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A B S T R A C T   

We test the validity of Zipf’s and Gibrat’s laws for city size distributions at the regional level from 1900 to 2010 
by considering US states. Zipf’s law is satisfied for a majority of states, but for the United States as a whole it only 
held during the first half of the twentieth century. The null hypothesis of a power law is not rejected at the 
national level or for most states (the maximum number of rejections in one year is 13 states out of 48). There is 
evidence supporting a weak version of Gibrat’s law in the long-term; mean growth is independent of initial 
population for most city sizes over the entire United States and in 27 states, while the variance of growth is size- 
dependent.   

1. Introduction 

The study of power laws or, more concretely, the analysis of the 
validity of Zipf’s law, has a long tradition in many fields such as Urban 
Economics (Clauset et al., 2009); the same is true in the study of the 
validity of what is known as Gibrat’s law. Zipf’s law proposes a linear 
and stable relationship between the rank and the size (population) of 
cities; Gibrat’s law, or the law of proportionate growth, postulates that 
the growth rate of cities tends to be independent of their initial popu
lation. Excellent surveys on the topic of Zipf’s and Gibrat’s laws and, in 
general, city size distribution, can be found in Nitsch (2005), González- 
Val et al. (2014), Cottineau (2017), and Arshad et al. (2018). The vast 
majority of the studies consider nations as their geographical unit of 
reference (the cities that belong to a country) or, at most, a set of nations. 
Very few studies, conversely, have focused on a subnational area, such 
as a province or a state, as their geographical unit of reference. 

In this context, at a subnational level, the basic reference is the paper 
by Giesen and Südekum (2011), which analysed the German case. 
Furthermore, Pérez-Valbuena and Meisel-Roca (2014) analysed 
Colombia, Subbarayan (2009) and Kumar and Subbarayan (2014) 
studied a concrete Indian province, Ye and Xie (2012) analysed eight 
Chinese subregions, Ziqin (2016) considered 26 Chinese provinces, Li 
and Zhang (2018) analysed subnational Chinese administrative areas, 
Arshad et al. (2019) studied Pakistan, and Kundak and Dökmeci (2018) 

focused on Turkish provinces. Surprisingly, the case of city size distri
bution in the United States (US) has not been analysed in a systematic 
way at a subnational level. Only Garmestani et al. (2007, 2008) studied 
the validity of Zipf’s and Gibrat’s laws for the south eastern and south 
western US. 

Nevertheless, the regional study of city size distributions is an 
important issue from several perspectives. First, from a theoretical point 
of view, there is a statistical connection between regional and national 
city size distributions (Gabaix, 1999; Giesen & Südekum, 2011). Second, 
from a conceptual point of view, a regional definition of urban systems 
generally makes more sense than a nationwide urban system (especially 
for large countries), because most migrations take place between nearby 
cities within the same region rather than between the largest cities in a 
country, which are typically located at some distance from one another 
because of the possible existence of agglomeration shadows (Cuberes 
et al., 2021; Krugman, 1993). In the context of the United States, Rauch 
(2014), using US microdata, found that the majority of US citizens (over 
68 %) live within 0 and 100 km of their birthplace. Rauch (2014) also 
found, by estimating a standard gravity equation, that the relationship 
between the number of people and the distance between their home and 
place of birth decreases with distance. 

This paper largely focuses on studying the validity of Zipf’s and 
Gibrat’s laws considering each one of the continental states of the United 
States from 1900 to 2010, since testing both laws requires long time 
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intervals (Gabaix & Ioannides, 2004). Starting from untruncated data for 
all cities (incorporated places) by state, a threshold value is endoge
nously defined for each year and state following the method of Clauset 
et al. (2009). Then, we focus on the analysis of the upper tail. To the best 
of our knowledge, this study is the first of its kind. 

This research objective is interesting because, as noted above, 
regional and national city size distributions are connected: Gabaix’s 
second proposition (1999, p. 751) states that if a country is composed of 
several regions and Gibrat’s law holds in each of them, then Zipf’s law is 
verified at both the national and regional levels. However, the converse 
need not be true: Zipf’s law may hold at the national level without 
Gibrat’s law being satisfied in all regions, as long as Gibrat’s law is 
satisfied in the national aggregate (Giesen & Südekum, 2011). Gabaix’s 
work (1999) is one of the most influential theoretical papers in city size 
distribution published in recent decades but, to date, only one formal 
test of this hypothesis has been carried out. That study, Giesen and 
Südekum (2011), empirically corroborated the proposition for the 
German case. 

Our primary results are as follows. Zipf’s law holds in the upper tail 
distribution for most states (the percentage of rejections attains its 
maximum value, 22.9 %, in 2010). For the United States as a whole, the 
law holds in the first half of the twentieth century. Moreover, using the 
test proposed by Clauset et al. (2009), we cannot reject the hypothesis 
that city size distribution follows a power law in most cases (between 
72.9 % and 95.8 % of states, depending on the year). This hypothesis 
cannot be rejected for the entire US city size distribution in any year 
except for one (i.e., 1970). Finally, Gibrat’s law for mean growth holds 
for most city sizes in the US, although deviations appear for the largest 
cities. Gibrat’s law also holds in a non-negligible number of states, while 
the variance of growth rates is never size-independent for either the 
United States as a whole or for individual states. 

The rest of the paper is organised as follows. Section 2 describes the 
data used, and the methodology is explained in Section 3. The primary 
results are presented in Section 4, and they are discussed in Section 5, 
which also concludes the paper. 

2. Data 

We used the same data set as González-Val (2010) and González-Val 
et al. (2014). This data set, created from the original documents of the 
decennial census published by the US Census Bureau, consists of the 
available data for all incorporated places without any size restriction for 
each decade of the twentieth century. We also added in population data 
from the 2010 US census. 

We identify cities as places that the US Census Bureau defines as 
‘incorporated places,’ which refers to a governmental unit incorporated 
under state law as a city, town, borough or village that has legally 
established limits, powers, and functions. Such incorporated places are 
administratively defined cities (i.e., legal cities). We excluded Alaska, 
Hawaii, and Puerto Rico because of data limitations. The District of 
Columbia is also excluded because it includes only one city. Therefore, 
we considered the cities in 48 states. 

The proportion of the population living in cities (incorporated pla
ces) increased from less than half of the total US population in 1900 (47 
%) to 63 % in 2010. The population excluded from the sample is what 
the US Census Bureau calls ‘population not in place.’ Incorporated places 
do not cover the entire territory of the United States, and some terri
tories are excluded from any recognised place. Most of these people are 
part of the rural population. However, the population of incorporated 
places is almost entirely urban. 

Table 1 lists the total number of cities (incorporated places) for each 
of the 48 states in 1900, 1950 (the date of one of the intermediate 
census), and 2010. The sample of incorporated places provides 
comprehensive information about the birth of new cities. In the United 
States, urban growth has a double dimension: cities increase in size (i.e., 
population growth), and the number of cities also increases. These two 

facts have potentially different effects on city size distribution 
(González-Val, 2010). The number of incorporated places in the sample 
increased from 9534 in 1900 to 19,124 in 2010. The number of cities 
also increased over time in all states. But states are quite heterogeneous, 
and there are states with a small number of cities (e.g., Nevada, New 
Hampshire, and Rhode Island) and states with a large number of cities 
(e.g., Illinois, Iowa, and Pennsylvania). 

