
Navigating underground environments using simple topological
representations

Lorenzo Cano1,3, Alejandro R. Mosteo2,3 and Danilo Tardioli2,3

Abstract— Underground environments are some of the most
challenging for autonomous navigation. The long, featureless
corridors, loose and slippery soils, bad illumination and unavail-
ability of global localization make many traditional approaches
struggle. In this work, a topological-based navigation system
is presented that enables autonomous navigation of a ground
robot in mine-like environments relying exclusively on a high-
level topological representation of the tunnel network. The topo-
logical representation is used to generate high-level topological
instructions used by the agent to navigate through corridors and
intersections. A convolutional neural network (CNN) is used to
detect all the galleries accessible to a robot from its current
position. The use of a CNN proves to be a reliable approach
to this problem, capable of detecting the galleries correctly in
a wide variety of situations. The CNN is also able to detect
galleries even in the presence of obstacles, which motivates the
development of a reactive navigation system that can effectively
exploit the predictions of the gallery detection.

I. INTRODUCTION

Underground scenarios are notoriously difficult to navigate
autonomously as they present many characteristics that make
them very challenging for common navigation strategies as
shown, for example, in [1] or [2].

One problem present in underground environments is the
lack of global external localization aids such as GPS. This
makes the agent very dependent on sensors like odometers
and inertial measuring units, that are susceptible to the
accumulation of error during operation. To worsen things, the
floors of these scenarios are most commonly very irregular
and loose, which increases the slippage on the wheels, which,
in turn, increases the errors in the odometry and inertial
measurements. All of these make precise localization in these
environments exceptionally difficult.

Also, these settings tend to be in complete darkness and,
if lit, the lightning tends to be very irregular, with some
sparse bright spots surrounded by darkness. Furthermore,
in the case of mines or other human-made settings, the
extraction of rocks and minerals fills the environment with
dust, deteriorating visibility even further. This is a hindrance
to vision-based approaches, that have to deal with poorly
illuminated and low visibility images, and often force the
agent to carry its own light source. In [3], the authors
elaborate on the challenges of using cameras for robotics in
underground environments and in [4], the effect of dust on

1Universidad de Zaragoza, 2Centro Universitario de la defensa,
Zaragoza, 3Instituto de Investigación en Ingenierı́a de Aragón.
Email: {lcano, amosteo, dantard}@unizar.es}

This work was supported by the project PID2019-105390RB-I00 founded
by Spanish MICINN.

LiDAR sensors is studied, with the conclusion that reliable
readings can still be obtained in the presence of dust.

Another challenging aspect of underground scenarios is
that they usually consist in long, featureless corridors and
intersections between these corridors (Fig. 1). The lack
of clear and distinct features (specially in LiDAR read-
ings) makes SLAM systems struggle, as they need them
to iteratively reduce the errors caused by odometry and
inertial measurements. Long corridors also complicate the
loop-closure methods used in most SLAM systems, further
increasing difficulty. In [3] the authors show how different
state-of-the-art SLAM systems struggle to give accurate pose
estimation in these kinds of scenarios. At the same time,
these scenarios are some of the most hazardous workplaces
in the modern world. Some of the dangers associated with
them are very low quality air, risk of collapse, repetitive and
monotonous work and continuous exposure to loud noises.
All these reasons make underground operations one of the
fields where automation could have the greatest positive
impact.

Other underground scenarios are very difficult for humans
to traverse, like vertical shafts or flooded sections in caves.
And, finally, there are some scenarios not accessible at all
to humans, like long-term nuclear waste storage sites [5]. In
these situations, robots capable of navigating these scenarios
are of great help to many people; from research oriented
groups like geologists or biologists, to rescue teams that have
to operate in collapsed infrastructure or engineers in charge
of revising critical infrastructure not accessible to people (oil
pipelines, sewage systems, etc.).

In this work, we propose a navigation system based on
high-level topological information of scenarios like the ones
previously described, especially those composed of long
corridors that intersect each other. The goal is to make
a robot capable of navigating from a starting point to an
objective given as a set of high-level directives (e.g. ”take
the second on the left and then the third on the right”), which
is closer to how humans move in similar environments, and
thus without the need for precise geometric localization, nor
representation of the scenario.

