000133257 001__ 133257
000133257 005__ 20240410085329.0
000133257 0247_ $$2doi$$a10.1021/jp301854n
000133257 0248_ $$2sideral$$a137900
000133257 037__ $$aART-2012-137900
000133257 041__ $$aeng
000133257 100__ $$aBallesteros, Luz Marina
000133257 245__ $$aAcetylene Used as a New Linker for Molecular Junctions in Phenylene–Ethynylene Oligomer Langmuir–Blodgett Films
000133257 260__ $$c2012
000133257 5060_ $$aAccess copy available to the general public$$fUnrestricted
000133257 5203_ $$aLangmuir and Langmuir–Blodgett films have been fabricated from an acetylene-terminated phenylene–ethynylene oligomer, namely 4-((4-((4-ethynylphenyl)ethynyl)phenyl)ethynyl)benzoic acid (HOPEA). Characterization of the Langmuir film by surface pressure vs area per molecule isotherms and Brewster angle microscopy reveals the formation of a high quality monolayer at the air–water interface. One layer Langmuir–Blodgett (LB) films were readily fabricated by the transfer of HOPEA Langmuir films onto solid substrates by the withdrawal of the substrate. The deposition mode was Z-type. Quartz crystal microbalance (QCM) experiments confirm the formation of directionally oriented, monolayer LB films, in which the HOPEA molecules are linked to the gold substrate by attachment through the acid group. The morphology of these films was analyzed by atomic force microscopy (AFM), which revealed an optimum transference surface pressure of 18 mN m–1 for the formation of homogeneous films. Cyclic voltammetry also showed a significant blockage of gold electrodes covered by HOPEA monolayers. Electrical properties of HOPEA monolayers sandwiched between a bottom gold electrode and a gold STM (scanning tunneling microscope) tip have been recorded, revealing that the acetylene group is an efficient linker for electron transport. In addition, the STM experiments indicate a nonresonant tunneling mechanism of charge transport through these metal–molecule–metal junctions.
000133257 536__ $$9info:eu-repo/grantAgreement/ES/MICINN/CTQ2009-13024$$9info:eu-repo/grantAgreement/ES/MICINN/MAT2010-10846-E
000133257 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000133257 590__ $$a4.814$$b2012
000133257 591__ $$aCHEMISTRY, PHYSICAL$$b28 / 134 = 0.209$$c2012$$dQ1$$eT1
000133257 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b27 / 240 = 0.112$$c2012$$dQ1$$eT1
000133257 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b19 / 69 = 0.275$$c2012$$dQ2$$eT1
000133257 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000133257 700__ $$0(orcid)0000-0001-9193-3874$$aMartín, Santiago$$uUniversidad de Zaragoza
000133257 700__ $$0(orcid)0000-0003-2953-3065$$aMomblona, Cristina$$uUniversidad de Zaragoza
000133257 700__ $$aMarqués-González, Santiago
000133257 700__ $$0(orcid)0000-0001-6006-4469$$aLópez, María Carmen$$uUniversidad de Zaragoza
000133257 700__ $$aNichols, Richard J.
000133257 700__ $$aLow, Paul J.
000133257 700__ $$0(orcid)0000-0002-4729-9578$$aCea, Pilar$$uUniversidad de Zaragoza
000133257 7102_ $$12012$$2755$$aUniversidad de Zaragoza$$bDpto. Química Física$$cÁrea Química Física
000133257 7102_ $$12012$$2X$$aUniversidad de Zaragoza$$bDpto. Química Física$$cProy. investigación HZF
000133257 773__ $$g116, 16 (2012), 9142-9150$$pJ. phys. chem., C$$tJournal of physical chemistry. C.$$x1932-7447
000133257 8564_ $$s860641$$uhttps://zaguan.unizar.es/record/133257/files/texto_completo.pdf$$yPostprint
000133257 8564_ $$s876634$$uhttps://zaguan.unizar.es/record/133257/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000133257 909CO $$ooai:zaguan.unizar.es:133257$$particulos$$pdriver
000133257 951__ $$a2024-04-10-08:37:38
000133257 980__ $$aARTICLE