The raw data set is untruncated and includes all incorporated places 
with no size restrictions. For our purposes, however, the small towns are 
of little interest because Zipf’s law concentrates on the upper tail of the 
city size distribution (Eeckhout, 2009), although there is empirical ev
idence indicating that the lower tail of the US city size distribution, the 
smallest cities, are also Pareto-distributed (Giesen et al., 2010; Giesen & 
Suedekum, 2014; Luckstead & Devadoss, 2017; Reed, 2001, 2002). This 
result is confirmed for small cities in other countries, such as India 
(Devadoss et al., 2016). However, regarding Gibrat’s law, Eeckhout 
(2004) found that, for very small cities and very large cities in the US, 
from 1990 to 2000, the variation in growth rates was markedly different, 
although Devadoss and Luckstead (2015) concluded that Gibrat’s law 
held for small cities in the next decade (2000− 2010). Nevertheless, from 
the long-term perspective of 1900 to 2000, González-Val et al. (2014) 
observed that the smallest cities presented clearly higher variances than 
the middle-sized and large cities. 

Therefore, throughout this paper we focus on an empirical analysis of 
the upper tail distribution that is defined for each state following the 
method of Clauset et al. (2009). Table 1 also lists the sample size and 
population thresholds for the upper tail. 

We can distinguish five cases in terms of the number of cities in the 
upper tail over time: (1) for some states, the number of cities decreases 
over time (i.e., Maryland, Missouri), (2) for some states, the number of 
cities increases over time (i.e., Arizona, Connecticut, Delaware, Idaho, 
Minnesota, Mississippi, Montana, Nebraska, Nevada, New Jersey, 
Oklahoma, Pennsylvania, Tennessee, Texas, Vermont, and Wyoming), 
(3) for some states, the number of cities remains fairly constant over 
time (i.e., Alabama, New Hampshire, and Rhode Island), (4) for some 
states, the number of cities increases and later decreases over time (i.e., 
Arkansas, California, Colorado, Florida, Georgia, Illinois, Indiana, Iowa, 
Kansas, Michigan, New Mexico, New York, North Carolina, North 
Dakota, Ohio, Oregon, South Dakota, Utah, Washington, West Virginia, 
and Wisconsin), and (5) for some states, the number of cities decreases 
and later increases over time (i.e., Kentucky, Louisiana, Maine, Massa
chusetts, South Carolina, and Virginia). 

Overall, the population at the truncation point increases over time in 
almost all cases (Table 1). Furthermore, it is the most common for the 
number of cities at the upper tail to increase when the total number of 
cities increases (although in recent decades there has been a subsequent 
decrease in the number of cities in many states). These results confirm 
that the estimated threshold increases with sample size (Fazio & Modica, 
2015).1 

Note that we use administrative definitions for both cities (incor
porated places) and regions (states). We acknowledge that, since the 
contribution of Rozenfeld et al. (2011), the consideration of the 
administrative definition of a city is at least debatable. Beginning with 
the work of Schmidheiny and Südekum (2015), there has been a boom in 
the development of new methods to delineate and define urban areas 
using building density, machine learning, personal judgment, and other 
methods (e.g., Arribas-Bel et al., 2021; Ch et al., 2021; de Bellefon et al., 
2021; Galdo et al., 2021; Moreno-Monroy et al., 2021). Regarding re
gions, Mori et al. (2020) used empirical methods to define regions in a 
set of countries, including the United States. Giesen and Südekum 
(2011) used some samples of random regions and spatial groups of cities 

1 This is not a particular feature of the Clauset et al. (2009) method; the 
thresholds estimated using alternative methodologies (Bee et al., 2011, 2013; 
Malevergne et al., 2011) also increase with sample size (Fazio & Modica, 2015). 
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in addition to the German federal states. However, data for all these new 
city and region definitions are only available for a small number of 
recent years; for a long-term perspective (from 1900 onwards), the 
primary and unique data available correspond to administrative units. 

3. Methodology 

Let S denote a city’s relative size, that is to say, its population in year 
t divided by the average population of all US cities in the upper tail in 
that year. From a long-term temporal perspective of steady-state dis
tributions, it is necessary to use a relative measure of size (Gabaix & 
Ioannides, 2004) because the same population can correspond to 
different city sizes at different moments in time. For instance, a city of 
1000 inhabitants does not have the same city size in 1900 and in 2010. 
Additionally, a city can grow in absolute population but decrease in 
relative size. If S is distributed according to a power law, also known as a 

Pareto distribution, the density function is p(S) = a− 1
S

(
S
S

)− a 
∀S ≥ S, 

where a > 0 is the Pareto exponent (or the scaling parameter) and S is 

the population of the city at the truncation point. 
We first calculated population thresholds by state and year to define 

the upper tail city size distribution. Although we had information for all 
cities without size restrictions, we did not expect Zipf’s and Gibrat’s laws 
to hold true for the entire sample of cities2; on the contrary, the current 
mainstream view in the literature is that only the largest cities in the 
upper tail are Pareto distributed (Ioannides & Skouras, 2013). 

We followed the procedure of Clauset et al. (2009) specifically 
designed to select an optimal truncation point.3 To select the lower 
bound, the Pareto exponent is estimated for each possible sample size 
using the maximum likelihood (ML) estimator, computing the Kolmo
gorov–Smirnov (KS) statistic for each sample size. The truncation point 

Table 1 
Sample size on a state-by-state basis.   

Total number of cities Upper tail size (cities) Truncation size (population) 

State/year 1900 1950 2010 1900 1950 2010 Avg. (1900–2010) 1900 1950 2010 

Alabama 155 289 444 58 53 56 87.3 880 4225 11,620 
Arizona 12 45 82 12 20 28 31.6 521 3466 25,536 
Arkansas 164 370 496 23 192 140 147.8 1748 517 1801 
California 110 302 452 33 110 105 90.8 3057 9188 73,732 
Colorado 123 233 269 56 109 83 97.5 634 684 3887 
Connecticut 24 26 29 11 16 17 14.3 12,681 17,455 27,620 
Delaware 33 50 57 13 21 32 25.8 1132 1015 973 
Florida 73 283 396 47 90 52 74.4 543 2752 48,452 
Georgia 303 481 527 70 97 63 117.3 1150 2424 12,950 
Idaho 34 174 201 32 122 142 91.0 283 337 377 
Illinois 893 1146 1284 312 636 115 367.9 995 641 21,838 
Indiana 377 519 566 258 374 333 301.3 596 479 861 
Iowa 668 918 946 383 413 386 410.3 500 523 682 
Kansas 346 596 626 196 350 200 238.2 527 349 1010 
Kentucky 223 288 419 138 62 69 93.3 519 2926 5723 
Louisiana 98 221 302 53 43 56 68.2 688 4666 6112 
Maine 21 21 22 16 6 10 10.3 5311 20,913 15,722 
Maryland 90 144 156 66 53 52 70.4 410 1420 3844 
Massachusetts 39 39 44 25 12 35 26.0 21,766 80,536 35,177 
Michigan 370 482 532 190 292 125 206.8 859 877 7088 
Minnesota 431 763 849 67 218 555 248.0 1648 1012 363 
Mississippi 173 261 294 21 114 158 116.4 2678 1116 1019 
Missouri 489 756 938 355 97 75 115.0 331 2836 10,204 
Montana 25 120 128 19 41 45 55.3 995 1522 1464 
Nebraska 354 524 530 78 132 193 154.2 850 856 539 
Nevada 2 14 17 2 9 17 9.6 2100 2400 1130 
New Hampshire 11 12 12 10 10 12 9.1 7023 12,811 8477 
New Jersey 176 315 319 51 92 114 101.7 3244 6766 9450 
New Mexico 9 70 101 6 50 31 24.3 2735 784 6024 
New York 425 590 613 191 201 158 176.4 1495 2826 5399 
North Carolina 276 406 532 91 135 62 146.5 707 1598 13,656 
North Dakota 75 325 357 37 164 90 138.5 576 328 563 
Ohio 670 885 938 372 580 107 232.4 613 542 17,288 
Oklahoma 124 497 589 77 119 151 136.8 437 1676 1964 
Oregon 106 201 238 46 136 40 73.9 506 539 12,883 
Pennsylvania 759 969 1013 140 226 236 192.3 3416 4948 4282 
Rhode Island 6 7 8 6 6 4 5.4 13,343 37,564 71,148 
South Carolina 162 224 267 73 57 128 62.9 536 2688 1697 
South Dakota 135 297 309 87 157 110 121.8 311 373 547 
Tennessee 84 229 343 49 59 107 75.8 1266 3191 4396 
Texas 186 688 1183 45 147 213 146.8 3422 5183 10,400 
Utah 68 197 234 42 74 27 64.6 877 974 26,263 
Vermont 29 43 46 19 21 31 22.7 954 1267 565 
Virginia 132 209 229 115 108 145 116.1 288 1010 923 
Washington 82 233 275 40 145 36 82.8 761 710 29,799 
West Virginia 113 211 231 78 118 86 85.1 429 1146 1420 
Wisconsin 260 526 584 95 260 104 260.9 1584 778 7692 
Wyoming 16 85 97 10 23 65 54.3 737 2089 383 
US (nationwide) 9534 16,284 19,124 1475 887 451 940.8 2714 13,798 69,772  

