000133256 001__ 133256
000133256 005__ 20240410085329.0
000133256 0247_ $$2doi$$a10.3390/biomedicines12030633
000133256 0248_ $$2sideral$$a138047
000133256 037__ $$aART-2024-138047
000133256 041__ $$aeng
000133256 100__ $$aRodrigo, Maria J.$$uUniversidad de Zaragoza
000133256 245__ $$aImmune Analysis Using Vitreous Optical Coherence Tomography Imaging in Rats with Steroid-Induced Glaucoma
000133256 260__ $$c2024
000133256 5060_ $$aAccess copy available to the general public$$fUnrestricted
000133256 5203_ $$aGlaucoma is a multifactorial pathology involving the immune system. The subclinical immune response plays a homeostatic role in healthy situations, but in pathological situations, it produces imbalances. Optical coherence tomography detects immune cells in the vitreous as hyperreflective opacities and these are subsequently characterised by computational analysis. This study monitors the changes in immunity in the vitreous in two steroid-induced glaucoma (SIG) animal models created with drug delivery systems (microspheres loaded with dexamethasone and dexamethasone/fibronectin), comparing both sexes and healthy controls over six months. SIG eyes tended to present greater intensity and a higher number of vitreous opacities (p < 0.05), with dynamic fluctuations in the percentage of isolated cells (10 µm2), non-activated cells (10–50 µm2), activated cells (50–250 µm2) and cell complexes (>250 µm2). Both SIG models presented an anti-inflammatory profile, with non-activated cells being the largest population in this study. However, smaller opacities (isolated cells) seemed to be the first responder to noxa since they were the most rounded (recruitment), coinciding with peak intraocular pressure increase, and showed the highest mean Intensity (intracellular machinery), even in the contralateral eye, and a major change in orientation (motility). Studying the features of hyperreflective opacities in the vitreous using OCT could be a useful biomarker of glaucoma.
000133256 536__ $$9info:eu-repo/grantAgreement/ES/MCIU/MAT2017-83858-C2-2$$9info:eu-repo/grantAgreement/ES/MCIN/AEI/10.13039/501100011033$$9info:eu-repo/grantAgreement/ES/MICINN/MAT2017-83858-C2-1$$9info:eu-repo/grantAgreement/ES/MICINN/MAT2017-83858-C2-2$$9info:eu-repo/grantAgreement/ES/MICINN/PID2020-113281RB-C22$$9info:eu-repo/grantAgreement/ES/MICINN/PRE2018-083951$$9info:eu-repo/grantAgreement/ES/MINECO/MAT2017-83858-C2-1$$9info:eu-repo/grantAgreement/ES/MINECO/MAT2017-83858-C2-2$$9info:eu-repo/grantAgreement/ES/NextGenerationEU/PRTR
000133256 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000133256 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000133256 700__ $$aSubías, Manuel$$uUniversidad de Zaragoza
000133256 700__ $$aMontolío, Alberto
000133256 700__ $$aMartínez-Rincón, Teresa$$uUniversidad de Zaragoza
000133256 700__ $$aAragón-Navas, Alba
000133256 700__ $$aBravo-Osuna, Irene
000133256 700__ $$0(orcid)0000-0003-2389-8282$$aPablo, Luis E.$$uUniversidad de Zaragoza
000133256 700__ $$aCegoñino, Jose
000133256 700__ $$aHerrero-Vanrell, Rocío
000133256 700__ $$0(orcid)0000-0001-6258-2489$$aGarcia-Martin, Elena$$uUniversidad de Zaragoza
000133256 700__ $$aPérez del Palomar, Amaya
000133256 7102_ $$11013$$2645$$aUniversidad de Zaragoza$$bDpto. Cirugía$$cÁrea Obstetricia y Ginecología
000133256 7102_ $$11013$$2646$$aUniversidad de Zaragoza$$bDpto. Cirugía$$cÁrea Oftalmología
000133256 773__ $$g12, 3 (2024), 20 pp.$$tBiomedicines$$x2227-9059
000133256 8564_ $$s11638109$$uhttps://zaguan.unizar.es/record/133256/files/texto_completo.pdf$$yVersión publicada
000133256 8564_ $$s2737704$$uhttps://zaguan.unizar.es/record/133256/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000133256 909CO $$ooai:zaguan.unizar.es:133256$$particulos$$pdriver
000133256 951__ $$a2024-04-10-08:37:29
000133256 980__ $$aARTICLE