CD(NSi), the ratio of these Si-site and C-site defect concentra-
tions is related to the defect formation energy (DFE) of defect thermo-
dynamics through a factor exp[− [Ef(NSi)− Ef(NC)]/(kBTg)], where Ef(NSi) 
and Ef(NC) are DFEs of NSi and NC respectively. This also applies to the 
B-doped case. Previous calculations have found that in Si-rich conditions 

the DFEs are larger for NSi and BSi than for NC and BC defects, with 
differences of ~5 eV and 1 eV [45–48], respectively. These cause the 
above factor almost zero in both cases, which suggests negligible 
numbers of Si-site defects and Cdef ≈ CD(NC) or CA(BC) in the doped 
systems. 

After doping the defects can be partially ionized at a finite temper-
ature. While ionization energy can be derived from the crossing points of 
DFE lines, here we adopt the ionization energy of NC and BC defects 
determined from experiments, corresponding to (Ec − ED) and (EA − Ev), 
as 0.055 eV and 0.735 eV [43], respectively. 

The experimental 3C–SiC samples grown under Si-rich conditions 
usually include intrinsic defects. They may compensate the extrinsic 
defect doping according to a Boltzmann distribution of Nαgαexp[− Ef(α)/ 
(kBT)], where Nα, gα and Ef(α) are the occupied sites number, degeneracy 
factor and DFE of defect α [38]. Previous studies found that carbon 
vacancies and silicon antisites are predominant, with lower DFEs as 
compared to any other intrinsic defects [49–54]. However, the DFE 
values of these two defects are still higher than those of NC and BC. 
Therefore, the compensation effects caused by them should be negligible 
within the doping and temperature ranges considered in our 
calculations. 

3. Computation details 

We carried out the structural optimization of the perfect 3C–SiC 
crystals using the VASP density functional theory (DFT) package [55], 
with the projector-augmented-wave method and local density approxi-
mation (LDA) to the exchange and correlation functional. The calculated 
band gap of perfect system is 1.34 eV (Fig. S1) [56], smaller than the 
experimental value of 2.416 eV [57], which arises from the delocaliza-
tion error of LDA functional [58,59]. However, the band gap has little 
effect on the calculated thermal transport properties since the transi-
tions across the gap do not contribute in our calculated electronic 
structure. Next, the Phonopy package [60] was used to calculate the 
harmonic IFCs of perfect structures with 5 × 5 × 5 supercells and 
Γ-sampling. Phonon dispersion agrees better with experimental results 
[61,62] than the one calculated from the generalized gradient approx-
imation (GGA) functional [63], as shown in Fig. S1 [56]. For the 
anharmonic third-order IFCs, the thirdorder.py code in ShengBTE 
package [21] was used, also with a 5 × 5 × 5 supercell and Γ-sampling, 
as well as a cutoff of 5 Å in the interaction range. 

The ph-def scattering rate calculations for neutral and ionized defects 
were executed using the almaBTE code [64] with the same parameters 
as in Refs. [20,65]. We first employed 5 × 5 × 5 supercell with one 
specific defect replacing the carbon site to perform structural relaxation. 
The Phonopy package was then used to extract harmonic IFCs of this 
defective supercell. The harmonic IFCs matrices of perfect and defective 
supercells, which correspond to the K and K′ terms in Eq. (9) respec-
tively, were used to measure the bonding perturbation. The Green’s 
functions of the perfect system were calculated on a 18 × 18 × 18 grid 
using the tetrahedron method to integrate over the Brillouin-zone and 
the ph-def scattering rates were then calculated with a coarse 20 × 20 ×
20 q-grid. To achieve denser q-grid and reduce computation cost, a 
linear interpolation method was used to interpolate the entire ph-def 
scattering rates onto the 40 × 40 × 40 q-grid. As bonding perturba-
tion is localized around the defect, we also calculated ph-def scattering 
rates using a 4 × 4 × 4 supercell (in Fig. S2) [56] and found that the 5 ×
5 × 5 supercell yielded almost converged rates in each doped case. 

With regard to the calculation of ph-el scattering rates, electron- 
phonon coupling matrix elements φi

mn(k, q) in Eq. (4) were first calcu-
lated on coarse 6 × 6 × 6 k- and q-grids with the Quantum Espresso DFT 
package [66]. We then interpolated them onto denser 80 × 80 × 80 
k-grid and 40 × 40 × 40 q-grid, respectively, through the Wannier 
function interpolation method as implemented in the EPW package 
[67]. 
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After ph-def and ph-el scattering were determined, the exploration of 
bulk κ is straightforward. This was implemented in a modified version of 
the ShengBTE package [21] using a 40 × 40 × 40 q-grid to ensure 
convergence of κ. In this case, the following phonon scattering mecha-
nisms were taken into account: anharmonic scattering, isotopic disorder, 
ph-def and ph-el scattering. 