To do so, the robot must recognize the features encoun-
tered along its path, such as intersections and corridors, in
order to execute the high-level instructions at the right time,
thus following the desired path. This feature recognition is
accomplished by processing the on-board 3D LiDAR data
through a convolutional neural network, whose details will
be explained later on. Additionally, a specialized reactive
navigation algorithm for obstacle avoidance has been devel-

Fig. 1: Map of a portion of the Santa Marta mine (Spain).

oped that takes advantage of the network output.
In this scheme, we assume the existence of a topological

representation of the tunnel network from which the already
mentioned directives are extracted when a plan is requested.

The paper structure is based on the three main subsys-
tems of the proposed navigation approach: the topological
representation of the environment (section II), the gallery
detection system (section III) and the instruction-based nav-
igation (IV-A). Finally, in section V, we detail the tests used
to validate this approach, and the results obtained.

A. Related work

For all the reasons presented on the previous section, many
of the usual navigation strategies struggle in underground set-
tings. This has motivated the development of many different
approaches that tackle a variety of use cases in subterranean
scenarios.

In the context of industrial tunneling and excavating
machines, very precise absolute location is often required,
while flexibility is not an important factor. In [6] the use
of a theodolite is combined with a measurement device
mounted in a tunnel boring machine so that very precise
orientation information of the machine can be obtained. This
approach provides great accuracy, at the cost of requiring
continuous line of sight between the boring machine and
the theodolite operator, and the system has to be set up
for each gallery. A different approach that also achieves
remarkable accuracy is [7], where they manage to maintain
an accurate pose estimation for a duration of over a week
using a localization system based exclusively on inertial and
odometry measurements, given that the robot operates at low
speeds.

In the field of autonomous Micro Aerial Vehicles (MAVs)
cameras are a popular sensor given their low weight. In
[8], [9] the authors propose a navigation approach based on
controlling the heading of the MAV, so it advances along the
axis of the tunnel. To do this they use a CNN that classifies

the images of the drone as facing to the center, the left or
the right of the tunnel or detects the center of the tunnel
in the image. In [10], a topological approach is used to
navigate corridor-like environments. Using a convolutional
neural network they classify the front-facing camera images
into different topological features (like turns, intersections or
dead-ends), and use that information to navigate.

On the topic of reactive navigation in confined environ-
ments, specifically corridors, in [11] the Hough transform is
used to detect the corridors present in laser-scan data. In [2]
the author describes a centering algorithm that helps UGV
vehicles to traverse corridors safely.

Topological and metric-topological representations have
already been extensively used in underground robotics to
help with navigation, localization and exploration of subter-
ranean environments. In [2], edges and vertices are extracted
from 2D geometrical representations of mines, and then used
to navigate based on that graph, using a centering algorithm.
In [12] the authors process on-board laser-scan data using
Principal Component and Linear Discriminant analysis, and
then use Bayes Decision theory on the results to classify
the laser-scan readings into features common in underground
environments, like intersections, dead-ends or corridors. In
[13] a metric-topological map based on common features
(corridors, intersections) and laser-scan measurements is
used to enable the haul-dump vehicles operating inside a
mine to self-localize and path-plan. The authors also develop
a movement-graph, based on the topological map, that allows
the robot to execute complex maneuvers inside very limited
space. In [14], a graph representation is used for the global
path-planning in drone exploration tasks in underground
environments.

The common topological features present in underground
environments can be exploited in more ways than naviga-
tion and localization. In [15] the authors develop a world-
prediction technique based on convolutional neural networks
that exploits the topological features of the known environ-

ment to predict the unknown parts. They then use these
predictions to more efficiently explore the scenario.

A different approach to topological navigation is presented
in [16] and [17]. In these approaches the topological map is
a graph structure where each node corresponds to an image
of the environment, and the edges of the graph represent the
real world connectivity. Neural networks are used to localize
the robot inside the topological graph, and to generate the
commands to move from node to node.

II. RATIONALE

Most human-made underground environments consist of a
set of tunnels that intersect each other (Fig. 1). For a person,
if given a map of the mine and an objective to reach inside it,
intermediate objectives would not be of the kind “walk 200
meters then go right”. Instead, they would probably take the
form of “skip one intersection and go to the right on the
second intersection”.