2 We repeated all the analysis using all cities without size restrictions, and 
Zipf’s and Gibrat’s laws were rejected for most of the states and time periods. 
These results are available from the authors upon request.  

3 For a review of the different methods available to define the threshold and 
their primary properties, see Fazio and Modica (2015). 
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finally selected (listed in Table 1 for the years 1900, 1950, and 2010) 
corresponds to the value of the threshold for which the KS statistic is the 
smallest. These thresholds were then used to define the upper tail 
samples used throughout our analysis. 

3.1. Zipf regression 

From the density function p(S), one can obtain the expression R =

A⋅S− a, which relates the empirically observed rank R (1 for the largest 
city, 2 for the second largest, and so on) to the relative city size S. Then, 
after taking logs, one can add in the correction proposed by Gabaix and 
Ibragimov (2011) to yield the following equation: 

ln
(

R −
1
2

)

= b − alnS+ ε. (1) 

Both the standard Zipf regressions and the ML estimator are strongly 
biased in small samples (Gabaix & Ioannides, 2004; Goldstein et al., 
2004). Clauset et al. (2009) argued that small-sample bias can be sig
nificant for the ML estimator. Those authors recommended the rule of 
thumb N ≥ 50, where N is the number of cities in the upper tail, to 
obtain reliable parameter estimates. Unfortunately, that sample size is 
larger than the number of cities in the upper tail in some states (see 
Table 1), particularly in the first decades of the twentieth century.4 An 
additional potential issue is that the ML estimator may be biased when 
the size distribution of cities does not follow a power law (Soo, 2005). 

To correct for the small-sample bias, Gabaix and Ibragimov (2011) 
proposed subtracting 1/2 from the rank to obtain an unbiased estima
tion of the exponent. Their numerical results demonstrate the advantage 
of this approach over the standard OLS Zipf regressions. In addition, the 
results of Gabaix and Ibragimov (2011) also suggest that the OLS ap
proaches to tail index estimation are more robust than ML estimator of 
the tail index under deviations from power laws. That is, Gabaix and 
Ibragimov (2011)’s Rank-1/2 estimator not only corrects the bias in 
small samples—it is also more accurate than the ML estimator if the 
upper tail distribution does not follow a power law. 

If â = 1 then Zipf’s law holds, meaning that, ordered from largest to 
smallest, the size of the second city is half of that of the first, the size of 
the third is one third city of that of the first, and so on. In any case, a is 
interpreted as a measure of the degree of inequality in the city size 
distribution: when a increases (decreases) over time, the distribution 
becomes more equal (unequal). Standard errors are calculated by 
applying Gabaix and Ioannides (2004)’s correction: GI s.e. =
â⋅(2/N)

1/2, where N is the sample size. We use these corrected standard 
errors to calculate the confidence intervals of â at the 95 % confidence 
level and to test whether the Pareto exponent is significantly different 
from 1. 

3.2. Power law test 

Analysis based on Zipf’s regressions can be very useful, but it is also 
characterised by some limitations. Clauset et al. (2009) pointed out 
some of those limitations: first, calculations of standard errors are 
inaccurate; second, the value of the fraction of variance accounted for by 
the fitted line has very little power as a hypothesis test; and finally, the 
regression lines are not valid distributions (see Appendix A in Clauset 
et al. (2009) for details). 

As an alternative, and as a complement to Zipf regressions, we 
implement here the statistical test proposed by Clauset et al. (2009) to 
test whether or not the data follow a power law. Note that this approach 

is more general because we test the data for this type of distribution, 
with Zipf’s law being a particular case with a Pareto exponent equal to 1. 

The test is based on a measurement of the ‘distance’ between the 
empirical distribution of the data and the hypothesised Pareto distri
bution. This distance is compared with the distance measurements for 
comparable synthetic data sets drawn from the hypothesised Pareto 
distribution, and we define the p-value as the fraction of the synthetic 
distances that are larger than the empirical distance. This semi- 
parametric bootstrap approach is based on the iterative calculation of 
the Kolmogorov–Smirnov (KS) statistic for 300 bootstrap data set 
replications. 

The Pareto exponent is estimated for each state and year using the 
maximum likelihood estimator, and then the KS statistic is computed for 
the data and the fitted model. The test uses from the observed data and 
checks how often the resulting synthetic distribution fits the actual data 
as poorly as the ML-estimated power law. Therefore, the null hypothesis 
is the power law behaviour of the original sample. Nevertheless, this test 
has an unusual interpretation because, regardless of the true distribution 
from which our data were drawn, we can always fit a power law. Clauset 
et al. (2009) recommend the conservative choice that the power law is 
ruled out if the p-value is below 0.1: “that is, it is ruled out if there is a 
probability of 1 in 10 or less that we would merely by chance get data 
that agree as poorly with the model as the data we have.” Therefore, this 
procedure only allows us to conclude whether a power law is a plausible 
fit to the data. 

As an alternative, we also tested whether the data could be described 
by a lognormal distribution. A lognormal distribution has, along with 
the Pareto distribution, been considered in studies of city size for many 
years. Such a distribution can describe the entire city size distribution 
(Eeckhout, 2004) or just the upper tail (Eeckhout, 2009; Levy, 2009). 
The standard test to check the lognormal behaviour of a sample is the KS 
test, which has been previously applied to city sizes by Giesen et al. 
(2010) and (González-Val, 2019), among others. The KS test’s null hy
pothesis is that the two samples—the actual data and the fitted 
lognormal distribution—come from the same distribution. 

3.3. A parametric test of Gibrat’s law 

A first way to test the relationship between growth and initial rela
tive city size is to run the following regression equation (Eeckhout, 
2004; Gabaix, 2009; Sutton, 1997): 

ln(Sit) = α+ βln(Sit− 1)+ uit. (2)  

where uit is a random variable representing the random shocks that the 
growth rate may suffer, which we shall assume are identically and 
independently distributed for all cities. The parameter of interest here is 
β, because if the estimated value of β is close to unity (β̂ ≅ 1), the 
growth process is a random walk with drift, which provides statistical 
evidence that the process obeys Gibrat’s law of proportionate growth 
(Ahundjanov & Akhundjanov, 2019; Ahundjanov et al., 2022; 
Akhundjanov & Drugova, 2022). 