4. Results and discussion 

The temperature dependence of carrier concentration nc for several 
defect concentrations in N- and B-doped 3C–SiC is shown in Fig. 1. In the 
N-doped case with a defect concentration of 1017 cm− 3, a clear plateau 
with nc = Cdef emerges between 200 and 1600 K. At higher Cdef, although 
the temperature dependence of nc remains weak at intermediate tem-
peratures, nc is smaller than Cdef, indicating that the doping becomes less 
effective in contributing to the carriers. Owing to the more than one 
order of magnitude higher ionization energy for B defects than for N 
defects, the holes supplied by B defects cannot be effectively excited. As 
a result, nc for the B-doped case is much smaller than the corresponding 
value in the N-doped case with the same Cdef except at high tempera-
tures. For instance, at 300 K, for doping of 1019 and 1021 cm− 3, nc = 2.5 
× 1018 and 2.3 × 1019 cm− 3 in the NC case, whereas nc = 3.0 × 1012 and 
3.0 × 1013 cm− 3 in the BC case. At high temperatures, the doping has a 
lesser effect on carrier concentration. When the doping effect is 
completely eliminated, the intrinsic region, in which n = p, is recovered. 
This happens above 1800 K at Cdef = 1017 cm− 3. 

The intrinsic anharmonic, extrinsic ph-def and ph-el scattering rates 
at room temperature are plotted in Fig. 2 and Fig. 3 for N- and B-doped 
cases. Since the ph-def scattering rates are proportional to the defect 
concentration, only those for doping of 1021 cm− 3 are shown. Although 
ph-el scattering rates do not have a simple dependence on Cdef, they 
increase with concentration in a markedly less than linear way [19]. In 
fact, in the intrinsic region, ph-el scattering rates are independent of 
Cdef. In Figs. 2 and 3, only the results of Cdef = 1019 and 1021 cm− 3 are 
shown. 

In both cases, ph-def scattering by ionized defects is generally 
weaker than that by neutral defects. This can be ascribed to the elec-
tronic structure of the ionized defect system more closely resembling 
that of host system, which causes a smaller bonding perturbation term in 
Eq. (6) [37,65]. At low frequencies (below 30 rad/ps) the ph-def scat-
tering rates exhibit a classical Rayleigh behavior(∝ ω4). In contrast, the 
ph-el scattering rates have a much weaker ω dependence, especially in 

the B-doped case. 
In the N-doped case, both the ph-def and ph-el scattering rates are 

comparable to the anharmonic scattering, while the ph-el scattering is 
stronger than the ph-def scattering at low frequencies. 

In the B-doped case, the ph-def scattering by neutral defects can be 
even orders of magnitude stronger than that by ionized defects and the 
anharmonic scattering. It has been shown that this unusually strong 
phonon scattering of neutral B defects is a result of a strong perturbation 
of the IFCs, Eq. (9), caused by the proximity of multiple minima in the 
potential energy surface [65]. It directly leads to the resonant scattering 
behavior present at low frequencies [68]. In contrast, ph-el scattering is 
negligible over the whole frequency range when compared to anhar-
monic and ph-def scattering. This is mainly due to the low carrier con-
centrations caused by the high ionization energy of B defects. In fact, for 
the same value of nc, ph-el scattering due to holes is even stronger than 
that due to electrons [18]. 

The extrinsic ph-def and ph-el scattering can lead to reduction in the 
intrinsic κ. Figs. 4 and 5 show the reduction in the spectral contributions 

Fig. 1. The temperature dependent carrier concentrations nc of N-doped and B- 
doped 3C–SiC with defect concentrations Cdef of 1017, 1019 and 1021 cm− 3. The 
calculations only consider NC (blue lines) and BC (red lines) substitutions for 
these doped cases, respectively. 

Fig. 2. Comparison among scattering rates from three-phonon (3ph) scattering, 
ph-def scattering by the neutral (N0

C) and ionized defects (N+1
C ) with Cdef of 1021 

cm− 3, and ph-el scattering with Cdef of 1019 and 1021 cm− 3 at 300 K in N- 
doped 3C–SiC. 