This reasoning implies that precise geometric information
of the tunnels is not a hard requirement for navigation and,
thus, it should be possible for a robot to navigate using
only a graph representation of the environment. A possible
representation consists in defining a graph in which nodes
are features (intersections, dead ends, corridors) connected
by edges. In this case, a high-level plan would consist in a
sorted list of nodes (features) the robot has to visit by moving
through corridors before reaching the final node.

However, to put the plan into practice, at least two aspects
must be taken into account. On the one hand, the robot must
be able to recognize when it has reached a new node, where
it must fetch the next instruction of the plan (for example,
take the exit on the left). On the other hand, the robot must
be able to execute that instruction; for example, navigating to
the right exit of the intersection, and entering the following
corridor without crashing and avoiding obstacles at the same
time.

A. Topological Representation of a Tunnel Network

In this work we represent a gallery network as a graph in
which vertices (nodes) represent features extracted from the
environment, linked by edges when there is a corresponding
real-world connection.

More precisely, a feature represents a contiguous area of
the map where the same set of exits is available to reach other
areas. Exits are meant not geometrically but topologically,
such as the two possible ways in any location within a
corridor.

Fig. 2.a) shows a sample environment while fig. 2.b) shows
the corresponding undirected graph that, for visualization
purposes, is presented with a layout similar to the environ-
ment, and in which each node has been associated with a
feature. In this case, it is possible to identify intersections,
T-intersections, dead ends and corridors with four, three, one
and two edges (i.e. connections) respectively. Our scheme
is not limited to these features, given that any number of
connections to a given node can be included in the graph.
Notice also that curves and straight corridors are not distinct

(a) (b)

Fig. 2: Tunnel network in Gazebo (a) with origin posi-
tion (red, top-left) and goal position (white, bottom-right),
along with the corresponding topological representation (b)
and generated node path. Topological instructions to follow
the path: [1,−1,−1, 1, 1, 2, 1, 2,−1, 1,−1] (as explained in
Sec. II-B).

features, as they both have two exits. Likewise, a long gallery
with many curves is represented by a unique node, no matter
if it is 20 meters, or 4 kilometers long.

B. Generation of the navigation instructions

Topological instructions are meant to indicate which exit
the robot must take when reaching a new topological node.
This implies that for each node in the topological path of the
robot, a navigation instruction must be specified. Finding a
sequence of instructions on the graph is done for example
using Dijkstra’s algorithm [18]. Fig. 2.b) shows in gray the
path computed to go from the red node to the white one.

Once the path is known, it can be converted into topo-
logical instructions given that each node knows the relative
ordering of their neighbours, computed from the exit angle
of each edge. In particular, in our approach, instructions
are positive and negative integer numbers, assigned with
respect to the gallery the robot is coming from when it
reaches an intersection: the exits on the right are numbered
with a positive integer number while those on the left with
a negative one as shown in Fig. 3.a). In this way, the
instructions for a specific path will be a list of integer
numbers that specify the chosen exit in each node as shown
in Fig. 3.b).

In this way we can handle any kind of intersection, be
it a 4-way, a bifurcation, lateral gallery, etc., no matter the
number of exits and their geometric coordinates, using the
same type of instruction. It also means that an instruction
may have different meanings in different intersections. For
example, a -1 instruction in a 4-way intersection means to go
left, but that same instruction in a 3-way intersection where
there is a gallery in front and one on the right would mean
to go forward.

III. GALLERY DETECTION

As the topological instructions specify what gallery to take
at each intersection, it is necessary for the correct operation
of this method to reliably detect the presence of intersections
and exits. For this, a CNN has been used, as it gives us

(a)

-1

+1

+1

(b)

Fig. 3: Numbering of exits in a node. (a) Example of an
intersection. (b) Sequence of instructions that accomplish a
particular topological path.

more flexibility and generalization than other methods (for
example, Hough transform methods can identify a limited set
of parameters). The goal is to detect the presence of exits at
intersections and their relative angular position in order to
be able to make the decision about what exit the robot needs
to take and so follow the path instructions.

