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Lie algebras. Arbitrary PI Jordan 3-graded Lie algebras are also described by 
introducing the Kostrikin radical of the Lie algebras.
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1. Introduction

One of the main structure theorems of associative PI-algebras is Posner theorem for prime associative 
algebras. The classical, associative, version of this theorem states that any prime ring satisfying a polynomial 
identity over its centroid is a Goldie ring and it has a primitive PI ring of quotients [5].

A Jordan analogue of Posner, or more accurately of Posner-Rowen, theorem was settled in [20] for strongly 
Jordan systems having local algebras satisfying polynomial identities. This result was named Posner-Rowen, 
instead of Posner theorem, since it makes use of the notion of extended central closure that replaces that 
of the classical central closure construction for Jordan systems. This result was later extended in [21], since 
as conjectured in [20], extended centroids of strongly prime homotope PI Jordan systems coincide with the 
field of fractions of their centroids.

In the associative pair setting, the classical results of the associative PI-theory have been recently extended 
in [23] to associative pairs. These results include, aimed by [19], the treatment of the notion of PI-element 
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for associative pair, and also associative pair analogue of Amitsur (already proved in [22]), Kaplansky and 
Martindale theorem, and also that of Posner-Rowen theorem for prime associative pairs satisfying homotope 
polynomial identities, which is again formulated in terms of central closures of the associative pairs and 
those of their standard embeddings.

In this paper we address the structure theorems of Jordan 3-graded Lie algebras satisfying 3-graded poly-
nomial identities, more precisely, we consider the Jordan 3-graded Lie analogue of Posner-Rowen theorem. 
Given the available results for strongly prime homotope PI Jordan pairs proved in [20], and the fact that 
Jordan PI pairs are homotope PI [22], there are two more issues to be tackled. The first one, the relationship 
between Jordan 3-graded Lie algebras and Jordan pairs is settled by the Tits-Kantor-Koecher construction 
[8–12,27], that provides us with a suitable channel connecting Jordan and 3-graded Lie constructions, as for 
instance, those of the extended centroids and (extended) central closures. The second issue is to ensure that 
the considered 3-graded Lie polynomial identities are smoothly transferred to the associated Jordan pairs. 
To do this we will consider the relationship, again established through the Tits-Kantor-Koecher construc-
tion, between the corresponding Lie and Jordan free objects, to check that there exists a operant version of 
3-graded Lie polynomial identity, named essential identity [29], that allows us to transfer the PI condition 
from Jordan 3-graded Lie algebras to their associated Jordan pairs.

After this introductory section, and a section of preliminaries, in the third section we settle the relationship 
between the extended centroid of a nondegenerate Jordan pair and that of its TKK-algebra. The natural 
isomorphism between both constructions obtained in this section, is considered in section four to prove the 
existence of an isomorphism between the central closure of the TKK-algebra and the TKK-algebra of the 
extended central closure of a nondegenerate Jordan pair.

We recall here that the notions of extended centroid and central closure were first developed to study 
prime associative rings satisfying generalized polynomial identities [15], and later extended to the non-
associative framework in [2,3]. The Jordan counterpart of these constructions, named extended centroid and 
extended central closure were introduced in [20], precisely aimed to study Jordan systems having nonzero 
local algebras satisfying polynomial identities. One of the main results in [20] is precisely the Jordan version 
of Posner-Rowen theorem for strongly prime Jordan pairs, formulated in terms of the extended central 
closure of the Jordan pairs.

In section five we settle the operative version of polynomial identity we consider here for Jordan 3-graded 
Lie algebras. Being our purpose to take advantage of the available results for PI Jordan pairs proved in 
[20,22], it becomes necessary to ensure that the condition of being a PI-algebra can be smoothly transferred 
through the TKK-construction, that is, that the 3-graded polynomial identities satisfied by the Jordan 
3-graded Lie algebras generate essential identities of their associated Jordan pairs [20, 0,12]. To ensure this, 
we consider the notion of essential polynomial identity [29], and characterize essential 3-graded polynomial 
identities as those 3-graded polynomials of the free 3-graded Lie algebra [24] not vanishing on some special 
Lie algebra sl(n). This condition ensures us that such a 3-graded polynomial identity of a Jordan 3-graded 
Lie algebra produces an essential Jordan polynomial identity for the associated Jordan pair.

The last two sections of this paper are devoted to study Jordan 3-graded Lie algebras satisfying essential 
3-graded polynomial identities. In section six we assume these Lie algebras to be strongly prime, and 
therefore the TKK-algebras of their associated Jordan pairs, which then result to be also strongly prime [4]. 
Then the isomorphism obtained in section four relating TKK-constructions and (extended) central closures 
together to the Jordan version of Posner-Rowen theorem [20], provide us with a Jordan 3-graded Lie version 
of Posner-Rowen theorem for strongly prime Lie algebras. Additionally, considering all involved objects 
defined over a base field of characteristic zero or prime at least five, Zelmanov’s description of Lie algebras 
with a finite nontrivial Z-grading [29] applies here providing an accurate description of the central closures 
of the Jordan 3-graded Lie algebras satisfying essential 3-graded polynomial identities.

Finally, we describe general Jordan 3-graded Lie algebras satisfying essential 3-graded polynomial iden-
tities, under no additional regularity requirements. To do this, we divide by suitable radical ideals that 
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provide us with nondegenerate quotient Lie algebras and Jordan pairs. This is the case of the Kostrikin 
radical of a Lie algebra [28], that we prove here to be related, when the Lie algebra is assumed to be Jordan 
3-graded, to the McCrimmon radical of its associated Jordan pair [17]. McCrimmon radical is precisely the 
Jordan radical that gives rise to nondegenerate quotient Jordan pairs.

Considering the quotient of a Jordan 3-graded Lie algebra by its Kostrikin radical, that turns easily 
out to be 3-graded, provides us with a nondegenerate Jordan 3-graded Lie algebra that can be written as 
a subdirect product of strongly prime Jordan 3-graded Lie algebras, all of them still satisfying the same 
essential polynomial identity, and therefore isomorphic to one of the algebras listed in the Jordan 3-graded 
version of the Posner-Rowen theorem obtained in the previous section.

2. Preliminaries

We will work with Jordan pairs and Lie algebras over Φ, a unital commutative ring containing 1
2 that 

will be fixed throughout. We refer to [6,14] for basic notation, terminology and results on Jordan pairs and 
Lie algebras.

2.1. Jordan pairs and Lie algebras

A Jordan pair V = (V +, V −) has products Qxy for x ∈ V σ and y ∈ V −σ, σ = ±, with linearizations 
Qx,zy = Dx,yz = {x, y, z} = Qx+zy −Qxy −Qzy.

A Lie algebra is a Φ-module L with a bilinear product, denoted [x, y], satisfying [x, x] = 0 and the Jacobi 
identity [[x, y], z] + [[y, z], x] + [[z, x], y] = 0 for all x, y, z ∈ L.

2.2. Jordan 3-graded Lie algebras

A Lie algebra L is 3-graded if it admits a decomposition L = L1 ⊕L0 ⊕L−1, where Li is a Φ-submodule 
of L, for i ∈ {0, ±1} and [Li, Lj ] ⊆ Li+j , with Li+j = 0 if i + j /∈ {0, ±1}. A 3-graded Lie algebra 
L = L1 ⊕ L0 ⊕ L−1 is Jordan 3-graded if [L1, L−1] = L0, and the pair (L1, L−1) admits a Jordan pair 
structure defined by {x, y, z} = [[x, y], z], for any x, z ∈ Lσ, y ∈ L−σ, σ = ±. Then V = (L1, L−1) is called 
the Jordan pair associated to L [25, 1.5].

Since 1
2 ∈ Φ, by [14, Proposition 2.2(a)], any Jordan 3-graded Lie algebra L determines a Jordan product 

on V = (L1, L−1) given by Qxy = 1
2{x, y, x} = 1

2 [[x, y], x]. If, moreover, 1
6 ∈ Φ, by [14, Proposition 2.2(b)], 

any 3-graded Lie algebra L = L1 ⊕L0 ⊕L−1 defines a Jordan pair structure on (L1, L−1). Indeed, if 1
6 ∈ Φ, 

any pair of Φ-modules (L1, L−1) endowed with trilinear mappings

{ , , } : Lσ × L−σ × Lσ → Lσ

(x, y, z) �→ {x, y, z} = D(x, y)z

satisfying

(i) {x, y, z} = {z, y, x},
(ii) [D(x, y), D(u, v)] = D({x, y, u}, v) −D(u, {y, x, v}),

for all x, z, u ∈ Lσ, y, v ∈ L−σ, σ = ±, has a Jordan pair structure.
Any Jordan pair V defines a Jordan 3-graded Lie algebra given by the Tits-Kantor-Koecher construction, 

that for any Jordan pair V = (V +, V −) gives rise to a 3-graded Lie algebra L = L1⊕L0⊕L−1 with L1 = V +

and L−1 = V −. These Lie algebras were (independently) introduced by Kantor [8–10], Koecher [11,12] and 
Tits [27], and also studied by Meyberg in [18]. We refer to [4, 11.2] for accurate details on this construction 
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and write TKK(V ) = V + ⊕ IDerV ⊕ V − for the TKK-Lie algebra of a Jordan pair V , where IDerV is the 
ideal of the Lie algebra of derivations DerV of V generated by the inner derivations δ(x, y) := (Dx,y, −Dy,x)
of V , for all x ∈ V +, y ∈ V −.

