000133159 001__ 133159
000133159 005__ 20240322124130.0
000133159 0247_ $$2doi$$a10.1093/cercor/bhae046
000133159 0248_ $$2sideral$$a137862
000133159 037__ $$aART-2024-137862
000133159 041__ $$aeng
000133159 100__ $$aThomson, Alice R
000133159 245__ $$aThe developmental trajectory of 1H-MRS brain metabolites from childhood to adulthood
000133159 260__ $$c2024
000133159 5060_ $$aAccess copy available to the general public$$fUnrestricted
000133159 5203_ $$aHuman brain development is ongoing throughout childhood, with for example, myelination of nerve fibers and refinement of synaptic connections continuing until early adulthood. 1H-Magnetic Resonance Spectroscopy (1H-MRS) can be used to quantify the concentrations of endogenous metabolites (e.g. glutamate and γ -aminobutyric acid (GABA)) in the human brain in vivo and so can provide valuable, tractable insight into the biochemical processes that support postnatal neurodevelopment. This can feasibly provide new insight into and aid the management of neurodevelopmental disorders by providing chemical markers of atypical development. This study aims to characterize the normative developmental trajectory of various brain metabolites, as measured by 1H-MRS from a midline posterior parietal voxel. We find significant non-linear trajectories for GABA+ (GABA plus macromolecules), Glx (glutamate + glutamine), total choline (tCho) and total creatine (tCr) concentrations. Glx and GABA+ concentrations steeply decrease across childhood, with more stable trajectories across early adulthood. tCr and tCho concentrations increase from childhood to early adulthood. Total N-acetyl aspartate (tNAA) and Myo-Inositol (mI) concentrations are relatively stable across development. Trajectories likely reflect fundamental neurodevelopmental processes (including local circuit refinement) which occur from childhood to early adulthood and can be associated with cognitive development; we find GABA+ concentrations significantly positively correlate with recognition memory scores.
000133159 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000133159 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000133159 700__ $$aHwa, Hannah
000133159 700__ $$aPasanta, Duanghathai
000133159 700__ $$aHopwood, Benjamin
000133159 700__ $$aPowell, Helen J
000133159 700__ $$aLawrence, Ross
000133159 700__ $$0(orcid)0000-0003-2461-8588$$aTabuenca, Zeus G$$uUniversidad de Zaragoza
000133159 700__ $$aArichi, Tomoki
000133159 700__ $$aEdden, Richard A E
000133159 700__ $$aChai, Xiaoqian
000133159 700__ $$aPuts, Nicolaas A
000133159 7102_ $$12007$$2265$$aUniversidad de Zaragoza$$bDpto. Métodos Estadísticos$$cÁrea Estadís. Investig. Opera.
000133159 773__ $$g34, 3 (2024), 17 pp.$$pCereb. cortex$$tCEREBRAL CORTEX$$x1047-3211
000133159 8564_ $$s2370348$$uhttps://zaguan.unizar.es/record/133159/files/texto_completo.pdf$$yVersión publicada
000133159 8564_ $$s3263333$$uhttps://zaguan.unizar.es/record/133159/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000133159 909CO $$ooai:zaguan.unizar.es:133159$$particulos$$pdriver
000133159 951__ $$a2024-03-22-09:48:28
000133159 980__ $$aARTICLE