The CNN takes as input a depth image generated from the
point-cloud readings of an on-board LiDAR. The resulting
image is 360 pixels wide by 16 pixels high, with the
intensity of each pixel being proportional to the distance
read by the LiDAR. Before inputting the image to the CNN,
it is normalized by dividing it by its highest value. The
expected output of the network is a vector of 360 floating-
point numbers that indicates the presence of exits as peaks,
centered around the angle at which the exit is found.

A. Network Architecture

The CNN used in this work differs significantly from
other, more established architectures, used for image recog-
nition. The reason behind this is that the output is closer to
a generative model than it is to a classification model.

The network is composed by a convolutional block with
5 convolutional layers, with kernels of size [3, 3] and a fully
connected block with 4 layers. All layers, both convolutional
and fully connected, use ReLU activation. In the convolu-
tional block there are 3 Max Pooling layers, after the first,
third and fifth layers. Additionally, batch normalization has
been used after each of the convolutional layers.

Circular padding is applied on the lateral edges of the
images before each convolutional layer, while no padding
is applied on the upper and lower edges. In this way, the
cylindrical shape of the input image is taken into account by
the convolutional block.

B. Data collection and training

The training data was obtained in simulation, using
Gazebo [19] and the 3D models provided for the DARPA
Subterranean challenge 1. These 3D models consist in sec-
tions of tunnels and caves that can easily be tiled together to

1www.subtchallenge.com

(a) (b)

(c)

(d)

Fig. 4: Training sample from the central area of a 4-way
intersection tile. (a) Diagram of the training area with the
placement of the exits represented by circles. (b) Robot
placed in a random point inside the training area in simula-
tion. (c) Depth image seen by the robot. (d) Training label
generated from the position of the robot and exits.

form complete tunnel networks. To automatically generate
the data, an area has been defined for each tile and a set
of points have been defined which represent the exits that
can be observed from that area, as shown in Fig. 4.a). To
obtain each training sample, the robot is automatically placed
in a random position and orientation inside the cited area
(Fig. 4.b) and an image is obtained as described at the
beginning of this section (Fig. 4.c).

To obtain the corresponding label, the relative position of
the exit points to the robot is calculated. Then, for each one, a
Gaussian-shaped peak is placed in a 360-long array, centered
in the index closest to the corresponding angular position of
the exits. In this way we end up with a 360-long array of
zeros, except at the indices corresponding to angles where a
gallery is present, around which there is a Gaussian-shaped
peak (Fig. 4.d).

With this method, a dataset of over 89 thousand training
samples was generated, of which 90% was used for training.

For the training, we have used the Adam optimizer [20]
with a learning rate of 0.0001, and batch size of 256. We
trained the network for 16 epochs.

Also, to further improve the generalization capabilities of
the network, multiple data augmentation techniques were
used; Gaussian noise with variance of up to 2% of the

maximum distance, cutting out squares in random parts of
the image, rotation of the image of up to 5 degrees around
the center of the image, horizontally flipping the image (and
vector) and vertical shifts of the image of up to 2 pixels.

C. Output post-processing

The output of the neural network (shown in polar coordi-
nates in Fig. 5.b) for the sample situation in Fig. 5.a) is not
immediately useful for the purpose of navigation because
of noise. For this reason, the output vector of the neural
network is processed in order to obtain the angles at which
the exits are located. The first step of this process is to apply
a max-filter to the output of the neural network. This filter
applies a window around each element of the array, and if
said element is the maximum inside the window, it keeps its
value, otherwise setting it to 0 (Fig. 5.c).

The previous step guarantees that the central values of the
peaks in the original vector are present in the filtered vector.
However, it is also possible that some spurious values are
still present. To isolate only the values that correspond to
exits, all values that are under 0.3 times the highest value
are also discarded as shown in Fig. 5.d). After this step, only
a few values in the vector are different from 0, the indices
of which directly translate into the angles where exits are
located.

The exits detection system operates at the same frequency
as the LiDAR system (10Hz).