Remark 2.1. The relationship between Jordan 3-graded Lie algebras and TKK-algebras was settled by 
Neher in [25, 1.5(6)]. For any Jordan 3-graded Lie algebra L with associated Jordan pair V , it holds that 
TKK(V ) ∼= L/CV , where CV = {x ∈ L0 | [x, L1] = 0 = [x, L−1]} = Z(L) ∩L0 and Z(L) = {x ∈ L | [x, L] =
0} denotes the center of L.

2.3. Z-graded Lie algebras

A Lie algebra L is Z-graded if there exists a decomposition L =
∑

n∈Z Ln, where Ln is a Φ-submodule of 
L for all n ∈ Z, and [Li, Lj ] ⊆ Li+j for i, j ∈ Z. Such a grading is finite if the set {n ∈ Z | Ln 	= 0} is finite, 
and nontrivial if 

∑
n �=0 Ln 	= 0. TKK-algebras of Jordan pairs are Z-graded Lie algebras L = L−1 +L0 +L1, 

with L−1 = V −, L0 = IDerV, L1 = V + and Li = 0 for |i| > 1 [29].

2.4. Ideals

An ideal I of a Jordan pair V is called essential if it has nontrivial intersection with any nonzero ideal 
of V . Essential ideals of nondegenerate Jordan pairs are those having zero annihilator. Similarly, an ideal 
I of a Lie algebra L is essential if and only if it has nontrivial intersection with any nonzero ideal of L. 
Essential ideals of semiprime Lie algebras are those with zero centralizer. Regularity conditions, such as 
(semi)primeness, nondegeneracy or simplicity can be transferred between Jordan pairs and their TKK-
algebras [4, Proposition 11.25].

2.5. Extended centroid and central closure

The notions of extended centroid and central closure were first introduced to study prime rings satisfying 
generalized polynomials identities [15], and later generalized to nonassociative rings [2,3].

Let L be a semiprime Lie algebra. We denote by Ad(L) the subalgebra of EndΦ(L) generated by ad(L) =
{ad x | x ∈ L}. A pair (f, I) is a permissible map of L if I is an essential ideal of L and f : I → L is an 
additive map that commutes with all elements of Ad(L). Following [2,3] we will say that two permissible 
maps (f1, I1) and (f2, I2) of a Lie algebra L are equivalent if there exists an essential ideal I of L, contained 
into I1 ∩ I2, such that f1(x) = f2(x) for all x ∈ I. This defines an equivalence relation on the set of 
permissible maps of L. We will denote by (f, I) the equivalence class determined by the permissible map 
(f, I), and by C(L) the set of all equivalence classes of permissible maps of L. The set C(L) is called the 
extended centroid of L. If L is a semiprime Lie algebra, then C(L) is a von Neumann regular unital algebra 
[2, Theorem 2.5].

Extended centroids of quadratic Jordan systems were introduced in [20]. Let V be a Jordan pair and 
U = (U+, U−) an ideal of V . A pair g = (g+, g−) of linear mappings gσ : Uσ → V σ, σ = ±, is a 
V -homomorphism of V if for all yσ ∈ Uσ, xσ, zσ ∈ V σ:

(a) gσ(Qxσy−σ) = Qxσg−σ(y−σ),
(b) gσ(QIσV −σ) ⊆ Iσ and (gσ)2(Qyσx−σ) = Qgσ(yσ)x

−σ,
(c) gσ({yσ, z−σ, xσ}) = {gσ(yσ), z−σ, xσ}.

We denote by HomV (U, V ) the set of all V -homomorphisms from U into V [20, 1.1]. A pair (g, U) is a 
permissible map of V if U is an essential ideal of V .
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Two permissible maps (g1, U1) and (g2, U2) of a Jordan pair V are equivalent, denoted by (g1, U1) ∼
(g2, U2), if there exists an essential ideal U of V , contained into U1 ∩ U2, such that gσ1 (x) = gσ2 (x) for all 
x ∈ Uσ, σ = ±. Again, this defines an equivalence relation, with classes denoted by [g, U ], on the set of all 
permissible maps of V , with quotient set C(V ) called the extended centroid of V . The extended centroid 
C(V ) of a nondegenerate Jordan pair V is a commutative, associative, unital (von Neumann) regular algebra 
[20, Theorem 1.15, Proposition 2.7].

Let (g, U) be a permissible map of a Jordan pair V , and K a nonzero ideal of V contained in U . We will 
say that g restricts to K if gK ∈ HomV (K, V ), where gK denotes the restriction of g to K. A necessary 
and sufficient condition for g to restrict to K is gσ(QKσV −σ) ⊆ Kσ, σ = ± [20, p. 484].

The corresponding escalar extension given by the extended centroid is called central closure. We refer 
the reader to [2] for the construction of the central closure C(L)L of a semiprime Lie algebra L, and to [20]
for that of the extended central closure C(V )V of a nondegenerate Jordan pair V .

3. The extended centroid of the TKK-algebra of a nondegenerate Jordan pair

This section is aimed to study the relationship between the extended centroid of a nondegenerate Jordan 
pair V and that of its TKK-algebra TKK(V ).

Remark 3.1. Let L be a Jordan 3-graded Lie algebra with associated Jordan pair V . The following assertions 
are straightforward:

(i) For any ideal I of L, I ∩ V = (I ∩ V +, I ∩ V −) and π(I) = (π+(I), π−(I)) are ideals of V such that 
π(I)3 ⊆ I ∩ V ⊆ π(I), where πσ denotes the canonical projections of L on Lσ, σ = ±. Thus, if V is 
semiprime and I nonzero, then I ∩ V is a nonzero ideal of V .

(ii) If U = (U+, U−) is a nonzero ideal of V , then I(U) = U+ ⊕ ([U+, V −] + [V +, U−]) ⊕ U− is a nonzero 
ideal of L.

Lemma 3.2. Let V be a semiprime Jordan pair.

(i) If I is an essential ideal of TKK(V ), then I ∩ V is an essential ideal of V .
(ii) If U = (U+, U−) is an essential ideal of V , then I(U) is an essential ideal of TKK(V ).

Proof. (i) Let K be a nonzero ideal of V . Then, since I(K) is a nonzero ideal of TTK(V ), by the essentiality 
of I, we have that I ∩I(K) is a nonzero ideal of TKK(V ). Therefore, by 3.1(i), it holds that 0 	= I ∩I(K) ∩
V = (I ∩ V ) ∩K. Hence I ∩ V is an essential ideal of V .

(ii) Let now K be a nonzero ideal of L. By 3.1(i), K ∩ V is a nonzero ideal of V and thus, by the 
essentiality of U , it holds that U ∩ (K ∩ V ) = U ∩ K 	= 0. Therefore 0 	= Uσ ∩ K ⊆ I(U) ∩ K, for some 
σ = ±, implying that I(U) is an essential ideal of TKK(V ). �
Remark 3.3.

(i) Lemma 3.2 applies, in particular, to nondegenerate Jordan pairs, since, by [1, p. 212], nondegenerate 
Jordan pairs are semiprime.

(ii) Taking advantage of the 3-grading of the TKK-algebras, it follows from Lemma 3.2(i), that any essential 
ideal I of the TKK-algebra of a semiprime Jordan pair V , contains an essential ideal of the form I(U), 
for an essential ideal U of V . Indeed, it suffices to consider U = I ∩ V .
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3.1. Product of ideals

Given two ideals K = (K+, K−) and I = (I+, I−) of a Jordan pair V , the product K ∗ I = (QK+I− +
QV +QK−I+, QK−I+ + QV −QK+I−) is an ideal of V . If K = V , then we have V ∗ I = (QV +I−, QV −I+)
[16, p. 221].

