000133171 001__ 133171
000133171 005__ 20240322140241.0
000133171 0247_ $$2doi$$a10.1109/JSEN.2019.2918592
000133171 0248_ $$2sideral$$a111729
000133171 037__ $$aART-2019-111729
000133171 041__ $$aeng
000133171 100__ $$0(orcid)0000-0002-1561-0536$$aMedrano Sánchez, Carlos$$uUniversidad de Zaragoza
000133171 245__ $$aCircuit analysis of matrix-like resistor networks for eliminating crosstalk in pressure sensitive mats
000133171 260__ $$c2019
000133171 5060_ $$aAccess copy available to the general public$$fUnrestricted
000133171 5203_ $$aRecent advances in piezoresistive materials have opened the possibility of developing pressure sensitive flexible mats that cover large areas. They are composed of arrays of sensitive cells. However, in many configurations proposed in the literature, the measurement of a single cell does not recover the cell resistance itself but the equivalent resistance between the row and column conductive strips that select it. If this effect is not corrected, unloaded regions can appear with non negligible pressure, as a kind of ghost object. Diodes can be placed to overcome the problem, but this makes the fabrication more complex especially for prototypes. In this paper we propose a novel software solution based on a circuit analysis of the mat. The set of cell resistances is obtained from the set of equivalent resistances between row and columns. Several algorithms are compared. For simulated values of the array, the true cell resistance can be recovered with a great accuracy. A good compromise between execution speed and error is achieved by a Newton-Krylov nonlinear solver. Nevertheless, this algorithm presents convergence problems when facing values of a real mat. In this case a fixed-point formulation is more appropriate. For 16x16 arrays, it can achieve relative errors with a mean value of 0.0258 in less than 0.1 s running on a regular PC. The removal of ghost objects is also shown visually.
000133171 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FEDER/T49-17R
000133171 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000133171 590__ $$a3.073$$b2019
000133171 591__ $$aENGINEERING, ELECTRICAL & ELECTRONIC$$b91 / 265 = 0.343$$c2019$$dQ2$$eT2
000133171 591__ $$aPHYSICS, APPLIED$$b47 / 154 = 0.305$$c2019$$dQ2$$eT1
000133171 591__ $$aINSTRUMENTS & INSTRUMENTATION$$b18 / 64 = 0.281$$c2019$$dQ2$$eT1
000133171 592__ $$a0.749$$b2019
000133171 593__ $$aInstrumentation$$c2019$$dQ1
000133171 593__ $$aElectrical and Electronic Engineering$$c2019$$dQ1
000133171 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000133171 700__ $$0(orcid)0000-0001-7671-7540$$aIgual-Catalán, Raúl$$uUniversidad de Zaragoza
000133171 700__ $$0(orcid)0000-0002-6963-0727$$aRodríguez-Ontiveros, Victor H.
000133171 700__ $$0(orcid)0000-0001-7550-6688$$aPlaza-García, Inmaculada$$uUniversidad de Zaragoza
000133171 7102_ $$15008$$2785$$aUniversidad de Zaragoza$$bDpto. Ingeniería Electrón.Com.$$cÁrea Tecnología Electrónica
000133171 7102_ $$15009$$2535$$aUniversidad de Zaragoza$$bDpto. Ingeniería Eléctrica$$cÁrea Ingeniería Eléctrica
000133171 773__ $$g19, 18 (2019), 8027-8036$$pIEEE sens. j.$$tIEEE SENSORS JOURNAL$$x1530-437X
000133171 8564_ $$s2457891$$uhttps://zaguan.unizar.es/record/133171/files/texto_completo.pdf$$yPostprint
000133171 8564_ $$s3491625$$uhttps://zaguan.unizar.es/record/133171/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000133171 909CO $$ooai:zaguan.unizar.es:133171$$particulos$$pdriver
000133171 951__ $$a2024-03-22-12:45:06
000133171 980__ $$aARTICLE