Fig. 3. Comparison among scattering rates from three-phonon (3ph) scattering, 
ph-def scattering by the neutral (B0

C) and ionized defects (B− 1
C ), and ph-el 

scattering with Cdef of 1019 and 1021 cm− 3 at 300 K in B-doped 3C–SiC. 
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to κ at 300 K due to these two extrinsic scattering individually and 
combined for the N- and B-doped 3C–SiC, respectively. According to Eq. 
(10), the total ph-def scattering rates are contributed from both neutral 
and ionized defects, weighted by their respective concentration. How-
ever, the ionized defect contribution to ph-def scattering in the B-doped 
case is completely neglected due to its much lower concentrations and 
ph-def scattering rates. 

The intrinsic κ, only taking anharmonic and isotope scattering into 
account, is contributed mostly by low-frequency phonons up to 115 rad/ 
ps. Due to the distinct scattering rate characteristics, the effects of 
doping with B or N defects are very different. B defects affect κ mostly by 
ph-def scattering, whereas N defects can reduce κ effectively by both ph- 
el and ph-def scattering. This is evident in Fig. 2 when looking at scat-
tering rates below 18 rad/ps. 

More specifically, for N doping at Cdef = 1019 cm− 3, ph-el scattering 

causes κ to decrease at low frequencies up to 18 rad/ps, while ph-def 
scattering is too weak to affect κ over the whole frequency range. As 
Cdef increases to 1021 cm− 3, the ph-def scattering becomes effective in 
reducing κ, especially above 18 rad/ps. Although ph-def scattering also 
affects the lower frequency contributions, they remain dominated by ph- 
el scattering. Therefore, the κ reductions due to these two extrinsic 
scattering are almost additive. 

On the other hand, owing the nature of the neutral B defect as an 
exceptionally strong phonon scatterer, κ can be reduced significantly. At 
B doping of 1019 cm− 3, all but the contributions from the very low and 
high frequency phonons are affected. At Cdef = 1021 cm− 3, κ almost 
vanishes, and only has little contribution from the low-frequency pho-
nons left. Since ph-el scattering is extremely weak, its effect on κ can be 
simply neglected. 

Fig. 6 shows the κ reduction at 300 K as a function of Cdef in the N- 
and B-doped cases. Considering both ph-el and ph-def scattering, κ in the 
NC case starts decreasing at 1016 cm− 3, one order of magnitude lower 
than the threshold Cdef in the BC case. However, the latter case can cause 
much faster κ decrease. In particular, when Cdef is 1018, 1019 and 1020 

cm− 3, κ is reduced by 8 %, 12 % and 30 % in the NC case and reduced by 
7 %, 33 % and 73 % in the BC case, respectively. 

This extrinsic scattering in the NC case dominates the κ reduction at 
various Cdef ranges. Below 1019 cm− 3, the κ reduction is entirely due to 
the ph-el scattering. With a stronger dependence on Cdef, ph-def scat-
tering plays an increasingly important role in the reduction as Cdef in-
creases. In particular, at around 1020 cm− 3, the ph-def scattering is 
comparable to the ph-el scattering, and both lead to 15 % reduction in κ. 
Above this level, the κ decrease becomes dominated by the ph-def 
scattering. 

In contrast, the reduction in the BC case is entirely attributed to the 
ph-def scattering, due to the exceptionally strong ph-def scattering and 
weak ph-el scattering. Our calculated values can agree well with the 
measured one [9]. Note again that ph-el scattering alone leads to a 
weaker reduction in κ in the BC case than in the NC case with the same 
Cdef, although the opposite is true when considering the same nc [18]. 
Those B defects are lying deep in the band gap and more stable in the 
neutral state [65]. Therefore, it is difficult to achieve an nc as high as 
1021 cm− 3 at room temperature by B doping. 

Next we turn to study the temperature dependence of κ for two 
representative defect concentrations Cdef = 1019 and 1020 cm− 3. The 
results are plotted in Fig. 7. In the N-doped case with 1019 cm− 3, ph-def 
scattering contributes negligibly to κ reduction, particularly above room 

Fig. 4. Spectral contributions to κ at 300 K for the intrinsic and N-doped cases 
with defect concentrations of (a) 1019 cm− 3 and (b) 1021 cm− 3. Note that both 
the intrinsic and extrinsic cases include anharmonic and isotope effects on κ, 
while the latter also includes ph-el and ph-def scattering individually 
and together. 

Fig. 5. Spectral contributions to κ at 300 K for the intrinsic and B-doped cases 
with defect concentrations of (a) 1019 cm− 3 and (b) 1021 cm− 3. Note that both 
the intrinsic and extrinsic cases include anharmonic and isotope effects on κ, 
while the latter also includes ph-el and ph-def scattering individually 
and together. 