Lemma 3.4. Let I be an ideal of the TKK-algebra of a Jordan pair V . Then Ĩ = I
(
V ∗(π+(I), π−(I))

)
, where 

πσ denotes the canonical projections from TKK(V ) onto TKK(V )σ, σ ∈ {0, ±}, is an ideal of TKK(V )
such that:

(i) Ĩ ⊆ I,
(ii) Ĩ ∩ V = V ∗ (π+(I), π−(I)) = π(Ĩ).

Moreover, if V a is nondegenerate Jordan pair, then I is essential if and only if Ĩ is essential.

Proof. Let I be an ideal of TKK(V ). We first note that, by 3.1(i), π(I) = (π+(I), π−(I)) is an ideal of V
that contains I ∩ V .

Take now l ∈ TKK(V ) and elements xσ, zσ ∈ TKK(V )σ, σ = ±. Since by the 3-grading of TKK(V )
we have {xσ, π−σ(l), zσ} = [[xσ, π−σ(l)], zσ] = [[xσ, l], zσ], it follows from 3.1 that V ∗ (π+(I), π−(I)) is an 
ideal of V such that:

V ∗ (π+(I), π−(I)) =
(
QV +π−(I), QV −π+(I)

)
=

=
(
{V +, π−(I), V +}, {V −, π+(I), V −}

)
=

=
(
[V +, [V +, I]], [V −, [V −, I]]

)
.

By 3.1(ii), Ĩ = I
(
V ∗ (π+(I), π−(I))

)
is an ideal of TKK(V ), clearly contained in I, and by the 3-grading 

of Ĩ it holds that Ĩ ∩ V = V ∗ (π+(I), π−(I)). Hence Ĩ ∩ V = V ∗ (π+(I), π−(I)) = π(Ĩ).
Assume now that the Jordan pair V is nondegenerate, and let I be an essential ideal of TKK(V ). Then, 

by Lemma 3.2, I ∩ V is an essential ideal of V and, since I ∩ V ⊆ π(I), it follows that π(I) is also essential 
in V . Then, by [20, Lemma 1.2(a)], V ∗ (π+(I), π−(I)) is an essential ideal of V , and by Lemma 3.2(ii) we 
obtain that Ĩ is essential in TKK(V ). The converse follows from the fact that Ĩ ⊆ I. �
Remark 3.5. Let V be a nondegenerate Jordan pair, and let λ = (f, I) ∈ C(TKK(V )). By Lemma 3.4, 
the pair (fĨ , Ĩ), where Ĩ = I

(
V ∗ (π+(I), π−(I))

)
, is a permissible map such that λ = (f, I) = (fĨ , Ĩ) [2, 

Corollary 2.3]. Thus, since f
(
[V σ, [V σ, I]]

)
= [V σ, [V σ, f(I)]] ⊆ V σ and

f
(
[[V +, [V +, I]], V −] + [V +, [V −, [V −, I]]]

)
=

= [[V +, [V +, f(I)]], V −] + [V +, [V −, [V −, f(I)]]] ⊆ [V +, V −],

replacing (f, I) by (fĨ , Ĩ), if necessary, for any λ = (f, I) ∈ C(TKK(V )) we will assume that I is a 3-graded 
essential ideal of TKK(V ) such that f(Iσ) ⊆ TKK(V )σ, σ ∈ {0, ±1}, that is, f is a 3-graded map.

Proposition 3.6. Let TKK(V ) be the TKK-algebra of a nondegenerate Jordan pair V . Then the map:

Ψ : C(TKK(V )) → C(V )
(f, I) �→ [fI∩V , I ∩ V ]

defines a ring homomorphism from the extended centroid C(TKK(V )) of TKK(V ) to the extended centroid 
C(V ) of V .
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Proof. Let λ = (f, I) ∈ C(TKK(V )), where (f, I) is a permissible map of TKK(V ) as in Remark 3.5, so 
that I is a 3-graded essential ideal of TKK(V ) and f(Iσ) ⊆ V σ for σ = ±.

Let us denote fσ = fIσ , and take xσ, zσ ∈ V σ and yσ ∈ Iσ, for σ = ±. Clearly fI∩V is a linear map, and 
since we are assuming I ∩ V σ = πσ(I), it holds that:

fσ(Qxσy−σ) = fσ
(1

2 [[xσ, y−σ], xσ]
)

= f
(1

2 [[xσ, y−σ], xσ]
)

=

= 1
2[[xσ, f(y−σ)], xσ] = 1

2 [[xσ, f−σ(y−σ)], xσ] = Qxσf−σ(y−σ).

Moreover, since:

fσ
(
QIσV −σ

)
⊆ fσ

([
[Iσ, V −σ], Iσ

])
= f

([[
Iσ, V −σ

]
, Iσ

])
=

=
[[
f(Iσ), V −σ

]
, Iσ

]
⊆

[[
V σ, V −σ

]
, Iσ

]
=

{
V σ, V −σ, Iσ

}
⊆ Iσ,

it follows that:

(fσ)2(Qyσx−σ) = (fσ)2(1
2 [[yσ, x−σ], yσ]) = f2(1

2 [[yσ, x−σ], yσ]) =

= 1
2f([[f(yσ), x−σ], yσ]) = 1

2 [[f(yσ), x−σ], f(yσ)] =

= 1
2[[fσ(yσ), x−σ], fσ(yσ)] = Qfσ(yσ)x

−σ,

and, finally, we also have:

fσ
(
{yσ, z−σ, xσ}

)
= fσ

(
[[yσ, z−σ], xσ]

)
= f

(
[[yσ, z−σ], xσ]

)
=

= [[f(yσ), z−σ], xσ] = [[fσ(yσ), z−σ], xσ] = {fσ(yσ), z−σ, xσ}.

Hence (fI∩V , I ∩ V ) is a V -homomorphism, and therefore, by the essentiality of I ∩ V , it is a permissible 
map of V .

We next claim that Ψ is well-defined. To prove this claim, let (f1, I1) and (f2, I2) be permissible maps 
of TKK(V ) such that (f1, I1) = (f2, I2) in C(TKK(V )). By Remark 3.5 and [2, Corollary 2.3], we can 
assume that I = I1 ∩ I2 is an essential 3-graded ideal of TKK(V ) such that (f1)I = (f2)I . Therefore, for 
all xσ ∈ I ∩ V σ it holds that (f1)σ(xσ) = f1(xσ) = f2(xσ) = (f2)σ(xσ), that results into 

(
(f1)I1∩V , I1 ∩ V

)
and 

(
(f2)I2∩V , I2 ∩ V

)
being equivalent permissible maps of V by [20, 1.4]. Thus Ψ is a well-defined map.

Let now λ1 = (f1, I1) and λ2 = (f2, I2) ∈ C(TKK(V )). By [2, p. 1108] and Remark 3.5, λ1 + λ2 =(
(f1)I1∩I2 + (f2)I1∩I2 , I1 ∩ I2

)
, and therefore,

Ψ(λ1 + λ2) =
[(

(f1)I1∩I2 + (f2)I1∩I2

)
I1∩I2∩V

, I1 ∩ I2 ∩ V
]
,

whereas, on the other hand, by [20, 1.11],

Ψ(λ1) + Ψ(λ2) =
[
(f1)I1∩V , I1 ∩ V

]
+

[
(f2)I2∩V , I2 ∩ V

]
=

=
[
(f1)K + (f2)K ,K

]
,

where, by [20, Lemma 1.2(a)], K = (I1 ∩ I2 ∩ V ) ∗ V is an essential ideal of V contained in I1 ∩ I2 ∩ V . 
Therefore, since fi(Iσi ) ⊆ V σ, σ = ±, i = 1, 2, for all kσ ∈ Kσ we have 

(
(f1)I1∩I2 + (f2)I1∩I2

)
I1∩I2∩V

(kσ) =(
(f1)K + (f2)K

)
(kσ) and, consequently, Ψ(λ1 + λ2) = Ψ(λ1) + Ψ(λ2) by [20, Lemma 1.10]. Hence the map 

Ψ is additive.
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To prove that Ψ is a multiplicative map, we note that by [2, p. 1108] λ1λ2 =
(
f1f2, f

−1
2 (I1)

)
and therefore 

Ψ(λ1λ2) =
[
(f1f2)f−1

2 (I1)∩V , f
−1
2 (I1) ∩ V

]
, whereas, by [20, 1.13], we have:

Ψ(λ1)Ψ(λ2) =
[
(f1)I1∩V , I1 ∩ V

][
(f2)I2∩V , I2 ∩ V

]
=

[
(f1f2)K∗V ,K ∗ V

]
,

for the essential ideal K = (I1 ∩ I2 ∩ V ) ∗ V of V [20, Lemma 1.2(a)]. We claim that both Ψ(λ1λ2) and 
Ψ(λ1)Ψ(λ2) can be restricted to the essential ideal (f−1