We ran Eq. (2) for each cross-sectional decade in our sample data, 
and robust standard errors are used to calculate the confidence intervals 
of β̂ at the 95 % confidence level and to test whether this coefficient is 
significantly different from 1. Alternatively, like Ahundjanov and 
Akhundjanov (2019), we also computed a Wald test of the null hy
pothesis that β̂ = 1. 

Note that Eq. (2) imposes a linear function assumption in the form of 
conditional expectation of growth rates, which may be viewed as a 
disadvantage in the analysis of Gibrat’s law (Ahundjanov & Akhundja
nov, 2019; Akhundjanov & Drugova, 2022). Among others, Ioannides 
and Overman (2004) have highlighted the advantages of the nonpara
metric approach over the standard parametric approach. Mainly, 
nonparametric methods do not impose any structure on underlying re
lationships that may be nonlinear and may change over time (no need to 

4 There are eight states with fewer than 50 cities in the upper tail distribution 
at all points in time. Furthermore, the percentage of states with a number of 
cities below that reference value is equal to or higher than 25 % in all years 
except for one (i.e., 1930). 
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restrict the relationship to being stationary); this is especially important 
when long periods are considered (González-Val, 2023). 

3.4. A nonparametric approach to test the validity of Gibrat’s law 

Like Giesen and Südekum (2011), we conducted a nonparametric 
analysis of growth rates in the long-term on a state-by-state basis. We 
computed the growth rates for all of the cities in our upper tail samples; 
the population growth rate of city i in year t is defined as 
(Sit − Sit− 1)/Sit− 1, with S denoting the city’s relative size. Starting with 
this gross growth rate, we then subtract the mean and divide that 
quantity by the standard deviation of the growth rates of the upper tail 
cities for the entire United States that year, to build normalised growth 
rates. The growth rates need to be normalised because we are consid
ering a pool of all growth rates from 1900 to 2010. Note that this is not a 
balanced panel: cities enter and exit the upper tail, and the number of 
cities in the upper tail also changes over time because the population 
threshold is different each year. Then, to compute the growth rates, we 
require city i to be part of the upper tail in year t-1 (although it can be out 
of the tail in year t). We accordingly ensure that the total number of 
observations in our pool of growth rates from 1900 to 2010 by state is 
consistent with the sum of the number of cities in the upper tail in the 
initial year from 1900 to 2000. 

To perform the nonparametric analysis, we run the following kernel 
regression: 

gi = m(lnSi)+ εi, (3)  

where gi is the normalised growth rate. Instead of making assumptions 
about the functional relationship m, m̂(lnSi) is estimated as a local mean 
around point ln(S) and is smoothed using a kernel, which is a symmet
rical, weighted, and continuous function in ln(S). Thus, the nonpara
metric estimate allows growth to vary with the initial (log) relative 
population over the entire distribution. Doing so ensured that the esti
mated nonparametric relationship between growth and size was more 
accurate than the estimate obtained using standard parametric models 
(Ioannides & Overman, 2004). 

We ran the kernel regression for a pool of 1900–2010 on a state-by- 
state basis and for the entire United States. To estimate m̂, the Nadar
aya–Watson method is used, as it appears in Härdle (1990, Chapter 3).5 

Kernel regressions have become popular in the empirical literature in 
recent decades (Eeckhout, 2004; Giesen & Südekum, 2011; González- 
Val, 2010, 2023; Ioannides & Overman, 2003), and m̂ is typically esti
mated using the Nadaraya–Watson estimator. Alternative methods, such 
as the LOcally WEighted Scatter plot Smoothing (LOWESS) algorithm 
(Cleveland, 1979) based on local polynomial fits, yield similar results 
(González-Val et al., 2014). 

We tested the hypothesis that urban growth is independent of its 
population’s initial size (i.e., the underlying growth model is a multi
plicative process), a proposition known as Gibrat’s law. Gibrat’s law 
implies that growth is independent of size in both mean and variance. 
Given that growth rates are normalised, if Gibrat’s law was strictly 
fulfilled and growth was size-independent the estimated kernel of both 
the mean and variance would be a straight line and any deviation would 
involve deviations from the mean or variance. 

4. Results 

4.1. National results 

4.1.1. Zipf’s law 
We ran Eq. (1) for each decennial census from 1900 to 2010 and 

obtained the Pareto exponent and the corrected standard error to 
compute the 95 % interval estimation of the exponent. The results are 
reported in Table 2; one can see that Zipf’s law is not rejected for the US 
upper tail distribution from 1900 to 1950. Nevertheless, in the second 
half of the twentieth century and 2010, the Pareto exponent is signifi
cantly different from 1. The growth of the Pareto exponent after 1920 
implies that the size distribution of cities became less unequal over time. 

4.1.2. Power law test 
The data in Table 2 show that the null hypothesis of a power law 

cannot be rejected for the United States at the significance level of 10 % 
for every investigated year except for 1970, using Clauset et al. (2009)’s 
method. Therefore, the Pareto distribution provides a plausible fit to the 
data for the upper tail city size distribution in the US. On the other hand, 
the lognormal distribution is clearly rejected for all years.6 

4.1.3. Gibrat’s law 
We ran Eq. (2) for each cross-sectional decade from 1900 to 2010 and 

obtained the estimated β̂ coefficient and the robust standard error to 
compute the 95 % interval estimation of the coefficient. The results are 
reported in the last columns of Table 2; Gibrat’s law is rejected in the 
short-term in all decades, with the estimated coefficient being close to 
0.9 in most periods. 

From a long-term perspective, the nonparametric estimates of the 
mean and the variance of the growth rate depending on the initial 
relative size of the urban nuclei for the United States on a nationwide 
basis are shown in Fig. 1. The 95 % confidence intervals are indicated as 
well. One can see from this figure that Gibrat’s law for means holds 
reasonably well for the small- and medium-sized cities in the long-term: 
the estimated mean growth is nearly a straight line around the value of 
zero for log-relative sizes equal to or smaller than zero (i.e., cities with a 
population equal to or smaller than the contemporary average city size). 
This finding indicates that growth is independent of initial city size. 
However, for the largest cities in the upper tail distribution we observed 
lower-than-average growth (i.e., convergent behaviour), because the 95 
% confidence intervals no longer include zero, especially for log-relative 
sizes >2. Nevertheless, there are many fewer observations in the top 
sizes than in the other city sizes,7 as the wider confidence intervals at the 
top upper tail attest to. Furthermore, the variance of growth is clearly 
size-dependent: the larger the initial relative size of a city, the lower the 
variance of growth. That outcome is standard and expected; see 
González-Val et al. (2014). 

4.2. Regional results 

4.2.1. Zipf’s law 
Table 3 summarises the results of the tests carried out on a state-by- 

state basis. We find strong support for Zipf’s law on the state level: Zipf’s 
law cannot be rejected for most states in all decades. The number of 
rejections is especially low in the first half of the twentieth century (in 
1900, Zipf’s law cannot be rejected in any state); the evidence against 
the validity of Zipf’s law slightly increases in the latter half of the sample 
period. The maximum number of rejections, 22.9 % of the states, is 
attained precisely in 2010. 

Fig. 2 shows a map highlighting the 30 states for which Zipf’s law 
cannot be rejected in any year of the sample period 1900–2010. A 
geographical pattern is also evident in this figure: Zipf’s Law cannot be 
rejected for any of the states in the southern United States (mainly 
agricultural states); that situation does not hold true for the states in the 

5 We used an Epanechnikov kernel and Silverman’s rule of thumb to set the 
bandwidth. 

6 Results from the Vuong’s model selection test clearly support the power law 
behaviour of the data compared with the lognormal distribution. These results, 
not shown in this paper, are available from the authors upon request.  