IV. NAVIGATION

Navigation in our method consists of moving among graph
nodes (that represent features). The transition between nodes
is triggered by a change in the exits detected during the
movement of the robot. Given that the features are not
defined explicitly (a feature is simply something with a
certain number of exits), the transition is triggered by the
change of the configuration of the exit themselves. For
example, if the robot is moving along a corridor, it will detect
only two exits, namely the ones at its front and back. When
a T-intersection is reached, two lateral exits will appear and
eventually the front one will disappear.

On the other hand, as the robot moves through an inter-
section, the different galleries that it detects change their
relative angle in the robot view. For example, if the robot is
navigating along a corridor and encounters a gallery to the
right, it will first detect an exit towards the front-right but, as
the robot keeps advancing, the exit will progressively move
towards the rear-right.

If the system were not to recognise this moving gallery
as the same unique gallery from one measurement to the
next one, it would trigger a node transition every time the
detection angle of the gallery changed, which leads to the
need for gallery tracking.

A. Gallery Tracking

To circumvent this problem it is necessary to track the
observed exits across time. To this end, we store all tracked
exits as a tuple of two elements: the angle at which the

(a)

0°

45°

90°

135°

180°

225°

270°

315°

0.4

0.8

(b)

0°

45°

90°

135°

180°

225°

270°

315°

0.0125

0.0250

(c)

0°

45°

90°

135°

180°

225°

270°

315°

0.0125

0.0250

(d)

Fig. 5: Post-processing of the neural network output. (a)
Situation of the robot in the simulation. (b) Output of the
CNN displayed in a polar plot. (c) Initial filtering of the
output of the neural network (blue) where some incorrect
peaks pass through. (d) Final filtering after discarding the
small values from the first filtering (purple).

gallery is being detected, and a value that summarises the
confidence level. The latter is an integer that goes from 0 to
10, and represents how consistent in time a particular exit
has been. The confidence level of the tracked exits is updated
with every prediction.

As detailed in the previous section, the result of the gallery
detection system is a list of angles for the candidate exits.
When a new list of angles is received, we iteratively match
tracked exits to the closest currently observed exit angle. If
the closest angle is within 20º of the tracked exit angle, it is
interpreted as the exit having moved slightly, but still being
observed. If this is the case, the tracked exit is updated by

1) increasing its confidence by 1, and
2) updating its angle to the detected one, which is re-

moved from the list.
If the closest angle is not within 20º of the tracked exit, it
is interpreted as the exit no longer being observed, so the
tracked exit is updated by

1) decreasing its confidence by 1, and
2) not updating its angle, and so, not deleting the closest

angle from the angle list.
After iterating over all currently tracked exits there are two
possible scenarios: either the list of angles is empty, or it
is not. In the former case, all observed exits have been
associated to already tracked exits. Otherwise, one or more

observed exits are not being tracked, and so, a new tracked
exit is created for each of the remaining angles, all of them
starting with a confidence of 1.

Among all detected exits, two of them are specially
important for navigation, that we label followed exit and
tail exit. The followed exit dictates the navigation direction
of the robot, and is chosen by following the topological
instructions. The tail exit is used as an anchor in transition
periods as will be explained later on.

B. Node transition

After updating the tracked exits, the following scenarios
are possible: 1) A tracked gallery reaches the maximum
confidence for the first time: This is interpreted as the
robot entering a new topological node, either entering an
intersection from a corridor, or getting away from a dead-
end. When this happens, a node transition is triggered. 2)
If a tracked exit that had previously reached the maximum
confidence reaches a confidence of 0, then it is considered
as if that gallery has been left behind, and so, it means
that a new topological node has been reached. This triggers
a node transition and the tracked exit is deleted. 3) If a
tracked exit that has not reached the maximum confidence
at any time reaches a confidence of 0, it is considered an
spurious detection, and so it is deleted, but no node transition
is triggered. 4) If none of the previous cases apply, it is
interpreted as the robot staying in the same node and no
node transition is triggered.

If there is no node transition, no further action is required,
and the robot keeps going towards the same followed exit.
If, instead, a transition has been triggered, it means that
the robot has entered a new node, and a new topological
instruction has to be fetched.

C. Transition period

According to the cases just expounded, there are two
causes for a node transition: either a tracked exit has disap-
peared, or it has reached maximum confidence for the first
time. When entering a new node, instances of both causes
can take place in a short period of time. For example, when
entering a T-intersection from the bottom, the exit in front
of the robot disappears, while two exits, one per side, would
appear. This would trigger up to three transitions for the same
node.