2 (I1) ∩ V ) ∩ (K ∗ V ) of V .
To prove this claim we first note that, by Remark 3.5, f2(Iσ2 ) ⊆ V σ which implies that f−1

2 (I1) ∩V σ ⊆ Iσ2 , 
and since (I1 ∩ I2 ∩ V )σ = Iσ1 ∩ Iσ2 , we also have (K ∗ V )σ ⊆ Iσ1 ∩ Iσ2 . Then:(

(f−1
2 (I1) ∩ V ) ∩ (K ∗ V )

)σ

= (f−1
2 (I1) ∩ V σ) ∩ (K ∗ V )σ = f−1

2 (I1) ∩ (K ∗ V )σ,

and it follows that:

(f1f2)σ
(
Qf−1

2 (I1)∩(K∗V )σV
−σ

)
=

= (f1f2)σ
([[

f−1
2 (I1) ∩ (K ∗ V )σ, V −σ

]
, f−1

2 (I1) ∩ (K ∗ V )σ
])

=

= (f1f2)
([[

f−1
2 (I1) ∩ (K ∗ V )σ, V −σ

]
, f−1

2 (I1) ∩ (K ∗ V )σ
])

=

= f1
([[

f2(f−1
2 (I1) ∩ (K ∗ V )σ), V −σ

]
, f−1

2 (I1) ∩ (K ∗ V )σ
])

⊆
⊆ f1

([[
f2(f−1

2 (I1) ∩ V σ), V −σ
]
, f−1

2 (I1) ∩ (K ∗ V )σ
])

⊆
⊆ f1

([[
I1 ∩ V σ, V −σ

]
, f−1

2 (I1) ∩ (K ∗ V )σ
])

=

= f1
([[

Iσ1 , V
−σ

]
, f−1

2 (I1) ∩ (K ∗ V )σ]
)

=

=
[[
f1(Iσ1 ), V −σ

]
, f−1

2 (I1) ∩ (K ∗ V )σ
]
⊆

⊆
[[
V σ, V −σ

]
, f−1

2 (I1) ∩ (K ∗ V )σ
]

=

= {V σ, V −σ, f−1
2 (I1) ∩ (K ∗ V )σ} ⊆ f−1

2 (I1) ∩ (K ∗ V )σ,

implying that Ψ(λ1λ2) can be restricted to the ideal (f−1
2 (I1) ∩ V ) ∩ (K ∗ V ) of V . On the other hand, for 

Ψ(λ1)Ψ(λ2) we have:

((f1)σ(f2)σ)
(
Qf−1

2 (I1)∩(K∗V )σV
−σ

)
=

= ((f1)σ(f2)σ)
([[

f−1
2 (I1) ∩ (K ∗ V )σ, V −σ

]
, f−1

2 (I1) ∩ (K ∗ V )σ
])

=

= (f1)σ
(
(f2)σ

([[
f−1
2 (I1) ∩ (K ∗ V )σ, V −σ

]
, f−1

2 (I1) ∩ (K ∗ V )σ
]))

=

= (f1)σ
(
f2
([[

f−1
2 (I1) ∩ (K ∗ V )σ, V −σ

]
, f−1

2 (I1) ∩ (K ∗ V )σ
]))

⊆
⊆ (f1)σ

([[
f2(f−1

2 (I1) ∩ V σ), V −σ
]
, f−1

2 (I1) ∩ (K ∗ V )σ
])

⊆
⊆ (f1)σ

([[
I1 ∩ V σ, V −σ

]
, f−1

2 (I1) ∩ (K ∗ V )σ
])

=

= f1
([[

I1 ∩ V σ, V −σ
]
, f−1

2 (I1) ∩ (K ∗ V )σ
])

=

=
[[
f1(Iσ1 ), V −σ

]
, f−1

2 (I1) ∩ (K ∗ V )σ
]
⊆

⊆
[[
V σ, V −σ

]
, f−1

2 (I1) ∩ (K ∗ V )σ
]

=

=
{
V σ, V −σ, f−1

2 (I1) ∩ (K ∗ V )σ
}
⊆ f−1

2 (I1) ∩ (K ∗ V )σ.

Therefore both Ψ(λ1λ2) and Ψ(λ1)Ψ(λ2) are permissible maps of V that can be restricted to the es-
sential ideal (f−1

2 (I1) ∩ V ) ∩ (K ∗ V ). Moreover, since fi(Iσi ) = fσ
i (Iσ), both Ψ(λ1λ2) and Ψ(λ1)Ψ(λ2)

agree in (f−1
2 (I1) ∩ V ) ∩ (K ∗ V ). This implies that Ψ is a multiplicative map and, consequently, a ring 

homomorphism. �
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Theorem 3.7. The extended centroid C(V ) of a nondegenerate Jordan pair V is isomorphic to the extended 
centroid C(TKK(V )) of its TKK-algebra TKK(V ).

Proof. Let V be a nondegenerate Jordan pair and let us define the map

Υ : C(V ) → C(TKK(V ))
[(g+, g−), (U+, U−)] �→ (f, I(U))

where f : I(U) → TKK(V ) is defined by

f
(
u+ +

( n∑
i=1

[u+
i , v

−
i ] +

m∑
j=1

[v+
j , u

−
j ]
)

+ u−
)

=

= g+(u+) +
( n∑

i=1
[g+(u+

i ), v−i ] +
m∑
j=1

[v+
j , g

−(u−
j )]

)
+ g−(u−)

for all uσ, uσ
i ∈ Uσ, vσi ∈ V σ, σ = ±.

To prove that f : I(U) → TKK(V ) is well-defined, let uσ
i , uσ

j ∈ Uσ, vσi , vσj ∈ V σ such that ∑n
i=1[uσ

i , v
−σ
i ] +

∑m
j=1[vσj , u

−σ
j ] = 0, and write a =

∑n
i=1[gσ(uσ

i ), v−σ
i ] +

∑m
j=1[vσj , g−σ(u−σ

j )]. Then, for 
all wσ ∈ V σ, σ = ±:

[a,wσ] =
n∑

i=1
{gσ(uσ

i ), v−σ
i , wσ} +

m∑
j=1

{vσj , g−σ(u−σ
j ), wσ} =

= gσ
( n∑
i=1

{uσ
i , v

−σ
i , wσ} +

m∑
j=1

{vσj , u−σ
j , wσ}

)
=

= gσ
([ n∑

i=1
[uσ

i , v
−σ
i ] +

m∑
j=1

[vσj , u−σ
j ], wσ

])
= gσ([0, wσ]) = gσ(0) = 0,

which implies a ∈ Z(TKK(V )). But since, by [4, Proposition 11.25], TKK-algebras of nondegenerate Jordan 
pairs are centerless, it follows that a = 0. Hence the map f : I(U) → TKK(V ) is well-defined.

Now, since, by Lemma 3.4(ii), I(U) is an essential ideal of V , to prove that (f, I(U)) is a permissible 
map of TKK(V ), it suffices to check that [f, ad y](I(U)) = 0 for all y ∈ TKK(V ). Write y = y+ + y0 + y−, 
with y0 =

∑n
i=1 δ(aσi , b

−σ
i ) =

∑n
i=1

(
D(aσi , b−σ

i ), −D(b−σ
i , aσi )

)
for some aσi ∈ V σ and b−σ

i ∈ V −σ. Then, 
for all uσ ∈ Uσ, σ = ±, [f, ad yσ](uσ) = f([yσ, uσ]) − [yσ, f(uσ)] = 0 − [yσ, gσ(uσ)] = 0, and, it holds that 
[f, ad y−σ](uσ) = f([y−σ, uσ]) − [y−σ, f(uσ)] = [y−σ, gσ(uσ)] − [y−σ, gσ(uσ)] = 0. Moreover,

[f, ad y0](uσ) = f([y0, u
σ]) − [y0, f(uσ)] =

= f
(∑

{aσi , b−σ
i , uσ}

)
−

∑
{aσi , b−σ

i , gσ(uσ)} =

=
∑

gσ
(
{aσi , b−σ

i , uσ}
)
−
∑

{aσi , b−σ
i , gσ(uσ)} = 0,

and, given vσ ∈ V σ,

[f, ad yσ]([uσ, v−σ]) = f([yσ, [uσ, v−σ]]) − [yσ, f([uσ, v−σ])] =

= −gσ({yσ, v−σ, uσ}) + {yσ, v−σ, gσ(uσ)} = 0,

and, similarly [f, ad yσ]([vσ, u−σ]) = 0. Finally we have:
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[f, ad y0]([uσ, v−σ]) = f([y0, [uσ, v−σ]]) − [y0, f([uσ, v−σ])] =

=
∑

f
([

{aσi , b−σ
i , uσ}, v−σ

]
−

[
uσ, {b−σ

i , aσi , v
−σ}

])
−

− [y0, [gσ(uσ), v−σ]] =

=
∑([

gσ({aσi , b−σ
i , uσ}), v−σ

]
−
[
gσ(uσ), {b−σ

i , aσi , v
−σ}

])
−

−
∑([

{aσi , b−σ
i , gσ(uσ)}, v−σ

]
−

[
gσ(uσ), {b−σ

i , aσi , v
−σ}

])
= 0,

which implies that [f, ad y](I(U)) = 0, and therefore that the pair (f, I(U)) is a permissible map of 
TKK(V ).