7 Non-reported bivariate kernels confirm the sparsity of data for the top city 
sizes. 
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industrial northern part of the country. 
Table 4 presents the estimated Pareto exponent for each year and 

state. An asterisk indicates cases for which Zipf’s law is not fulfilled (i.e., 
when the null hypothesis â = 1 is rejected at the 5 % confidence level, 
using Gabaix and Ioannides’s (2004) corrected standard errors). There is 
clearly no systematic behaviour: one can find states in which the Pareto 
exponent clearly decreases in all the periods from 1900 to 2010 (e.g., 
North Dakota), states in which it increases (e.g., California), states in 
which it is stable around a value of 1 (e.g., West Virginia) and states in 
which it exhibits great variation over time (e.g., New Mexico). 

4.2.2. Power law 
The results in Table 3 reveal that the null hypothesis of a power law is 

rejected only for a few states at a significance level of 10 %. That is, the 
data exhibit power law behaviour in the majority of states in all time 
periods. The percentage of rejections ranges from a minimum of 4.2 % of 
the states in 1910 to a maximum of 27.1 % in 1970.8 

Compared with the power law results, the percentages of rejections 
of the lognormal distribution (also listed in Table 3) are significantly 
larger. The lognormal distribution is rejected for most states in all years 
except 1900: the percentage of rejections then is 43.8 %. Therefore, the 
Pareto distribution fits the data better than a lognormal distribution at 
both the national and regional levels. 

4.2.3. Gibrat’s law 
The last columns in Table 3 summarise the results of the parametric 

testing of Gibrat’s law in the short-term on a state-by-state basis. We find 
support for Gibrat’s law on the state level because it cannot be rejected 
for most states in all decades except 1970–1980. The number of re
jections is close to one-third of the number of states in most periods, 
although the evidence against the validity of Gibrat’s law slightly in
creases in the first decades of the second half of the sample period 

Table 2 
Results of the tests for the entire United States.    

Zipf’s law Power 
law 

Lognormality Gibrat’s law 

Year Upper tail size 
(cities) 

Pareto 
exponent 

Corrected s. 
e. 

95 % interval 
estimation 

Test 
p-Value 

KS 
p-Value 

β̂ Robust s. 
e. 

95 % interval 
estimation  

1900  1475  1.04  0.04 (1.11–0.96)  0.52  0.00     
1910  712  1.07  0.06 (1.18–0.96)  0.98  0.00  0.87  0.02 (0.83–0.91)  
1920  2078  1.00  0.03 (1.06–0.94)  0.41  0.00  0.92  0.01 (0.90–0.94)  
1930  1118  1.04  0.04 (1.13–0.96)  0.61  0.00  0.84  0.02 (0.81–0.88)  
1940  1200  1.06  0.04 (1.14–0.97)  0.71  0.00  0.94  0.01 (0.92–0.96)  
1950  887  1.10  0.05 (1.20–1.00)  0.66  0.00  0.89  0.01 (0.86–0.91)  
1960  625  1.20  0.07 (1.34–1.07)  0.90  0.00  0.74  0.03 (0.67–0.81)  
1970  832  1.24  0.06 (1.36–1.12)  0.07  0.00  0.82  0.03 (0.76–0.87)  
1980  790  1.30  0.07 (1.43–1.17)  0.38  0.00  0.83  0.02 (0.79–0.88)  
1990  550  1.35  0.08 (1.51–1.19)  0.76  0.00  0.89  0.02 (0.86–0.93)  
2000  572  1.37  0.08 (1.53–1.21)  0.94  0.00  0.92  0.01 (0.90–0.95)  
2010  451  1.41  0.09 (1.60–1.23)  0.73  0.00  0.91  0.01 (0.88–0.93) 

Notes: The lower bound of the upper tail was estimated using the methodology of Clauset et al. (2009). The Pareto exponent was estimated using the Rank-1/2 
estimator of Gabaix and Ibragimov (2011). Standard errors were calculated by applying the corrected standard errors of Gabaix and Ioannides (2004). The power law 
test is a goodness-of-fit test; the null hypothesis is that there is power law behaviour for the data in the upper tail. The KS test’s null hypothesis is that the data follow a 
lognormal distribution. The regression results for the parametric testing of Gibrat’s law report the estimated ̂β coefficient from the cross-sectional estimation of Eq. (2) 
by decade at year t (t = year in the first column).  
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Fig. 1. Nonparametric estimates of the growth rate and its variance for the 
United States (1900–2010, 10,839 observations). 

8 One might expect that rejection of a power law should imply a rejection of 
Zipf’s Law because Zipf’s Law is a specific type of power law. However, a power 
law is rejected in more instances than Zipf’s Law in many years (Table 3). Note 
that the significance level considered in these two tests is different. If the 5 % 
level is considered in both tests, the number of rejections of Zipf’s Law is equal 
to or larger than the number of rejections of a power law in all years except for 
two (i.e., 1900 and 1930). Data supporting these results are available from the 
authors upon request. 
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(1950–1960, 1960–1970, and 1970–1980). 
Table 5 presents the estimated β̂ coefficient for each decade and 

state from the cross-sectional estimation of Eq. (2). An asterisk indicates 
cases for which Gibrat’s law does not hold (i.e., when the null hypothesis 
β̂ = 1 is rejected at the 5 % confidence level, using a Wald test). One can 
find states in which Gibrat’s law holds in all the decades from 1900 to 
2010 (e.g., Vermont), states in which it is rejected in only one or two 
decades (e.g., Delaware, New Hampshire, Connecticut, North Carolina, 
and West Virginia), and states in which it is rejected in most periods (e. 
g., Minnesota, New Jersey, and Ohio). 

If we focus on long-term growth, Figs. 3 and 4 show the nonpara
metric estimates of the mean and variance of the growth rate for several 
selected states for a pool of all of the decade-by-decade growth-size pairs 
from 1900 to 2010; the results for each of the 48 states are reported in 
Figs. A1 and A2 in Appendix A. Note that the normalised growth rates 
were obtained by subtracting the mean and dividing by the standard 
deviation of all US cities in the upper tail of each year, not only the cities 
corresponding to that state and, therefore, the interpretation is that, if 
the line is above (below) zero then, on average, the cities in that state 
have grown with more (less) intensity than the rest of the US cities. The 
same procedure was adopted by Giesen and Südekum (2011). The mean 
and variance of growth satisfy Gibrat’s law if the estimates are repre
sented by an approximately horizontal line, independent of initial size. 

A visual inspection of Figs. 3 and A1 in Appendix A confirms that 
Gibrat’s law for mean growth is reasonably satisfied for 27 states (i.e., 
Alabama, Arkansas, Colorado, Connecticut, Delaware, Georgia, Indiana, 
Iowa, Kentucky, Louisiana, Maine, Massachusetts, Michigan, 

Mississippi, Missouri, Montana, New Hampshire, New Mexico, New 
York, North Carolina, Pennsylvania, South Carolina, Vermont, Virginia, 
West Virginia, Wisconsin, and Wyoming).9 The map shown in Fig. 5 
highlights these states for which Gibrat’s law holds for most city sizes. 
The figure reveals a clear geographical pattern: most of the states are 
located in the eastern part of the United States, in the Northeast, 
Southeast and Midwest regions. On the other hand, Gibrat’s law is 
rejected for all states along the West Coast and surrounding areas. 
Furthermore, there is an isolated column of states in which Gibrat’s law 
for mean growth is fulfilled: Montana, Wyoming, Colorado, and New 
Mexico. 