To avoid this problem, we have defined a transition period
during which all the triggers after the first one are ignored
and the next instruction is not fetched until this period is
over, when new and old exists have consolidated.

During this period the robot maintains its followed head-
ing. This guarantees that the robot keeps advancing until
it can fetch the next command, and solves the problem of
the followed exit disappearing (as in the example of the T-
intersection).

Once the transition period is over, it is necessary to select
the next exit to take according to the corresponding topolog-
ical instruction. As detailed in section II, these instructions
are generated in relation to the previous node, which in our

case, is pointed to by the tail exit. This makes choosing the
next gallery straightforward:

1) Order the N tracked exits by their angle
2) Obtain the index j of the tail exit
3) The index of the next gallery to follow is (j + i +

N) mod N .
Once the new followed exit is chosen, the robot exits the
transition state, and starts heading in the direction pointed
to by the chosen corridor. Regarding the tail exit, as long as
the tail exit confidence does not reach 0, it is not changed.
However, if it reaches 0 at some point, the tracked exit closest
to the opposite angle of the followed corridor is chosen as
the new tail exit.

D. Velocity Command generation

The output of the gallery detection and path instructions
subsystems is, ultimately, an angle in the robot coordinate
frame, pointing in the direction to be followed. This angle
must be translated into a velocity in order to generate the
robot motion. However, the robot must avoid obstacles at
the same time it tries to follow the angle provided by the
detection system.

Given that we start directly from an angle, we devised
a simple reactive navigation approach tailored to this kind
of input and the narrow corridors found in our particular
scenarios. Other reactive navigation methods based on vector
field histograms or dynamic windows could also work after
some adaptation.

This method generates velocity commands from the de-
sired movement angle and the laser-scan reading of the
horizontal beam of the LiDAR. To do so, a value is computed
for every angle, with the highest value determining the
immediate direction for the robot to follow.

The value of each angle is obtained by multiplying two
weights:

1) The exit direction weight gives more weight the closer
an angle is to the followed exit. To obtain this weight
we first generate a 360 long array, whose index cor-
responds to an angle, and the value at index i is
1 − |J − i|/180, being J the index corresponding to
the angle of the selected exit.

2) The obstacle avoidance weight evaluates angles on the
closeness to obstacles. Initially, maximum weight is
given to angles with obstacles farther than a maximum
threshold, or without obstacles (in our case set to 5
meters). Then, a radial filter is applied in which a
parameterizable safety distance is considered to both
sides of every reading, keeping the minimum weight
for the angle at the center of each corresponding sector.
We call this final weight the inflated laser scan.

To better illustrate this process, an example is given in
Fig. 6, where the followed exit is the one at the front, but
an obstacle is in the way. Fig. 6.b) shows how the direction
weight gives preference to the angles around the direction
of the followed exit. In Fig. 6.c), the effect of the safety
distance is shown, as the angles close to obstacle end up

(a)

0°

45°

90°

135°

180°

225°

270°

315°

0.5

1.0

(b)

0°

45°

90°

135°

180°

225°

270°

315°

3
6

9
12

(c)

0°

45°

90°

135°

180°

225°

270°

315°

3

6

(d)

Fig. 6: Heading angle calculation. (a) Situation of the robot in
simulation, the red arrow is the x-axis. (b) CNN output (red)
and exit direction weight (blue). (c) Laser scan (purple) and
inflated laser scan (green). (d) Multiplication of the direction
weight (dark blue) by the inflated laser-scan (green) to obtain
the total angle value (light blue), the angle with highest value
is the selected heading angle (red).

with the same weight as the obstacle itself, ensuring that the
highest-value angle is far-enough from the obstacles to avoid
collisions. By multiplying both weights we obtain the final
value for each angle (Fig. 6.d).

After obtaining the desired heading direction (ϕ), the
velocity commands are calculated as follows:

ω =
ϕ

|ϕ|
×min(|ϕ|,Ω) (1)

v = max(V × (
min(d, 2)

2
− |ω|

Ω
), 0) (2)

Where Ω is the maximum angular velocity and V is
the maximum linear velocity of the robot. Finally, d is the
minimum distance detected by the laser scan in the 15° in
front of the robot.