Next we claim that Υ is a well-defined map. To prove this claim let (g1, U1) and (g2, U2) be permissible 
maps of V , such that μ = [g1, U1] = [g2, U2] ∈ C(V ). Using [20, Lemma 1.10], let U be an essential ideal of 
V , contained into U1 ∩U2, such that (g1)U = (g2)U ∈ HomV (U, V ). Therefore [g1, U ] = [g2, U ] in C(V ), and 
consequently Υ([g1, U ]) = (f1, I(U)) and Υ([g2, U ]) = (f2, I(U)) agree on I(U). Hence Υ is well defined.

To complete the proof it suffices to prove that Υ is a two-sided inverse for the map Ψ defined in Proposi-
tion 3.6. Let μ = [g, U ] ∈ C(V ). Since I(U) ∩V = U , by Lemma 3.4, it holds that ΨΥ(μ) = Ψ

( (
f, I(U)

) )
=

[fV ∗U , V ∗ U ]. Thus, since by [20, Lemma 1.9] any permissible map (g, U) of V restricts to V ∗ U , we have 
[fV ∗U , V ∗ U ] = [g, U ], which implies that ΨΥ = idC(V ). Conversely given λ = (f, I) ∈ C(TKK(V )), again 
using Lemma 3.4, we obtain I = I(I ∩ V ) and, therefore that ΥΨ(λ) = Υ([fI∩V , I ∩ V ]) = (f, I), which 
implies that ΥΨ = idC(TKK(V )).

Therefore, Ψ and Υ are mutually inverse ring homomorphisms, defining an isomorphism between the 
extended centroid C(V ) of a nondegenerate Jordan pair V and the extended centroid C(TKK((V )) of its 
TKK-algebra. �
4. The central closure of the TKK-algebra of a nondegenerate Jordan pair

We begin this section recalling some facts that can be found, or easily derived, from [2,3,20].

Remark 4.1. Let L be a semiprime Lie algebra.

(i) Any element x ∈ C(L) ⊗ L admits a (non necessarily unique) representation x =
∑

λi ⊗ ai, where 
λi ∈ C(L), ai ∈ L. A representation 

∑
λi ⊗ ai of x is I-vanishing, for an essential ideal I of L, if there 

exists (fi, I) ∈ λi such that 
∑

[fi(y), p(ai)] = 0 for all y ∈ I, p ∈ Ad(L) [2].
(ii) The central closure C(L)L of L is C(L)L =

(
C(L) ⊗ L

)
/M , where M denotes the set of all I-vanishing 

elements of C(L) ⊗ L for some essential ideal I of L [2, p. 1111]. Moreover, M is the unique ideal of 
C(L) ⊗ L maximal with respect to R ⊆ M and M ∩ (1 ⊗ L) = 0, where R is the ideal of C(L) ⊗ L

generated by all elements of the form λ ⊗ u − 1 ⊗ f(u) with λ = (f, U) and u ∈ U [2, Lemma 2.11].

Lemma 4.2. Let L be the TKK-algebra of nondegenerate Jordan pair V . Then

R =
{∑

(ρiλi ⊗ xi − ρi ⊗ fi(xi)) | ρi, λi ∈ C(L), (fi, Ii) ∈ λi, xi ∈ Ii

}
is a 3-graded ideal of C(L) ⊗ L with respect to the grading induced in C(L) ⊗ L.

Proof. The statement follows from Remark 4.1 and [20, Lemma 3.2]. �
Theorem 4.3. Let V be a nondegenerate Jordan pair. Then, the central closure of the TKK-algebra of V is 
isomorphic to the TKK-algebra of the extended central closure C(V )V of V .



F. Montaner, I. Paniello / Journal of Pure and Applied Algebra 228 (2024) 107543 11
Proof. Let us denote L = TKK(V ) and consider the map:

F : C(L) × L → TKK(C(V )V )
(λ, aσ) �→ Ψ(λ)aσ ∈ C(V )V σ

(λ, δ(x, y)) �→ Ψ(λ)δ(x, y) ∈ IDer(C(V )V )

where λ ∈ C(L), aσ ∈ V σ, σ = ±, δ(x, y) ∈ L0 = IDer V and Ψ is the ring homomorphism defined in 
Proposition 3.6.

It is not difficult to prove that F is a well-defined bilinear map and, using that Ψ is a ring homomorphism, 
it also follows easily that F is a balanced map. That is, for all λ, λ1, λ2 ∈ C(L), lσ ∈ Lσ, lβ ∈ Lβ , σ, β ∈ {0, ±}
and α ∈ Φ, it holds that:

(i) F
(
(λ1 + λ2, lσ) − (λ1, lσ) − (λ2, lσ)

)
= Ψ(λ1 + λ2)lσ − Ψ(λ1)lσ − Ψ(λ2)lσ = 0,

(ii) F
(
(λ, lσ1 + lβ2 ) − (λ, lσ1 ) − (λ, lβ2 )

)
= Ψ(λ)(lσ1 + lβ2 ) − Ψ(λ)lσ1 − Ψ(λ)lβ2 = 0,

(iii) F
(
(αλ, lσ) − (λ, αlσ)

)
= Ψ(αλ)lσ − Ψ(λ)αlσ = 0.

This results into F defining a (3-graded) homomorphism of 3-graded Lie Φ-algebras (also denoted by 
F ) F : C(L) ⊗ L → TKK(C(V )V ). Moreover, since C(V ) is von Neumann regular [20, Theorem 1.15], 
C(V )[V +, V −] = C(V )2[V +, V −] = [C(V )V +, C(V )V −], and F is an epimorphism.

Next we claim that KerF equals the ideal M described in Remark 4.1(ii). To prove this claim let 
us first consider an element 1 ⊗ a ∈ KerF ∩ (1 ⊗ L). Then 0 = F (1 ⊗ a) = Ψ(1)a = a, that results into 
KerF ∩(1 ⊗L) = 0. Hence, by Remark 4.1(ii), to prove that KerF ⊆ M , it suffices to check that R ⊆ KerF .

Let λ ⊗y−1 ⊗f(y) ∈ R, where λ = (f, I) ∈ C(L) and, by Remark 3.5, we can assume that I is 3-graded. By 
Proposition 3.6, Ψ(λ) = [fI∩V , I∩V ], and F (λ ⊗y−1 ⊗f(y)) = F (λ ⊗y) −F (1 ⊗f(y)) = Ψ(λ)y−Ψ(1)f(y) =
Ψ(λ)y − f(y). Thus, for any yσ ∈ I ∩ V σ, σ = ±, it follows that Ψ(λ)yσ − f(yσ) = fσ(yσ) − f(yσ) = 0
and, therefore, for all vσ ∈ V σ, u−σ, w−σ ∈ V −σ, yσ ∈ Iσ, the element Ψ(λ)[vσ, [u−σ, [w−σ, yσ]]] −
f
(
[vσ, [u−σ, [w−σ, yσ]]]

)
= Ψ(λ)[vσ, [u−σ, [w−σ, yσ]]] − [vσ, [u−σ, [w−σ, f(yσ)]]] defines an inner derivation 

on C(V )V , such that for any aσ ∈ C(V )V σ:

(
Ψ(λ)[vσ, [u−σ, [w−σ, yσ]]] − [vσ, [u−σ, [w−σ, f(yσ)]]]

)
aσ =

= −Ψ(λ){vσ, {u−σ, yσ, w−σ}, aσ} + {vσ, {u−σ, f(yσ), w−σ}, aσ} =

= −{vσ,Ψ(λ){u−σ, yσ, w−σ}, aσ} + {vσ, {u−σ, f(yσ), w−σ}, aσ} =

= −{vσ, {u−σ,Ψ(λ)yσ, w−σ}, aσ} + {vσ, {u−σ, f(yσ), w−σ}, aσ} =

= −{vσ, {u−σ, f(yσ), w−σ}, aσ} + {vσ, {u−σ, f(yσ), w−σ}, aσ} = 0.