In many cases the nonparametric estimate of mean growth is a flat 
line for most city sizes, but deviations can be observed for the largest 
cities of the upper tail. The results for Kansas, Minnesota, New Jersey, 
and South Dakota are ambiguous, and in the remaining states Gibrat’s 
law for means clearly does not hold. In those cases, the estimated mean 
growth exhibits a convergent pattern (i.e., growth decreases with initial 
size). That situation holds true in some states such as Florida. However, 
in other states (e.g., Idaho or Nevada) a divergent pattern emerges, with 
the largest cities growing more than the smaller cities; see Fig. A1 in 
Appendix A. 

Table 3 
Summary of the results of the tests on a state-by-state basis.   

Zipf’s law rejections (5 %) Power law rejections (10 %) Lognormality rejections (5 %) Gibrat’s law rejections (5 %) 

Year Number Percentage Number Percentage Number Percentage Number Percentage  

1900  0  0 %  5  10.4 %  21  43.8 %    
1910  1  2.1 %  2  4.2 %  33  68.8 %  15  31.3 %  
1920  3  6.3 %  5  10.4 %  30  62.5 %  5  10.4 %  
1930  2  4.2 %  7  14.6 %  33  68.8 %  21  43.8 %  
1940  5  10.4 %  6  12.5 %  33  68.8 %  18  37.5 %  
1950  4  8.3 %  7  14.6 %  35  72.9 %  15  31.3 %  
1960  6  12.5 %  6  12.5 %  32  66.7 %  23  47.9 %  
1970  9  18.8 %  13  27.1 %  31  64.6 %  24  50.0 %  
1980  9  18.8 %  9  18.8 %  30  62.5 %  26  54.2 %  
1990  9  18.8 %  12  25.0 %  32  66.7 %  15  31.3 %  
2000  9  18.8 %  7  14.6 %  28  58.3 %  15  31.3 %  
2010  11  22.9 %  7  14.6 %  31  64.6 %  21  43.8 % 

Notes: Number of states (and percentages) with rejections for the different statistical city size distributions and the parametric testing of Gibrat’s law. 

Fig. 2. Zipf’s law by state, 1900–2010. 
Notes: The 30 states for which Zipf’s law cannot be rejected in any year of the sample period 1900–2010 are shown in blue. The 18 states for which Zipf’s law is 
rejected at least once from 1900 to 2010 are shown in white. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 

9 In many of these states the parametric testing of Gibrat’s law in the short- 
term revealed that Gibrat’s law holds in most decades. 
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Results pertaining to the variance of growth rates are easier to 
interpret: Gibrat’s law simply does not hold.10 Figs. 4 and A2 in Ap
pendix A exhibit a decreasing relationship between the variance of 
growth and the initial relative size in most cases; larger variance cor
responds, as might be expected, to the smaller cities. 

5. Discussion and conclusions 

We have studied the US city size distribution at the national and 
regional levels; we considered 48 states from 1900 to 2010. Empirical 
studies of this topic at a regional level are quite scarce, and for the 

United States they are almost non-existent. We focused on upper tail 
cities, defined endogenously according to the methodology of Clauset 
et al., 2009. We used Zipf regressions to conclude that the support for 
Zipf’s law decreases over time. However, Zipf’s law is satisfied for a 
majority of states in all years (the maximum number of rejections is 22.9 
% in 2010). 

We have employed two complementary techniques to test whether or 
not individual American states follow a power law in the upper tail (the 
methodology of Clauset et al. (2009)) or comply with Zipf’s law in the 
same upper tail (Zipf’s regressions with corrected standard errors). 
Cristelli et al. (2012, p. 7) argued that, for Zipf’s law to hold, the urban 
system must be integrated and the sample must be coherent in the sense 
of being the “result of some kind of optimization in growth processes or 
of an optimal self-organization mechanism”. The same authors also 
claimed, although without providing any empirical support, that “the 
size of US cities compose a near Zipfian set, in contrast to the sets 
composed of the cities from a single state such as California, New York 

Table 4 
Pareto exponents estimated by state and decade.  

State 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 

Alabama  1.04  1.04  1.02  1.00  1.00  1.04  0.98  1.06  1.11  1.16  0.85  1.25 
Arizona  0.99  1.05  1.33  1.14  0.89  1.06  0.80  0.74  0.76  0.71*  0.66*  0.91 
Arkansas  1.22  1.40  1.37  1.08  1.07  0.94  0.88  0.88  0.88  0.89  0.95  0.93 
California  0.88  0.90  0.90  0.90  0.92  1.01  1.19  1.33  1.38*  1.44*  1.44  1.49* 
Colorado  0.91  0.96  0.96  0.90  0.92  0.88  0.95  0.68*  0.69*  0.68*  0.80  0.79 
Connecticut  1.16  1.05  1.05  1.15  1.16  1.10  1.40  1.52  1.51  1.55  11.06  1.57 
Delaware  0.78  0.81  0.85  0.85  0.80  0.88  0.91  0.86  0.85  0.84  0.83  0.85 
Florida  0.97  1.00  0.98  0.98  0.95  0.96  1.05  1.13  1.02  1.50  1.62  1.59 
Georgia  1.13  1.16  1.12  0.96  1.06  1.08  1.06  1.06  1.11  1.09  1.17  1.27 
Idaho  1.17  1.30  1.00  0.98  0.94  0.90  1.05  0.83  1.02  0.98  0.74*  0.69* 
Illinois  1.08  1.01  0.99  0.90  0.88*  0.87*  1.20  0.74*  1.23  1.36  1.39  1.51* 
Indiana  0.97  0.92  0.85*  0.82*  0.83*  0.80*  0.81*  0.80*  0.79*  1.26  0.81*  0.77* 
Iowa  1.15  1.10  1.07  1.02  1.01  0.97  0.94  0.93  0.95  0.93  0.92  0.90 
Kansas  1.11  1.05  1.01  0.97  0.94  0.90  1.00  0.94  0.92  0.89  0.87  0.83* 
Kentucky  1.05  1.10  1.31  1.01  1.06  1.29  1.27  1.25  1.07  1.41  1.53  1.35 
Louisiana  0.92  0.98  0.85  0.97  1.00  0.96  0.96  0.98  0.96  0.97  0.97  1.00 
Maine  1.48  1.36  1.61  1.63  1.70  1.74  1.38  2.07  2.13  2.14  2.07  2.10 
Maryland  0.82  0.82  0.83  0.84  0.80  0.84  0.82  0.80  0.84  0.87  0.88  0.96 
Massachusetts  1.29  1.35  1.37  1.41  1.40  1.39  1.37  1.47  1.59  1.60  1.65  1.65 
Michigan  1.00  0.92  0.85*  0.92  0.84*  0.81*  0.80*  0.79*  0.80*  0.93  1.48  1.07 
Minnesota  1.01  1.05  1.06  1.01  1.03  1.01  0.96  0.91  1.43  0.74*  0.89  0.69* 
Mississippi  1.71  1.06  1.06  1.03  1.08  1.01  0.98  1.00  1.02  0.97  1.68  0.85 
Missouri  0.98  0.93  0.91  0.96  0.93  0.99  1.06  1.06  1.13  1.06  1.17  1.21 
Montana  0.94  0.81  0.97  0.91  1.03  1.02  0.96  0.92  0.89  0.86  0.89  0.85 
Nebraska  1.15  1.21  1.17  1.14  1.09  1.05  0.99  0.95  0.94  0.91  0.88  0.86 
Nevada  1.44  1.04  1.25  1.16  1.18  0.93  0.76  0.58*  1.18  0.51*  0.49*  0.43* 
New Hampshire  1.40  1.36  1.37  1.46  1.50  1.57  1.60  1.51  1.45  1.41  1.28  1.11 
New Jersey  0.86  0.86  0.91  1.00  1.03  1.10  1.23  1.32*  1.35*  1.38*  1.37*  1.35 
New Mexico  2.47  2.19  1.98  0.89  1.67  0.85  0.78  0.74  1.06  1.08  1.07  0.93 
New York  0.87  0.86  0.79  0.87  0.88  0.89  0.93  0.94  0.99  1.01  1.02  1.02 
North Carolina  1.16  1.08  1.08  0.99  0.94  0.96  0.94  0.93  0.94  0.92  0.91  1.05 
North Dakota  1.39  1.26  1.26*  1.21  1.16  1.08  0.95  0.91  0.94  0.90  0.87  0.83 
Ohio  0.91  0.86*  0.94  0.92  0.79*  0.78*  1.08  1.14  1.27  1.29  1.35  1.43* 
Oklahoma  1.27  1.31  1.27  1.11  0.90  1.05  1.08  0.94  0.98  0.94  0.93  0.91 
Oregon  0.98  0.93  0.94  0.93  1.02  0.90  0.85  0.84  1.19  1.13  1.11  1.13 
Pennsylvania  1.06  1.12  1.13  1.15  1.16  1.18  1.22*  1.24  1.27*  1.28*  1.28*  1.28* 
Rhode Island  0.96  0.99  1.03  1.06  1.11  1.25  1.61  1.95  2.24  2.24  2.07  1.95 
South Carolina  1.02  1.18  1.20  1.14  1.14  1.14  1.22  1.31  1.36  1.32  1.00  0.92 
South Dakota  1.26  1.31  1.32  1.20  1.14  1.05  0.99  0.98  0.98  0.92  0.93  0.89 
Tennessee  0.94  0.95  0.90  0.88  0.90  0.95  0.99  0.96  0.98  0.99  1.00  0.95 
Texas  1.25  1.11  1.04  1.04  1.05  1.03  0.99  0.99  1.00  1.00  1.03  0.95 
Utah  1.18  1.10  1.14  1.07  1.08  1.01  0.92  0.89  1.21  1.00  0.97  1.79 
Vermont  1.00  1.57  0.99  0.99  0.97  0.98  0.95  0.89  0.93  1.51  0.69*  0.81 
Virginia  0.80  0.89  0.85  0.86  0.87  0.82  0.75*  0.69*  0.70*  0.66*  0.66*  0.67* 
Washington  0.86  0.87  0.87  0.82  0.84  0.82  0.84  1.11  1.21  0.90  1.38  1.43 
West Virginia  1.02  1.02  1.05  0.99  1.00  1.00  0.98  1.02  1.08  1.08  1.07  1.07 
Wisconsin  1.04  0.93  0.92  0.86*  0.87  0.88  0.84*  0.81*  0.85*  0.83*  1.21  1.23 
Wyoming  0.89  0.94  1.22  0.78  0.75*  1.18  0.69*  0.67*  0.70*  0.73  0.66*  0.71* 

