000133137 001__ 133137
000133137 005__ 20250923084415.0
000133137 0247_ $$2doi$$a10.1007/s13398-023-01541-4
000133137 0248_ $$2sideral$$a137818
000133137 037__ $$aART-2024-137818
000133137 041__ $$aeng
000133137 100__ $$aBeites, Patricia D.
000133137 245__ $$aShort (SL2 x SL2)-structures on Lie algebras
000133137 260__ $$c2024
000133137 5060_ $$aAccess copy available to the general public$$fUnrestricted
000133137 5203_ $$aS-structures on Lie algebras, introduced by Vinberg, represent a broad generalization of the notion of gradings by abelian groups. Gradings by, not necessarily reduced, root systems provide many examples of natural S-structures. Here we deal with a situation not covered by these gradings: the short (SL2xSL2)-structures, where the reductive group is the simplest semisimple but not simple reductive group. The algebraic objects that coordinatize these structures are the J-ternary algebras of Allison, endowed with a nontrivial idempotent.
000133137 536__ $$9info:eu-repo/grantAgreement/ES/AEI/PID2021-123461NB-C22$$9info:eu-repo/grantAgreement/ES/DGA/E22-20R$$9info:eu-repo/grantAgreement/ES/DGA/S60-20R$$9info:eu-repo/grantAgreement/ES/MCINN/PID2021-123461NB-C21
000133137 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000133137 590__ $$a1.6$$b2024
000133137 592__ $$a0.922$$b2024
000133137 591__ $$aMATHEMATICS$$b53 / 483 = 0.11$$c2024$$dQ1$$eT1
000133137 593__ $$aAlgebra and Number Theory$$c2024$$dQ1
000133137 593__ $$aAnalysis$$c2024$$dQ1
000133137 593__ $$aGeometry and Topology$$c2024$$dQ1
000133137 593__ $$aComputational Mathematics$$c2024$$dQ1
000133137 593__ $$aApplied Mathematics$$c2024$$dQ1
000133137 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000133137 700__ $$0(orcid)0000-0002-7578-9574$$aCórdova-Martínez, Alejandra S.
000133137 700__ $$aCunha, Isabel
000133137 700__ $$0(orcid)0000-0002-6497-2162$$aElduque, Alberto$$uUniversidad de Zaragoza
000133137 7102_ $$12006$$2005$$aUniversidad de Zaragoza$$bDpto. Matemáticas$$cÁrea Algebra
000133137 773__ $$g118 (2024), 45 [21 pp.]$$pRev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat.$$tRevista de la Real Academia de Ciencias Exactas, Fisicas y Naturales - Serie A: Matematicas$$x1578-7303
000133137 8564_ $$s423964$$uhttps://zaguan.unizar.es/record/133137/files/texto_completo.pdf$$yVersión publicada
000133137 8564_ $$s1342491$$uhttps://zaguan.unizar.es/record/133137/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000133137 909CO $$ooai:zaguan.unizar.es:133137$$particulos$$pdriver
000133137 951__ $$a2025-09-22-14:32:19
000133137 980__ $$aARTICLE