000133377 001__ 133377
000133377 005__ 20250923084426.0
000133377 0247_ $$2doi$$a10.1016/j.biombioe.2024.107197
000133377 0248_ $$2sideral$$a138058
000133377 037__ $$aART-2024-138058
000133377 041__ $$aeng
000133377 100__ $$aAntorán, Daniel$$uUniversidad de Zaragoza
000133377 245__ $$aEnhancing waste hemp hurd-derived anodes for sodium-ion batteries through hydrochloric acid-mediated hydrothermal pretreatment
000133377 260__ $$c2024
000133377 5060_ $$aAccess copy available to the general public$$fUnrestricted
000133377 5203_ $$aWaste hemp hurd (WHH) was used as a sustainable feedstock for producing hard carbon-based anodes for sodium-ion batteries (SIBs). Two easily scalable production pathways were tested and compared: (1) pyrolysis (at 500 °C) and subsequent annealing at 800, 1000 or 1200 °C, and (2) hydrothermal pretreatment (at 180 °C) and subsequent annealing at the above-mentioned highest temperatures. Results indicated that when a HCl (2 mol m−3) aqueous solution was used as hydrothermal medium, the textural, structural and surface chemistry features linked to the electrochemical performance of the resulting hard carbons improved. The WHH-derived electrode produced via HCl-mediated hydrothermal pretreatment and subsequent annealing at 1000 °C showed an exceptional electrochemical performance in terms of specific capacity (535 mA h g−1 at 30 mA g−1) and rate capability (372, 156, 115, and 83 mA h g−1 at 0.1, 0.5, 1, and 2 A g−1, respectively) when an ester-based electrolyte was used (NaTFSI in EC/DMC). Using an ether-based electrolyte (NaPF6 in diglyme) improved both the ICE (from 69% to 78%) and cycling stability (85% of capacity retention after 300 cycles at 1 A g−1; 91% when current rate returned to 0.1 A g−1). In summary, relatively low-cost WHH-derived carbons are able to deliver an exceptional performance, much better than that reported so far for other biomass-derived carbons, and even close to that exhibited by more expensive and complex composite and hybrid materials.
000133377 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FEDER/T22-23R$$9info:eu-repo/grantAgreement/ES/MICINN/PID2029-107737RB-I00
000133377 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000133377 590__ $$a5.8$$b2024
000133377 592__ $$a1.16$$b2024
000133377 591__ $$aBIOTECHNOLOGY & APPLIED MICROBIOLOGY$$b21 / 177 = 0.119$$c2024$$dQ1$$eT1
000133377 593__ $$aAgronomy and Crop Science$$c2024$$dQ1
000133377 591__ $$aAGRICULTURAL ENGINEERING$$b3 / 20 = 0.15$$c2024$$dQ1$$eT1
000133377 593__ $$aWaste Management and Disposal$$c2024$$dQ1
000133377 591__ $$aENERGY & FUELS$$b65 / 182 = 0.357$$c2024$$dQ2$$eT2
000133377 593__ $$aForestry$$c2024$$dQ1
000133377 593__ $$aRenewable Energy, Sustainability and the Environment$$c2024$$dQ2
000133377 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000133377 700__ $$0(orcid)0000-0002-5526-3962$$aAlvira, Darío$$uUniversidad de Zaragoza
000133377 700__ $$0(orcid)0000-0002-6873-5244$$aSebastián, Víctor$$uUniversidad de Zaragoza
000133377 700__ $$0(orcid)0000-0002-0118-3254$$aManyà, Joan J.$$uUniversidad de Zaragoza
000133377 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000133377 7102_ $$15005$$2X$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cProy. investigación HKA
000133377 773__ $$g184 (2024), 107197 [13 pp.]$$pBiomass bioenergy$$tBIOMASS & BIOENERGY$$x0961-9534
000133377 8564_ $$s15915394$$uhttps://zaguan.unizar.es/record/133377/files/texto_completo.pdf$$yVersión publicada
000133377 8564_ $$s2514284$$uhttps://zaguan.unizar.es/record/133377/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000133377 909CO $$ooai:zaguan.unizar.es:133377$$particulos$$pdriver
000133377 951__ $$a2025-09-22-14:39:45
000133377 980__ $$aARTICLE