Notes: The lower bound of the upper tail for each state was estimated using the methodology of Clauset et al. (2009). The Pareto exponent was estimated using the 
Rank-1/2 estimator of Gabaix and Ibragimov (2011). * The null hypothesis â = 1 can be rejected at the 5 % confidence level, using the corrected standard errors of 
Gabaix and Ioannides (2004).  

10 It might be argued that a weak fulfilment of the law can be observed for 
Connecticut, Delaware, Idaho, Kentucky, Louisiana, Maine, Massachusetts, 
Mississippi, Nevada, New Hampshire, Tennessee, and Virginia; see Figure A2 in 
Appendix A. 
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Table 5 
Regression results for the parametric testing of Gibrat’s law.  

State 1900–1910 1910–1920 1920–1930 1930–1940 1940–1950 1950–1960 1960–1970 1970–1980 1980–1990 1990–2000 2000–2010 

Alabama  1.07  0.96  1.01  0.99  0.96  1.01  0.89*  0.92*  0.95*  1.00  0.87* 
Arizona  0.91  0.89  1.10  0.98  0.85  1.25*  1.06  0.99  1.03  1.02  0.71* 
Arkansas  1.04  0.95  1.10*  1.00  1.09*  1.06*  0.99  0.99  1.01  0.96*  0.99 
California  1.06  1.04  0.85*  0.95  0.98  0.80*  0.85*  0.97  0.95*  0.97*  0.99 
Colorado  0.77*  1.00  1.05*  0.97*  0.99  0.83  1.08*  0.96*  1.00  0.92*  0.90* 
Connecticut  1.03  1.06  0.90*  0.98  1.01  0.84*  0.82  0.94  0.97  0.42  0.98 
Delaware  1.00  0.98  0.97  0.90  0.95*  0.99  1.05  0.99  0.99  0.98  0.97 
Florida  0.96  0.99  0.83*  1.01  0.96  0.86*  0.87*  0.98  0.75*  0.87*  0.99 
Georgia  1.00  1.01  1.02  0.98  0.96  0.97  0.99  0.95*  0.97  0.83*  0.79* 
Idaho  0.73  1.08  1.00  1.01  1.05*  0.91  1.05*  0.91*  1.01  1.04  1.06* 
Illinois  1.05*  1.01  1.05*  0.99  0.99  0.66*  1.03*  0.78  0.91*  1.01  1.02 
Indiana  1.04*  1.07*  1.03*  0.99  1.01  0.99  1.00  0.99*  0.94  0.99  1.02 
Iowa  1.04*  1.01  1.05*  1.01*  1.03*  1.02*  1.00  0.98*  1.01*  1.01  1.01 
Kansas  1.04  1.02  1.03*  1.02*  1.03*  0.88*  1.01  1.00  1.04*  1.02  1.03* 
Kentucky  0.95*  0.94  1.04  0.96*  0.90*  0.87*  0.97  1.01  0.92  0.94  0.97 
Louisiana  0.97  1.00  0.96  0.94*  0.98  0.99  0.94*  1.00  0.98  1.00  0.95* 
Maine  1.06*  0.93  0.86  0.96*  0.88  0.96  0.91*  0.97*  1.00  1.03  0.98 
Maryland  0.97  1.02  1.01  0.99  0.92*  0.99  0.96  0.94*  0.95*  0.94*  0.95* 
Massachusetts  0.93  0.97  1.03  1.00  1.00  0.94*  0.92*  0.95*  0.99  0.98  1.00 
Michigan  1.06*  1.03  0.89  0.98*  1.00  0.98  0.98*  0.95*  0.97*  0.97  0.97* 
Minnesota  1.02  1.01  1.03*  0.97*  1.01  1.02  1.03*  0.77*  1.05*  0.96*  1.01* 
Mississippi  1.05  0.97  1.01  0.96  1.01  1.02*  0.96*  0.96*  0.99  0.69*  1.01 
Missouri  0.93  0.99  1.03  0.95*  0.97  0.92*  0.87*  0.95*  0.98  0.91*  0.92* 
Montana  0.85  0.84*  1.02  0.91*  1.00  1.02  1.04*  1.01  1.03*  1.00  1.04* 
Nebraska  1.00  1.02  1.05*  1.00  1.02  1.06*  1.04*  1.00  1.03*  1.03*  1.02* 
Nevada  1.95*  1.08  0.96  0.90  1.26  1.13  1.17*  0.82  1.03  1.06  1.06* 
New Hampshire  1.01  0.98  0.93*  0.98  0.97  0.97  1.03  1.00  1.01  1.07  1.00 
New Jersey  1.01  0.97*  0.91*  0.96*  0.93*  0.88*  0.93*  0.98*  0.97*  1.00  1.01 
New Mexico  1.19  0.88  1.17*  0.32*  1.14*  1.03  1.03  1.06  1.04  1.01  1.05 
New York  1.03*  1.00  0.98  0.99*  0.99*  0.96*  0.97*  0.97*  0.99  0.98  1.00 
North Carolina  0.99  0.98  1.06*  1.01  0.99  1.02  0.98  0.98  1.02  1.00  0.88* 
North Dakota  1.09  1.02  1.02  1.01  1.05*  1.09*  1.05*  0.97  1.03  1.02*  1.03* 
Ohio  1.06*  1.00  0.96  0.99*  1.00  0.81*  0.84*  0.93*  0.97*  0.95*  0.95* 
Oklahoma  0.88  0.98  1.05  1.04  0.99  0.93  1.02  0.95*  1.01  1.00  1.01 
Oregon  1.04  0.96  0.94  0.93*  0.97  1.03  1.00  0.90*  1.02  1.02  0.97 
Pennsylvania  0.95*  0.98  0.97*  1.01  0.99  0.96*  0.95*  0.98*  0.99  0.99  1.01 
Rhode Island  0.96  0.95  0.98  0.95  0.86  0.75*  0.76  0.88  0.99  1.08  1.05 
South Carolina  0.81*  1.05  1.04  0.99  0.99  0.88*  0.91*  0.92*  1.02  1.04  1.06* 
South Dakota  0.96  0.97  1.09*  1.04*  1.07*  1.05*  1.01  0.98  1.04*  1.01  1.02 
Tennessee  1.01  1.01  1.06*  0.97*  0.94*  0.97  1.03  0.93  0.95*  1.01  1.01 
Texas  1.16*  1.09*  0.85*  0.95*  1.04*  1.01  0.97  0.99  0.99  0.94*  1.02 
Utah  1.07  0.95  1.04*  0.99  1.03  1.03  1.01  0.72*  0.96  0.96  0.77* 
Vermont  0.99  0.99  1.00  1.02  0.97  1.01  1.03  0.94  0.97  1.01  1.00 
Virginia  0.94  1.04  0.96  0.98  1.02  1.03  1.02  0.97*  1.01  0.99  0.98 
Washington  1.13*  1.00  1.03  0.99  1.00  0.95*  0.78*  0.88*  0.96  0.92*  0.86* 
West Virginia  0.97  1.00  1.03  1.00  1.01  1.00  0.96*  0.92*  0.99  1.01  1.00 
Wisconsin  1.03  1.01  1.05*  0.99  0.98*  1.02*  1.01  0.95*  1.00  0.95*  0.96* 
Wyoming  0.67*  0.68*  1.10  1.01  0.99  1.01  1.03  0.93*  1.00  1.00  0.98 