Similarly 
(
Ψ(λ)[vσ, [u−σ, [w−σ, yσ]]] −[vσ, [u−σ, [w−σ, f(yσ)]]]

)
a−σ = 0 holds for all a−σ ∈ C(V )V −σ, which 

implies, by the maximality of M (see Remark 4.1), that R ⊆ KerF ⊆ M .
To prove that M ⊆ KerF , take now x ∈ M and let x =

∑
λi ⊗ ai be a I-vanishing representation of x, 

where I is assumed to be a 3-graded ideal by Remark 3.5. Then F (x) =
∑

Ψ(λi)ai ∈ TKK(C(V )V ), where 
Ψ(λi) = [(fi)I∩V , I ∩ V ], and for all uσ ∈ I ∩ V σ, we have

[
F (x), uσ

]
=

[∑
Ψ(λi)ai, uσ

]
=

∑
[Ψ(λi)ai, uσ] =

=
∑

[ai,Ψ(λi)uσ] =
[∑

ai, fi(uσ)
]

= 0.

Moreover, for all vσ ∈ V σ, v−σ, w−σ ∈ V −σ, yσ ∈ Iσ, it holds that:



12 F. Montaner, I. Paniello / Journal of Pure and Applied Algebra 228 (2024) 107543
[
F (x), [vσ, [u−σ, [w−σ, yσ]]]

]
=

= [[F (x), vσ], [u−σ, [w−σ, yσ]]] + [vσ, [[F (x), u−σ], [w−σ, yσ]]]+

+ [vσ, [u−σ, [[F (x), w−σ], yσ]]] + [vσ, [u−σ, [w−σ, [F (x), yσ]]]] =

= [[
∑

Ψ(λi)ai, vσ], [u−σ, [w−σ, yσ]]] + [vσ, [[
∑

Ψ(λi)ai, u−σ], [w−σ, yσ]]]+

+ [vσ, [u−σ, [[
∑

Ψ(λi)ai, w−σ], yσ]]] + [vσ, [u−σ, [w−σ, [
∑

Ψ(λi)ai, yσ]]]] =

=
∑

[[ai, vσ], [u−σ, [w−σ, fi(yσ)]]] +
∑

[vσ, [[ai, u−σ], [w−σ, fi(yσ)]]]+

+
∑

[vσ, [u−σ, [[ai, w−σ], fi(yσ)]]] +
∑

[vσ, [u−σ, [w−σ, [ai, fi(yσ)]]]] =

=
∑[

ai, [vσ, [u−σ, [w−σ, fi(yσ)]]]
]

=

=
∑[

ai, fi
(
[vσ, [u−σ, [w−σ, yσ]]]

)]
= 0,

since 
∑

λi ⊗ ai is a I-vanishing representation of x. Indeed, it suffices to consider p(x) = x to be the 
polynomial appearing in Remark 4.1. This implies that F (x) belongs to the centralizer of the ideal I(C(V )(I∩
V )) in TKK(C(V )V ), that vanishes, since the essentiality of I in L, implies that of C(V )(I ∩ V ) in C(V )V , 
and therefore the essentiality of I(C(V )(I ∩V )) in TKK(C(V )V ). Hence F (x) = 0 and Ker F = M follows.

Finally since C(L)L =
(
C(L) ⊗L

)
/M , we obtain that F : C(L)L → TKK(C(V )V ) is an isomorphism of 

3-graded Lie algebras. �
5. Jordan 3-graded Lie algebras with polynomial identities

In this section we begin the study of Jordan 3-graded Lie algebras satisfying essential 3-graded polynomial 
identities.

5.1. Free 3-graded Lie algebra

Following [24, 2.7], we denote by L(X) = L(X+ ∪ X−) the free Lie algebra on a polarized set X =
X+ ∪ X−, which admits a Z-grading L(X) = ⊕n∈ZL(n)(X), defined by the map ϑ : X → Z given by 
ϑ(xσ) = σ, for all xσ ∈ Xσ, σ = ±. The quotient algebra of L(X) by the ideal generated by all monomials:

[xσ1
1 [xσ2

2 [xσ3
3 [. . . xσ2n

2n ] . . .]]], σ1 = σ2, σ2i−1 + σ2i = 0 with i ≥ 2,

where σ = ±, xσi
i ∈ Xσi and n ≥ 1, is a 3-graded Lie algebra L(X+, X−) = L(X+, X−)1 ⊕L(X+, X−)0 ⊕

L(X+, X−)−1, where L(X+, X−)n denotes the canonical projection of L(n)(X) in L(X+, X−), for n = 0, ±1. 
Then L(X+, X−) is the free 3-graded Lie algebra, that is, for every 3-graded Lie algebra G = G1⊕G0⊕G−1
and every map f : X → G such that f(Xσ) ⊆ Gσ, σ = ±, there exists a unique Lie algebra homomorphism 
F : L(X+, X−) → G such that F ◦ ι = f , where ι : X → L(X+, X−) denotes the canonical map. Moreover 
F is 3-graded. It also holds (see [24, 2.7]):

(i) The map ι : X → L(X+, X−) is injective,
(ii)

(
L(X+, X−)1, L(X+, X−)−1

)
is a Jordan pair,

(iii) L(X+, X−)0 =
[
L(X+, X−)1, L(X+, X−)−1

]
.

Definition 5.1. A 3-graded polynomial f(x+
1 , . . . , x

+
n , x

−
1 , . . . , x

−
m) ∈ L(X+, X−) is a 3-graded polynomial 

identity of a 3-graded Lie algebra L = L1 ⊕ L0 ⊕ L−1 if it is mapped to zero under every homomorphism 
ϕ : X → L such that ϕ(Xσ) ⊆ Lσ [29, p. 377].
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Lemma 5.2. Let FJP (X+, X−) be the free Jordan pair on the polarized set X = X+ ∪X−. Then:

(i) FJP (X+, X−) ∼=
(
L(X+, X−)1, L(X+, X−)−1

)
.

(ii) L(X+, X−) is a central extension of TKK
(
FJP (X+, X−)

)
, that is, L(X+, X−)/CV

∼=TKK
(
FJP (X+,

X−)
)
, where

CV =
{
x ∈ L(X+, X−)0 | [x,L(X+, X−)1] = 0 = [x,L(X+, X−)−1]

}
.

Proof. (i) follows from the universal properties of FJP (X+, X−) (see [26]) and L(X+, X−), and (ii) follows 
from 2.1 and 5.1, since CV = Z(L(X+, X−) ∩ L(X+, X−)0. See also [24, Lemma 2.8] �
5.2. Free special 3-graded Lie algebra

Let Ass[X] = Ass[X+ ∪ X−] be the free associative algebra on the polarized set of generators X =
X+ ∪ X−, with Z-grading defined by ϑ(xσ) = σ1 for all xσ ∈ Xσ. The quotient algebra of Ass[X] =
⊕n∈ZAss

(n)[X] by the ideal generated by 
∑

|n|>1 Ass
(n)[X] (equivalently by the set {xσyσ | xσ, yσ ∈

Xσ, σ = ±}) is the free 3-graded associative algebra, denoted Ass[X+, X−], on X = X+ ∪X− [29, p. 352]. 
We denote by SL(X+, X−) the subalgebra of Ass[X+, X−](−) generated by the elements of X. Then, 
SL(X+, X−) is the free special 3-graded Lie algebra, and, by the universal property of L(X+, X−), there 
exists a unique homomorphism of 3-graded Lie algebras π : L(X+, X−) → SL(X+, X−) extending the 
inclusion X ⊆ SL(X+, X−).

Definition 5.3. We will say that a 3-graded polynomial f ∈ L(X+, X−) is essential if its image π(f) ∈
SL(X+, X−) ⊆ Ass[X+, X−] is nonzero and has a monic leading term (of highest deg degree) as an 
associative polynomial [29, p. 377].

As usual, polynomial identities will be assumed to be multilinear polynomial identities.

Lemma 5.4. Let L = L1 + L0 + L−1 be a 3-graded Lie algebra satisfying an essential 3-graded polynomial 
identity f ∈ L(X+, X−) of degree d. Then L satisfies a multilinear essential 3-graded polynomial identity 
of degree less than or equal to d.

Proof. See [5, 6.2.4]. �
Next we characterize essential 3-graded polynomial identities in terms of the special Lie algebras sl(n), 

endowed with 3-gradings defined by decompositions of the form n = p + q, for some p, q ∈ N.

