On the integral solution of hyperbolic Kepler’s equation

Calvo, M. ; Elipe, A. (Universidad de Zaragoza) ; Rández, L. (Universidad de Zaragoza)
On the integral solution of hyperbolic Kepler’s equation
Resumen: In a recent paper of Philcox, Goodman and Slepian, the solution of the elliptic Kepler’s equation is given as a quotient of two contour integrals along a Jordan curve that contains in its interior the unique real solution of the elliptic Kepler’s equation and does not include other complex zeroes. In this paper, we show that a similar explicit integral solution can be given for the hyperbolic Kepler’s equation. With this purpose, we carry out a study of the complex zeros of the hyperbolic Kepler’s equation in order to define suitable Jordan contours in the integrals. Even more, we show that appropriate elliptic Jordan contours can be defined for such integrals, which reduces the computing time. Moreover, using the ideas behind the fast Fourier transform (FFT) algorithm, these integrals can be approximated by the composite trapezoidal rule which gives an algorithm with spectral convergence as a function of the number of nodes. The results of some numerical experiments are presented to show that this implementation is a reliable and very accurate algorithm for solving the hyperbolic Kepler’s equation.
Idioma: Inglés
DOI: 10.1007/s10569-024-10184-5
Año: 2024
Publicado en: Celestial Mechanics and Dynamical Astronomy 136, 2 (2024), 13 [14 pp.]
ISSN: 0923-2958

Factor impacto JCR: 1.4 (2024)
Categ. JCR: MATHEMATICS, INTERDISCIPLINARY APPLICATIONS rank: 84 / 136 = 0.618 (2024) - Q3 - T2
Categ. JCR: ASTRONOMY & ASTROPHYSICS rank: 54 / 84 = 0.643 (2024) - Q3 - T2

Factor impacto SCIMAGO: 0.448 - Applied Mathematics (Q2) - Computational Mathematics (Q2) - Modeling and Simulation (Q2) - Mathematical Physics (Q3) - Space and Planetary Science (Q3) - Astronomy and Astrophysics (Q3)

Tipo y forma: Artículo (Versión definitiva)
Área (Departamento): Área Matemática Aplicada (Dpto. Matemática Aplicada)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.


Exportado de SIDERAL (2025-09-22-14:38:26)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos > Artículos por área > Matemática Aplicada



 Registro creado el 2024-04-12, última modificación el 2025-09-23


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)