Notes: Each row represents the estimated ̂β coefficient for each state from the cross-sectional estimation of Eq. (2) using data for the indicated decade. * The null hypothesis ̂β = 1 can be rejected at the 5 % confidence level 
using a Wald test.  
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State, Illinois, Massachusetts. These cannot be represented by a Zipf’s 
Law”. However, our results, based on Zipf’s regressions, contradict the 
hypothesis of Cristelli et al. (2012): the sample that consists of the 
United States as a whole is not more integrated and organic than the 
sample of its individual states given that Zipf’s law is rejected at the 

national level from 1960 to 2010. 
We also considered the results obtained using the power law test by 

Clauset et al. (2009), which is considered to be an improvement over 
Zipf’s regressions. Using that methodology, we found weak support for 
the hypothesis of Cristelli et al. (2012). The power law null is only 

Fig. 3. Nonparametric estimate of the mean growth rate for several selected states, 1900–2010.  
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rejected at 10 % at the national level in one year (1970) and, at the 
regional level, it is not rejected for most states in all years (although we 
detect several rejections—a maximum of 27.1 % in 1970 and a minimum 
of 4.2 % in 1910). Therefore, although we might reject the proposition 
that Zipf’s law holds from 1960 onwards for the entire United States 
using Zipf’s regressions, the methodology of Clauset et al. (2009) at least 
allows us to conclude that the city size distribution follows a Pareto 
distribution. Overall, our results support a power law, but they reject the 
special case of Zipf’s law at the national level since 1960. 

We have demonstrated that Gibrat’s law holds for most city sizes in 
the long-term at the national level, and for a non-negligible number of 
states in mean growth both in the short- and long-term. In the short- 
term, a parametric approach revealed that Gibrat’s law cannot be 
rejected for most states in any decade except one (i.e., 1970–1980). In 
the long-term, nonparametric estimates showed that there are 20 states 
in which both Zipf’s and Gibrat’s laws in means are fulfilled over the 
entirety of the sample period: Alabama, Arkansas, Connecticut, Dela
ware, Georgia, Iowa, Kentucky, Louisiana, Maine, Massachusetts, Mis
sissippi, Missouri, Montana, New Hampshire, New Mexico, New York, 
North Carolina, South Carolina, Vermont (Zipf’s law is only rejected in 
2000), and West Virginia. That finding partly corroborates the second 
proposition of Gabaix (1999). On the other hand, Gibrat’s law for the 
variance of growth rates is not satisfied at either the level of the entire 
United States or the state level; the variance of the growth rates is sys
tematically larger for smaller cities. This result, however, is not un
precedented: González-Val (2010) found that Gibrat’s Law held weakly 
for all US cities from 1900 to 2000. Under this weak version of Gibrat’s 
law, growth is proportionate on average but not in variance. We found 
that this same pattern of urban growth was reproduced at the state level 
for these 20 states. 

The implications of our state-level empirical findings for regional 
science and urban economics have already been stated in the previous 
paragraphs, but we can delve deeper into the analysis. There is a certain 
consensus in the literature regarding the validity of a power law, and the 
particular case that Zipf’s law represents, for adequately describing the 
upper tail of city size distributions. Furthermore, the fulfilment of Zipf’s 
law is often associated with a regular and stable distribution in which all 
city sizes are reasonably represented. In this context, our results 
corroborate these stylised facts since, at the US state level, both a power 
law and Zipf’s law are the dominant descriptions for data. If Gibrat’s law 
holds in means, the implication is that the urban hierarchy of cities is 
stable over time. Here, the evidence is not so clear, because for a non- 
negligible number of states, Gibrat’s law in means is not valid in the 
long-term. Moreover, as expected, Gibrat’s law in variances simply does 
not hold. 

Finally, our empirical outcomes have policy implications. First, space 
matters: we found two clear geographical patterns regarding the validity 
of Zipf’s law (mainly in the southern states) and Gibrat’s law in means 
(mainly in the states located in the east). This geographical pattern 
characterising the distribution of city sizes in some states must be taken 
into account in any policy measure attempting to exert some influence 
on city size distribution, such as policies that tend towards convergence 
and strive for territorial cohesion. Second, in the states where Gibrat’s 
law in means is not satisfied, the evolution of the distribution is 
convergent in most cases, which implies that the differences in city sizes 
are diminishing and, therefore, the distribution is becoming less un
equal. An urban structure of cities of similar populations invites an 
egalitarian treatment by the public bodies in charge of investment in 
transport infrastructure, education, or healthcare. 
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González-Val, R. (2010). The evolution of US city size distribution from a long term 
perspective (1900-2000). Journal of Regional Science, 50(5), 952–972. 
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González-Val, R., Lanaspa, L., & Sanz-Gracia, F. (2014). New evidence on Gibrat’s law for 
cities. Urban Studies, 51(1), 93–115. 
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