Proposition 5.5. Let f ∈ L(X+, X−) be a 3-graded polynomial. Then, π(f) ∈ SL(X+, X−) is nonzero if 
and only if there exist p, q ∈ N such that f is not an identity of sl(p + q). Thus, if Φ is a field, f is an 
essential 3-graded polynomial if and only if there exist p, q ∈ N such that f is not an identity of sl(p + q).

Proof. Let f = f1 + f0 + f−1 ∈ L(X+, X−) be a 3-graded polynomial such that 0 	= π(f) =
g(x+

1 , . . . , x
−
1 , . . .) ∈ SL(X+, X−). We can assume Xσ = {xσ

1 , . . . , x
σ
d} for some d ∈ N and σ = ±.

Let k = deg(g) be the degree of g as an element of SL(X+, X−) ⊆ Ass[X+, X−], defined in the obvious 
way, and let N be the ideal of Ass[X+, X−] generated by all monomials of degree deg strictly greater that k. 
Then, N is a 3-graded ideal N = N1 + N0 + N−1 of Ass[X+, X−], such that Ni = N ∩ Ass[X+, X−]i, for 
i = 0, ±1, and the quotient algebra A = Ass[X+, X−]/N is a 3-graded associative algebra.

Write now A = A1 + A0 + A−1, where Ai = Ass[X+, X−]i/Ni for i ∈ {0, ±}. Then (A1, A−1) is an 
associative pair, and its standard embedding E is a finite-dimensional free Φ-module [23, 2.2].
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Following the proof of [5, Lemma 6.2.1], consider now the regular representation ρ : E → EndΦ(E) of E
as a right E-module. The Φ-module decomposition of E , in matricial notation:

E =
(
E11 E12
E21 E22

)
=

(
E11 0
E21 0

)
+

(
0 E12
0 E22

)
= M1 + M2,

results into a 3-grading of EndΦ(E) = EndΦ(E)1 ⊕EndΦ(E)0 ⊕EndΦ(E)−1, given by:

EndΦ(E)1 = HomΦ(M1,M2),

EndΦ(E)0 = EndΦ(M1) ⊕ EndΦ(M2),

EndΦ(E)−1 = HomΦ(M2,M1),

that makes ρ a 3-graded homomorphism. Moreover, since E is an unital algebra, ρ is indeed a 3-graded 
monomorphism.

Fixing now bases of the free Φ-modules M1 and M−1, we can obtain a 3-graded isomorphism EndΦ(E) ∼=
Mn(Φ), where n = dimΦ(E) and Mn(Φ) = Mn(Φ)1 ⊕Mn(Φ)0 ⊕Mn(Φ)−1 is the 3-grading given by

Mn(Φ) =
(

0 Mp,q(Φ)
0 0

)
⊕

(
Mp(Φ) 0

0 Mq(Φ)

)
⊕

(
0 0

Mq,p(Φ) 0

)
,

where p = dimΦ(M1) and q = dimΦ(M2). (Note that here p = q.) Consequently the homomorphism 
ϕ : A → Mn(Φ), resulting from the composition of the inclusion A ⊆ E , the regular representation ρ : E →
EndΦ(E) and the above isomorphism EndΦ(E) ∼= Mn(Φ), is a 3-graded monomorphism. Moreover, if we 
denote by xσ

i = xσ
i + N ∈ Aσ the homomorphic images of the elements xσ

i ∈ Xσ in the quotient algebra 
A = Ass[X+, X−]/N , then, ϕ(xσ

i ) = aσi ∈ Mn(Φ) is traceless matrix, and, therefore aσi ∈ sl(p + q), for all 
i = 1, . . . , d and σ = ±.

Assume now that f is a (multilinear, see Lemma 5.4) polynomial identity of sl(p + q). Denoting by 
ϕ(−) : A(−) → Mn(Φ)(−) the Lie algebra monomorphism induced by ϕ, it follows that:

0 = f(a+
1 , . . . , a

+
d , a

−
1 , . . . , a

−
d ) = f(ϕ(x+

1 ), . . . , ϕ(x+
d ), ϕ(x−

1 ), . . . , ϕ(x−
d ))

= ϕ(f(x+
1 , . . . , x

+
d , x

−
1 , . . . , x

−
d )) = ϕ(f(x+

1 , . . . , x
+
d , x

−
1 , . . . , x

−
d )) = ϕ(g).

But, since ϕ(−) is a monomorphism, this implies g = 0, contradicting the choice of N . Hence there exist 
p, q ∈ N such that f is not an identity of sl(p + q).

Conversely, let us suppose that there exist p, q ∈ N such that f ∈ L(X+, X−) is not a polynomial 
identity for sl(p + q). Writing n = p + q, this induces a 3-grading in sl(n) such that 

(
sl(n)1, sl(n)−1

)
⊆(

Mp,q(Φ), Mq,p(Φ)
)

is a special Jordan pair.
Consider now the case f = f+ ∈ L(X+, X−)1. Then, since f = f+ is not a polynomial identity of sl(n), by 

Lemma 5.2, it follows that f = f+ ∈ FJP [X+, X−]+ is not a polynomial identity for its associated Jordan 
pair 

(
sl(n)1, sl(n)−1

)
, and therefore f = f+ has a nonzero image in FSJP [X+, X−], the free special Jordan 

pair. Hence π(f) = π(f+) 	= 0. The case when f = f− ∈ L(X+, X−)−1 follows analogously.
Suppose next that f = f0 ∈ L(X+, X−)0. We claim that there exists yσ ∈ X+∪X− such that [f0, yσ] 	= 0. 

Indeed, relabeling if necessary, if xσ1
1 . . . xσ2d

2d is a monic monomial of highest degree in f0 and yσ a variable 
not appearing in f0 with σ 	= σ1 (or σ 	= σ2d), it suffices to note that the polynomial [f0, yσ] contains the 
monomial yσxσ1

1 . . . xσ2d
2d with coefficient 1.

We claim that there exists a large enough nonnegative integer m0 such that neither f nor [f0, yσ] vanish 
in sl(m0). Indeed, the statement for f is clear, since it does not vanish in any sl(m) m ≥ n = p + q, and for 
[f0, yσ] it follows from the case f = fσ.
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Finally, replacing f0 by gσ = [f0, yσ], if necessary, we obtain an essential polynomial such that π(f) =
π(f0) 	= 0. �

We refer to [20, 0.12], and references therein, for the notion of essential polynomial in Jordan systems.

Theorem 5.6. Let L be a Jordan 3-graded Lie algebra with associated Jordan pair V . If L satisfies an essential 
3-graded polynomial identity, then the Jordan pair V satisfies an essential polynomial identity.

Proof. By Lemma 5.2 and Proposition 5.5, it suffices to note that if L satisfies an essential 3-graded 
polynomial identity f = f1 + f0 + f−1, then V satisfies the essential polynomial identity g = (g+, g−) =(
f1 + [f0, y+], f−1 + [f0, y−]

)
. �

6. Posner Rowen’s theorem for Jordan 3-graded Lie algebras

In this section we attempt to describe strongly prime Jordan 3-graded Lie algebras satisfying essential 
3-graded polynomial identities. To do this we relate their polynomial identities to those of their associated 
Jordan pairs, to then taking advantage of the results on PI Jordan pairs proved in [22].

In this section we will make use of Zelmanov’s classification of simple (infinite-dimensional) Lie algebras 
with a finite nontrivial Z-grading [29]. Therefore from now Φ is assumed to be a field of characteristic zero 
or characteristic at least 5.

Remark 6.1. Let L be a Jordan 3-graded Lie algebra. If L satisfies an essential 3-graded polynomial identity 
f = f1 + f0 + f−1, then, by Theorem 5.6, its associated Jordan pair V satisfies the essential polynomial 
identity g = (g+, g−) =

(
f1 + [f0, y+], f−1 + [f0, y−]

)
. Since deg(f) = max {deg(f1) , deg(f0) , deg(f−1)}, it 

holds that:

(i) If deg(f) = 2d −1 is odd, then, for some σ = ±, deg(f) = deg(fσ) > deg(f0). Thus deg(f) ≥ deg(f0) +1, 
and we obtain that deg(g) = max{deg(g+) , deg(g−)} = deg(f) = 2d − 1.

(ii) If deg(f) = 2(d − 1) is even, then deg(f) = deg(f0) > deg(fσ), for σ = ±. This results into deg(f) ≥
deg(fσ) + 1 and therefore deg(g) = deg(f) + 1 = 2d − 1.

Hence, if L satisfies an essential 3-graded polynomial identity f of degree either even 2(d −1) or odd 2d −1, 
we can assume that its associated Jordan pair V satisfies an essential polynomial identity g = (g+, g−) =(
f1 + [f0, y+], f−1 + [f0, y−]

)
of degree 2d − 1.