The resulting velocity commands ensure that, if the ob-
jective angle is far from the heading angle, the angular
velocity is maximal, while the linear velocity is 0. This
is important in our case, because it ensures that when the
followed exit changes in an intersection, the robot will not
exit the topological node while turning.

V. RESULTS

To test the complete navigation stack, a custom setup
has been used, based in the procedural generation of tunnel

networks.
To generate the tunnel networks, first a set of high-level

instructions (of the sort “go left”, “go right”...) is generated.
Based on these instructions, a Gazebo world is put together
using the DARPA SubT challenge tiles as building blocks.
During world generation the corresponding topological rep-
resentation of the network is also created.

For every testing run, the robot is placed in the dead-end
of a straight section of tunnel, pointing towards the only exit.
The corresponding topological node for the initial position
of the robot is known. However, the destination node of the
robot is decided randomly between all the dead-ends present
in the map. This means that the instructions used to generate
the world are not necessarily the same as the navigation
instructions for the robot; we ensure that the plan requires
traversing the same number of intersections, so the difficulty
is not lessened. Once the destination node is chosen, the
navigation instructions for the robot are generated and the
navigation begins. Once the robot has followed all of the
instructions, the testing system checks whether the robot has
reached the intended objective, and logs the result of this
check for posterior analysis.

Using the described testing method, 60 testing runs have
been performed in scenarios with 3, 4 and 5 intersections, for
a total of 180 testing runs of which 177 have been successful,
yielding a completion rate of 98.3%.

The method has been also tested in scenarios where
obstacles were introduced (1 or 2 per tile) obtaining a global
success rate of 73% over 60 runs despite the fact that the
network was not trained taking into account this situation.
One of these successful runs is shown in Fig. 7 where the
robot has to traverse a complex tunnel network to reach its
destination following instructions computed beforehand.

VI. CONCLUSIONS

This work presented a method for the navigation of
robots in tunnel-like environments, relying on topological
information of the kind “skip two crossings and then go
left” familiar to humans. The method does not require global
geometric localization, as the topological information and a
local reactive navigation are enough to follow a given plan.

A convolutional neural network is used to constantly
detect available exits even in the presence of obstacles. The
post-processed CNN output reliably provides the topological
information needed by the plan-following system to work,
triggering transitions in the graph that represents the envi-
ronment, derived from the number of exits at each node.
Simulations in randomly generated tunnel mazes show the
effectiveness of the proposal, achieving success rates of
98.3% in uncluttered scenarios, regardless of the complexity
of the maze. Future work will test the system on real-world
scenarios and will aim to improve the performance of the
method in more cluttered scenarios.

REFERENCES

[1] D. Tardioli, D. Sicignano, L. Riazuelo, A. Romeo, J. L. Villarroel, and
L. Montano, “Robot teams for intervention in confined and structured
environments,” Journal of Field Robotics, vol. 33, pp. 765–801, 2016.

(a) (b)

Fig. 7: Example of a training run. (a) Possible training scenario that has 5 intersections and 2 obstacles per tile. In (b),
resulting robot trajectory (red) with origin at top-right and destination at top-left. The topological instructions followed are
[1, 1, 1, 2, 1, 1,−1,−3,−1,−2,−1]. (b) Occupancy grid generated with gmapping during a testing run [21] using the perfect
simulation odometry.

[2] M. T. Ohradzansky, A. B. Mills, E. R. Rush, D. G. Riley, E. W.
Frew, and J. Sean Humbert, “Reactive control and metric-topological
planning for exploration,” in 2020 IEEE International Conference on
Robotics and Automation (ICRA), 2020, pp. 4073–4079.

[3] D. Tardioli and J. Villarroel, “Odometry-less localization in tunnel-like
environments,” in 2014 IEEE International Conference on Autonomous
Robot Systems and Competitions (ICARSC), 2014, pp. 65–72.

[4] T. G. Phillips, N. Guenther, and P. R. McAree, “When the dust
settles: The four behaviors of LiDAR in the presence of fine airborne
particulates,” Journal of Field Robotics, vol. 34, pp. 985–1009, 8 2017.

