000133142 001__ 133142
000133142 005__ 20240322124130.0
000133142 0247_ $$2doi$$a10.1021/jp912076f
000133142 0248_ $$2sideral$$a67021
000133142 037__ $$aART-2010-67021
000133142 041__ $$aeng
000133142 100__ $$0(orcid)0000-0002-8424-9780$$aUrtizberea, A.
000133142 245__ $$aSpecific Absorption Rates and Magnetic Properties of Ferrofluids with Interaction Effects at Low Concentrations
000133142 260__ $$c2010
000133142 5060_ $$aAccess copy available to the general public$$fUnrestricted
000133142 5203_ $$aThe specific absorption rate (SAR) of a maghemite-based ferrofluid, measured at 315 K, 3 kA/m, and 109 kHz, was found to double as the ferrofluid concentration was decreased by a factor of 4. The ferrofluid contained nonagglomerated, highly crystalline, and monodisperse nanoparticles with an average size of 11.6 nm and an initial concentration of 8.14 mg/mL. The magnetic characterization of three different concentrations of this ferrofluid revealed several effects typical of the presence of magnetic interactions, such as the decrease of initial susceptibility values (liquid ferrofluid) and Néel relaxation times, τN (frozen ferrofluid), with increasing concentration. The accurate SAR determination in adiabatic conditions allowed estimating the τN values of the liquid ferrofluid, which displayed the same trend against concentration as those obtained in the frozen state. Such a trend allowed explaining qualitatively the degradation of the heating performance of the ferrofluid upon increasing concentration. Eventually, correlation between τN values in both states was discussed in terms of several theoretical models described in the literature and developed to explain the properties of an assembly of nanoparticles with dipolar interactions.
000133142 536__ $$9info:eu-repo/grantAgreement/ES/MICINN/CSD2007-00010$$9info:eu-repo/grantAgreement/ES/MICINN/MAT2007-61621
000133142 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000133142 590__ $$a4.524$$b2010
000133142 591__ $$aCHEMISTRY, PHYSICAL$$b27 / 125 = 0.216$$c2010$$dQ1$$eT1
000133142 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b14 / 63 = 0.222$$c2010$$dQ1$$eT1
000133142 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b22 / 221 = 0.1$$c2010$$dQ1$$eT1
000133142 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000133142 700__ $$0(orcid)0000-0003-2553-0633$$aNatividad, E.$$uUniversidad de Zaragoza
000133142 700__ $$aArizaga, A.
000133142 700__ $$0(orcid)0000-0002-9687-4903$$aCastro, M.$$uUniversidad de Zaragoza
000133142 700__ $$0(orcid)0000-0002-4099-9918$$aMediano Heredia, A.$$uUniversidad de Zaragoza
000133142 7102_ $$15008$$2785$$aUniversidad de Zaragoza$$bDpto. Ingeniería Electrón.Com.$$cÁrea Tecnología Electrónica
000133142 7102_ $$15001$$2065$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Cienc.Mater. Ingen.Metal.
000133142 773__ $$g114, 11 (2010), 4916-4922$$pJ. phys. chem., C$$tJournal of physical chemistry. C.$$x1932-7447
000133142 8564_ $$s592792$$uhttps://zaguan.unizar.es/record/133142/files/texto_completo.pdf$$yPostprint
000133142 8564_ $$s1362133$$uhttps://zaguan.unizar.es/record/133142/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000133142 909CO $$ooai:zaguan.unizar.es:133142$$particulos$$pdriver
000133142 951__ $$a2024-03-22-09:47:50
000133142 980__ $$aARTICLE