Theorem 6.2. (Posner-Rowen’s Theorem for Jordan 3-graded Lie algebras.) Let L be a Jordan 3-graded Lie 
algebra with associated Jordan pair V over a field Φ of characteristic zero or prime p ≥ 5. If L is strongly 
prime and satisfies an essential 3-graded polynomial identity, then its central closure is simple and, therefore, 
isomorphic to one of following Lie algebras:

I. [R(−), R(−)]/Z, where R = R−1 + R0 + R1 is a simple associative 3-graded algebra, finite dimensional 
over its center, and Z is the center of the derived algebra [R(−), R(−)].

II. [K(R, ∗), K(R, ∗)]/Z, where R = R−1 + R0 + R1 is a simple associative 3-graded algebra, finite di-
mensional over its center, with involution ∗ : R → R, such that R∗

i = Ri for all i ∈ {0, ±1}, and 
K(R, ∗) = {a ∈ R | a∗ = −a}.

III. The Tits-Kantor-Koecher algebra of the Jordan algebra of a symmetric bilinear form.
IV. An exceptional Lie algebra of type E6 or E7.



16 F. Montaner, I. Paniello / Journal of Pure and Applied Algebra 228 (2024) 107543
Moreover, in cases I and II the isomorphism preserves the grading, that is, it is an isomorphism of 3-graded 
algebras.

Proof. We first note that being strongly prime, then L is isomorphic to the TKK-algebra of is associated 
Jordan pair V , and V is strongly prime (see 2.1 and [4, Proposition 11.25]).

By Theorem 5.6, V satisfies an essential multilinear polynomial identity and, then, by [22, Propo-
sition 4.6], V is homotope-PI. Therefore, by the Jordan pair analogue of Posner Rowen theorem [20, 
Theorem 6.1(ii)], the extended central closure C(V )V of V is a simple Jordan pair with finite capacity. 
Moreover, assuming the degree of the essential polynomial identity of L to be as in Remark 6.1, and con-
sidering that V and C(V )V satisfy the same multilinear polynomial identities, we can assume that C(V )V
has capacity at most 2d.

Now, since by Theorem 4.3, the central closure C(L)L of L is isomorphic to the TKK-algebra 
TKK(C(V )V ) of the extended central closure C(V )V of V , by [4, Proposition 11.25], C(L)L is a simple 
Jordan 3-graded Lie algebra, and therefore C(L)L is isomorphic to one of the Lie algebras listed in [29, 
Theorem 1].

To finish the proof it suffices to note that the associative algebras appearing in cases I and II are finite 
dimensional over their centers by [7, p. 57], and that, by [25, 7.2, 7.3], in the exceptional case IV the only 
possibilities allowed for C(L)L are types E6 or E7. �
7. PI Jordan 3-graded Lie algebras

We devote this last section to arbitrary Jordan 3-graded Lie algebras satisfying essential 3-graded poly-
nomial identities. To cope with the absence of regularity conditions we will consider the Kostrikin radical 
of the Lie algebras.

7.1. Kostrikin radical

An element z of a Lie algebra L is a crust of a thin sandwich if (ad z)2 = 0. Lie algebras with no nonzero 
crusts of thin sandwiches are nondegenerate Lie algebras (also called strongly nondegenerate in the sense 
of Kostrikin). The smallest ideal of a Lie algebra L that provides a nondegenerate quotient algebra is the 
Kostrikin radical of L, denoted by K(L) [13]. We also recall here that the Jordan counterpart, that is, the 
smallest ideal of a Jordan pair V that provides a nondegenerate Jordan system is the McCrimmon radical 
Mc(V ) of V [28, p. 538-539].

Remark 7.1. Given an ideal I of a Lie algebra L we will denote Ĩ = {x ∈ L | [x, L] ⊆ I} the pre-image of 
the center Z(L/I) of the quotient Lie algebra L/I by the canonical projection L → L/I.

Proposition 7.2. Let L be a Jordan 3-graded Lie algebra with associated Jordan pair V . Then K(L) =
˜I(Mc(V )).

Proof. Let I(Mc(V )), defined as in 3.4, be the ideal of L generated by the McCrimmon radical Mc(V ) of 
the Jordan pair V . Then L = L/I(Mc(V )) is a Jordan 3-graded Lie algebra, whose associated Jordan pair 
(L1, L−1) ∼= V/Mc(V ) is nondegenerate.

Next we claim that L/ ˜I(M(V )) = L/C(L1,L−1) = TKK(L1, L−1), where by 2.1, it suffices to check that

˜I(Mc(V ))/I(M(V )) = Z(L/I(Mc(V ))) = C(L1,L−1).

To prove this claim let zi ∈ Z(L/I(Mc(V ))) ∩ Li, i 	= 0. Then zi is an absolute zero divisor in (L1, L−1), 
but since Mc(L1, L−1) = 0, it follows that zi = 0. Hence Z(L/I(Mc(V ))) ⊆ L0 which implies that
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˜I(Mc(V ))/I(Mc(V )) = Z(L/I(Mc(V ))) = C(L1,L−1).

Hence L/ ˜I(Mc(V )) = TKK(L1, L−1), which is a nondegenerate Lie algebra by [4, Proposition 11.25], and, 
therefore, by the minimality of the Kostrikin radical, K(L) ⊆ ˜I(Mc(V )) holds.

Conversely, it is not difficult to prove that K(L) is a 3-graded ideal of L, and therefore L/K(L)
is a nondegenerate Jordan 3-graded Lie algebra, with nondegenerate associated Jordan pair W =(
L1/K1(L), L−1/K−1(L)

)
. Moreover CW = Z(L/K(L)) = 0, which implies, by 2.1, that L/K(L) =

TKK(W ). Thus 
(
L1/K1(L), L−1/K−1(L)

)
is a nondegenerate Jordan pair and 

(
Mc(L1), Mc(L−1)

)
⊆(

K1(L), K−1(L)
)

holds. Hence it follows that I(Mc(V )) ⊆ K(L) and, therefore, ˜I(Mc(V )) ⊆ K(L)
[28,29]. �
Lemma 7.3. Let L be a Jordan 3-graded Lie algebra with associated Jordan pair V . Then:

˜I(Mc(V )) =
⋂{

˜I(P ) | P is a strongly prime ideal of V
}
.

Proof. Since, by [17], Mc(V ) =
⋂{

P | P is a strongly prime ideal of V
}
, it is straightforward that 

˜I(Mc(V )) ⊆ ˜I(P ) for all strongly prime ideals P of V . To prove the reverse containment, let

xi ∈
⋂{

˜I(P ) | P is a strongly prime ideal of V
}
∩ Li, i ∈ {±1, 0}.

If i = ±1, by 3.1, xi ∈ ˜I(Mc(V ))i. Otherwise i = 0 and then, for any strongly prime ideal P of V it 
holds that [x0, L] ⊆ I(P ), which implies [x0, L1 +L−1] ⊆ Mc(V ), and therefore that x0 ∈ CV/Mc(V ). Hence 

x0 ∈ ˜I(Mc(V )). �
Proposition 7.4. Let L be Jordan 3-graded Lie algebra. Then L/K(L) is a subdirect product of strongly prime 
Jordan 3-graded Lie algebras.

Proof. By Proposition 7.2 and Lemma 7.3, it now suffices to note that for any strongly prime ideal P
of the Jordan pair V = (L1, L−1), the quotient algebra L/˜I(P ) is a strongly prime Jordan 3-graded Lie 
algebra. �
Theorem 7.5. Let L be a Jordan 3-graded Lie algebra. If L satisfies an essential 3-graded polynomial identity, 
then the nondegenerate Jordan 3-graded Lie algebra L/K(L) is a subdirect product of strongly prime Jor-
dan 3-graded Lie algebras satisfying the same essential 3-graded polynomial identity. Therefore, the central 
closure of each subdirect factor is isomorphic to one of the algebras listed in Theorem 6.2.

Proof. Let K(L) be the Kostrikin radical of the Jordan 3-graded Lie algebra L. Then, by 7.1, the quotient 
Lie algebra L/K(L) is nondegenerate, and it is Jordan 3-graded by Proposition 7.2, since as noted before 
K(L) a 3-graded ideal of L. Moreover, by Proposition 7.4, L/K(L) is a subdirect product of strongly prime 
Jordan 3-graded Lie algebras {Lλ}λ∈Λ, all them satisfying the same essential 3-graded polynomial identities 
as the Lie algebra L. Hence, for each λ, the central closure C(Lλ)Lλ of Lλ is isomorphic to one of the 
algebras listed in Theorem 6.2. �
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