[5] J. S. Kim, S. K. Kwon, M. Sanchez, and G. C. Cho, “Geological stor-
age of high level nuclear waste,” KSCE Journal of Civil Engineering,
vol. 15, 2011.

[6] C. Gugg and P. O’Leary, “Robust machine vision based displacement
analysis for tunnel boring machines,” in Conference Record - IEEE
Instrumentation and Measurement Technology Conference, vol. 2015-
July, 7 2015, pp. 875–880.

[7] S. Han, X. Ren, J. Lu, and J. Dong, “An orientation navigation
approach based on INS and odometer integration for underground
unmanned excavating machine,” IEEE Transactions on Vehicular
Technology, vol. 69, pp. 10 772–10 786, 10 2020.

[8] S. S. Mansouri, C. Kanellakis, G. Georgoulas, and G. Nikolakopoulos,
“Towards MAV navigation in underground mine using deep learning,”
in 2018 IEEE International Conference on Robotics and Biomimetics
(ROBIO), 2018, pp. 880–885.

[9] S. S. Mansouri, P. Karvelis, C. Kanellakis, D. Kominiak, and G. Niko-
lakopoulos, “Vision-based MAV navigation in underground mine using
convolutional neural network,” in IECON 2019-45th Annual Confer-
ence of the IEEE Industrial Electronics Society, vol. 1. IEEE, 2019,
pp. 750–755.

[10] A. Garcia, S. S. Mittal, E. Kiewra, and K. Ghose, “A convolu-
tional neural network vision system approach to indoor autonomous
quadrotor navigation,” in 2019 International Conference on Unmanned
Aircraft Systems (ICUAS). IEEE, 2019, pp. 1344–1352.

[11] J. Larsson, M. Broxvall, and A. Saffiotti, “Laser-based corridor detec-
[15] M. Saroya, G. Best, and G. A. Hollinger, “Online exploration of tunnel

tion for reactive navigation,” Industrial Robot, vol. 35, no. 1, 2008.
[12] A. Romeo and L. Montano, “Environment understanding: Robust

feature extraction from range sensor data,” in 2006 IEEE/RSJ Int. Conf.
on Intelligent Robots and Systems, 2006, pp. 3337–3343.

[13] M. Mascaró, I. Parra-Tsunekawa, C. Tampier, and J. Ruiz-Del-solar,
“Topological navigation and localization in tunnels—application to au-
tonomous load-haul-dump vehicles operating in underground mines,”
Applied Sciences (Switzerland), vol. 11, 2021.

[14] T. Dang, F. Mascarich, S. Khattak, C. Papachristos, and K. Alexis,
“Graph-based path planning for autonomous robotic exploration in
subterranean environments,” in 2019 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), 2019, pp. 3105–3112.
networks leveraging topological cnn-based world predictions,” in 2020
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2020, pp. 6038–6045.

[16] N. Savinov, A. Dosovitskiy, and V. Koltun, “Semi-parametric topolog-
ical memory for navigation,” arXiv preprint arXiv:1803.00653, 2018.

[17] D. S. Chaplot, R. Salakhutdinov, A. Gupta, and S. Gupta, “Neural
topological SLAM for visual navigation,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 12 875–12 884.

[18] E. W. Dijkstra et al., “A note on two problems in connexion with
graphs,” Numerische mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[19] C. Aguero, N. Koenig, I. Chen, H. Boyer, S. Peters, J. Hsu, B. Gerkey,
S. Paepcke, J. Rivero, J. Manzo, E. Krotkov, and G. Pratt, “Inside
the virtual robotics challenge: Simulating real-time robotic disaster
response,” Automation Science and Engineering, IEEE Transactions
on, vol. 12, no. 2, pp. 494–506, April 2015.

[20] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2017.

[21] G. Grisetti, C. Stachniss, and W. Burgard, “Improving grid-based
SLAM with Rao-Blackwellized particle filters by adaptive proposals
and selective resampling,” in Proceedings of the 2005 IEEE Interna-
tional Conference on Robotics and Automation, 2005, pp. 2432–2437.