Fig. 6. Comparison of the κ reduction at 300 K for extrinsic N- and B-doped 
cases due to ph-el and ph-def scattering individually and together at various 
defect concentration from 1016 to 1021 cm− 3. The measured data is taken from 
ref. [9]. 
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temperature, indicating that considering ph-el scattering alone can 
reproduce the κ reduction over the entire temperature range. When that 
doping level is increased up to 1020 cm− 3, ph-def scattering becomes 
important for decreasing κ, with an effect comparable to the ph-el 
scattering below 300 K. In the BC case, the ph-el scattering remains 
negligible over the whole temperature range at these two defect 
concentrations. 

It is interesting to note that BC at a concentration of 1019 cm− 3 leads 
to the same amount of reduction in κ as the NC case at 1020 cm− 3 does 
around 400 K. As the ph-def scattering is T-independent and the intrinsic 
anharmonic scattering increases linearly with T, the relative κ suppres-
sion becomes weaker at higher temperatures. This is evident in the BC 
case. Considering that the ph-el scattering increasing with T plays a role 
in the NC case, the κ decreases faster than in BC case, thus leading to a 
smaller κ above 400 K in the NC case with a concentration of 1020 cm− 3. 

We expect that the findings for cubic SiC can be applied to other 
polytypes with lower defect ionization energies, since ph-el scattering 

rates are positively correlated with carrier concentrations and unusually 
strong ph-def scattering only appears in very particular circumstances 
[65]. We now present a case study of hexagonal phase 4H–SiC [69,70]. 
We compare the rates of intrinsic three-phonon, ph-el and ph-def scat-
tering with Cdef = 1020 cm− 3 at room temperature in Fig. 8. In the 
B-doped case, The ionization energy of B defects (~0.65 eV) [71] is 
much larger, which leads to weak ph-el scattering rates that can be 
naturally excluded due to the very small carrier concentrations. There-
fore, we only need to consider ph-def scattering of neutral defects, whose 
rates are comparable to three-phonon scattering rates. In contrast, the N 
defect ionization energy is lower (~0.07 eV) [71] and we evaluated both 
ph-el and ph-def scattering rates in this case. In the low frequency range 
where phonons contribute the most to κ, the rates of ph-el scattering and 
ph-def scattering from neutral defects are comparable to those from 
three-phonon processes. Therefore, one can expect that ph-el and ph-def 
scattering should also be significant for κ reduction of highly N-doped 
4H–SiC, in contrast to the B-doped case. 

5. Conclusion 

From first principles calculations, the κ of highly N- and B-doped 
3C–SiC has been studied by combining the extrinsic ph-def and ph-el 
scattering along with the intrinsic anharmonic and isotope scattering. 
In the N-doped case, at low N concentrations below 1019 cm− 3, the κ 
reduction is attributed to low frequency phonons, which are affected by 
ph-el scattering exclusively. For the higher N defect concentrations, the 
reduced contribution from the high frequency phonons caused by the 
ph-def scattering primarily account for the κ reduction. Even so, the κ 
reduction can be accurately obtained only when both scattering are 
considered at high defect concentrations. In the case of B doping, the κ 
reduction can be attributed to the ph-def scattering alone over the entire 
concentration range, due to stronger ph-def scattering and weaker ph-el 
scattering as compared to the N doped case. As was revealed previously, 
the stronger phonon scattering by neutral B defects results from the 
proximity of several minima in the potential energy surface. The much 
larger ionization energy of B acceptors than N donors results in much 
weaker ph-el scattering in B-doped 3C–SiC with the same defect con-
centration, though the ph-el scattering are much stronger in the B-doped 
than in the N-doped case with the same carrier concentration nc. We 
expect that the similar features can be found in other polytypes with low 
defect ionization energies. 
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Fig. 7. Temperature dependence (200–700 K) of κ for the N- and B-doped cases 
with defect concentrations of 1019 and 1020 cm− 3. These cases include ph-def 
and ph-el scattering individually and together. 

Fig. 8. Phonon-defect (ph-def) scattering rates of neutralB0
C, neutral N0

C and 
charged N+1

C defects at defect concentration (Cdef) of 1020 cm− 3, together with 
the corresponding phonon-electron (ph-el) scattering rates with electron con-
centration of 7 × 1018 cm− 3 and three-phonon (3ph) scattering rates at 300 K 
in 4H–SiC. 
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