000133125 001__ 133125
000133125 005__ 20240322124130.0
000133125 0247_ $$2doi$$a10.1016/j.eti.2024.103586
000133125 0248_ $$2sideral$$a137786
000133125 037__ $$aART-2024-137786
000133125 041__ $$aeng
000133125 100__ $$0(orcid)0000-0002-1401-7511$$aMoles, Samuel$$uUniversidad de Zaragoza
000133125 245__ $$aPilot plant approach combining photocatalysis and adsorption for antibiotics removal from slaughterhouse and urban wastewater treatment plant effluents
000133125 260__ $$c2024
000133125 5060_ $$aAccess copy available to the general public$$fUnrestricted
000133125 5203_ $$aThe main objective of this research is to perform a real case-study of antibiotic decontamination from real slaughterhouse and wastewater effluents by applying a sequential treatment of TiO2/UV–vis photocatalysis and adsorption. More precisely, the removal of five classes of antibiotics: enrofloxacin, sulfadiazine, trimethoprim, azithromycin, amoxicillin and amoxicillin degradation products was studied in an 80 L/h photocatalytic and adsorption pilot-scale plant over multiple cycles, operating in semi-continuous mode. The results exhibited significant removal rates, ranging from 77% to 100% for the slaughterhouse effluent, and 61–89% for the wastewater treatment plant effluent, thus demonstrating that the treatment is more effective when it is applied directly in the emission source, previous to antibiotic dilution in the municipal collector. Using the two processes sequentially results in greater efficiency than when they are used in isolation. After photocatalysis, antibiotic degradation products are easily adsorbed, since they have more affinity for the adsorbent, and the presence of competing compounds decreases considerably. After applying several cycles of treatment, the adsorption performance remains almost constant. By contrast, the photocatalysis performance decreased, which was attributed to catalyst agglomeration determined by Asymmetric Flow Field-Flow Fractionation (AF4) coupled with Dynamic Light Scattering (DLS) and Inductively Coupled Plasma Mass Spectrometry (ICP-MS).
000133125 536__ $$9info:eu-repo/grantAgreement/ES/DGA/T51-17R$$9info:eu-repo/grantAgreement/EUR/INTERREG-POCTEFA/OUTBIOTICS-EFA183/16
000133125 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000133125 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000133125 700__ $$0(orcid)0000-0003-3014-0322$$aOrmad, Maria P.$$uUniversidad de Zaragoza
000133125 700__ $$aGomez, Jairo
000133125 700__ $$aSzpunar, Joanna
000133125 700__ $$aBolea, Eduardo
000133125 700__ $$0(orcid)0000-0002-7456-4912$$aMosteo, Rosa$$uUniversidad de Zaragoza
000133125 7102_ $$15005$$2790$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Tecnologi. Medio Ambiente
000133125 773__ $$g34 (2024), 103586 [12 pp.]$$tEnvironmental Technology and Innovation$$x2352-1864
000133125 8564_ $$s1951225$$uhttps://zaguan.unizar.es/record/133125/files/texto_completo.pdf$$yVersión publicada
000133125 8564_ $$s1918721$$uhttps://zaguan.unizar.es/record/133125/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000133125 909CO $$ooai:zaguan.unizar.es:133125$$particulos$$pdriver
000133125 951__ $$a2024-03-22-09:47:25
000133125 980__ $$aARTICLE