000133277 001__ 133277 000133277 005__ 20250923084420.0 000133277 0247_ $$2doi$$a10.1371/journal.pone.0295652 000133277 0248_ $$2sideral$$a138016 000133277 037__ $$aART-2024-138016 000133277 041__ $$aeng 000133277 100__ $$aBergues, Jesús M. 000133277 245__ $$aOrganization of two kinesins in a two-dimensional microtubule network 000133277 260__ $$c2024 000133277 5060_ $$aAccess copy available to the general public$$fUnrestricted 000133277 5203_ $$aIn intracellular active transport, molecular motors are responsible for moving biological cargo along networks of microtubules that serve as scaffolds. Cargo dynamics can be modified by different features of microtubule networks such as geometry, density, orientation modifications. Also, the dynamical behaviour of the molecular motors is determined by the microtubule network and by the individual and/or collective action of the motors. For example, unlike single kinesins, the mechanistic behavior of multiple kinesins varies from one experiment to another. However, the reasons for this experimental variability are unknown. Here we show theoretically how non-radial and quasi-radial microtubule architectures modify the collective behavior of two kinesins attached on a cargo. We found out under which structural conditions transport is most efficient and the most likely way in which kinesins are organized in active transport. In addition, with motor activity, mean intermotor distance and motor organization, we determined the character of the collective interaction of the kinesins during transport. Our results demonstrate that two-dimensional microtubule structures promote branching due to crossovers that alter directionality in cargo movement and may provide insight into the collective organization of the motors. Our article offers a perspective to analyze how the two-dimensional network can modify the cargo-motor dynamics for the case in which multiple motors move in different directions as in the case of kinesin and dynein. 000133277 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E36-23R-FENOL$$9info:eu-repo/grantAgreement/ES/MINECO/PID2020-113582GB-I00 000133277 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/ 000133277 590__ $$a2.6$$b2024 000133277 592__ $$a0.803$$b2024 000133277 591__ $$aMULTIDISCIPLINARY SCIENCES$$b44 / 135 = 0.326$$c2024$$dQ2$$eT1 000133277 593__ $$aMultidisciplinary$$c2024$$dQ1 000133277 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion 000133277 700__ $$0(orcid)0000-0002-9551-624X$$aFalo, Fernando$$uUniversidad de Zaragoza 000133277 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada 000133277 773__ $$g19, 3 (2024), e0295652 [17 pp.]$$pPLoS One$$tPLoS ONE$$x1932-6203 000133277 8564_ $$s4407676$$uhttps://zaguan.unizar.es/record/133277/files/texto_completo.pdf$$yVersión publicada 000133277 8564_ $$s2289371$$uhttps://zaguan.unizar.es/record/133277/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada 000133277 909CO $$ooai:zaguan.unizar.es:133277$$particulos$$pdriver 000133277 951__ $$a2025-09-22-14:35:29 000133277 980__ $$aARTICLE