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ABSTRACT: Deprotonation of the thioamidate group of [OsH{κ2-N,S-[NHC(CH3)S]}(�CPh)(IPr)(PiPr3)]OTf [1; IPr = 1,3-
bis(2,6-diisopropylphenyl)imidazolylidene; OTf = CF3SO3] results in the release of acetonitrile and formation of the terminal sulfide
complex OsH(S)(�CPh)(IPr)(PiPr3) (2), which has been transformed into the hydrosulfide [OsH(SH)(�CPh)(IPr)(PiPr3)]OTf
(3) and the methylsulfide [OsH(SMe)(�CPh)(IPr)(PiPr3)]OTf (4) through protonation and methylation reactions, respectively.
The structure, spectroscopic characteristics, and reactivity of these compounds are compared. Reactions of 3 and 4 with 2-
hydroxypyridine and 2-mercaptopyridine afford [OsH{κ2-X,N-[X-py]}(�CPh)(IPr)(PiPr3)]OTf [X = O (5), S(6)].

Metal sulfides have attracted great attention in recent
years. The interest is mainly motivated by the relevance

of these types of compounds in biological systems and by the
role they can play in the metal-catalyzed hydrodesulfurization
of fossil fuels.1 Sulfur is larger and softer than oxygen. Its 3p
orbitals are more diffuse, and therefore it forms weaker π
interactions with other atoms. Thus, sulfur tends to form
bridging rather than terminal interactions. As a consequence,
the terminal sulfide compounds of transition metals are
difficult to stabilize and the number of these compounds is
significantly much less than that of the terminal oxo
derivatives.2 Ruthenium and osmium are overwhelming pieces
of evidence of this. Both elements form numerous terminal oxo
complexes, which play important roles in stoichiometric and
catalytic oxidations.3 In contrast, no terminal sulfide derivatives
are known for ruthenium, although they have been proposed as
intermediates in the formation of polymetallic derivatives,4

while the existence of a single such osmium complex has been
suggested based on very little evidence. In 1994, Shapley and
co-workers reported the presence of a terminal sulfide ligand in
a salt of stoichiometry [N(n-Bu)4][Os(N)(S)(CH2SiMe3)2],
according to a band at 613 cm−1 on the IR spectrum. The salt
was obtained in low yield from the reaction crude resulting
from the treatment of [N(n-Bu)4][Os(N)(CH2SiMe3)2Cl2]
with Li2S. The crude containing mainly binuclear species.5 Like
terminal oxo compounds, terminal sulfide complexes are
frequent for iron6 and the transition elements found on the
left side of Group 8,7 while they are very rare for the 3d metals
on the right side8 and practically unknown for the platinum
group metals.9 Some terminal sulfide derivatives of these
elements have been proposed as transient species for the
formation of condensed metal frameworks.4,10 In two cases, the
coordination of a terminal sulfur atom to a platinum group
metal has been suggested, but they are controversial: the
osmium salt mentioned above and a [Ru2Pd] cluster
containing a Pd−S terminal bond.11 Although the latter has

been characterized by X-ray diffraction analysis, the structural
parameters obtained and therefore the validity of the structure
seem to raise doubts.9 This Communication shows the
stabilization and complete and unequivocal characterization
of an osmium terminal sulfide complex, which represents a rare
example within the chemistry of platinum group elements. In
addition, its transformation into hydrosulfide and methylsulfide
derivatives and a comparative study of the structures,
spectroscopic characteristics, and reactivity of the three
compounds are included.

We recently reported the preparation of the first aromatic
metallathiazole derivative of a transition metal. The procedure
involves an intramolecular expansion of the four-membered
metalladiheterocycle ring that forms the thioamidate group and
the osmium atom of the alkylidyne complex [OsH{κ2-N,S-
[NHC(CH3)S]}(�CPh)(IPr)(PiPr3)]OTf (1; IPr = 1,3-
bis(2,6-diisopropylphenyl)imidazolylidene; OTf = CF3SO3),
with the C sp atom of the alkylidyne ligand. The process was
carried out in two steps. The expansion initially generated an
osmathiazolium derivative, which upon subsequent deproto-
nation produced osmathiazole.12 In the search to simplify and
generalize the procedure, we attempted to perform a “one-pot”
transformation from amidatoosmium alkylidyne to osmathia-
zole. To do this, we decided to use potassium tert-butoxide as a
deprotonating agent. To our surprise, the addition of the base
to solutions of 1 in tetrahydrofuran at room temperature
produced an instantaneous color change from red to green,
which is associated with formation of the unexpected osmium
terminal sulfide derivative OsH(S)(�CPh)(IPr)(PiPr3) (2).
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This compound was isolated as green crystals in 66% yield
(Scheme 1). Its formation involves deprotonation of the

coordinated thioamidate and the subsequent release of
acetonitrile. The process in the opposite direction resembles
formation of the amidate group of the amidate intermediates
[OsH{κ2-N,O-[NHC(R)O]}(�CPh)(IPr)(PiPr3)]OTf,
which are the key to formation of the oxazolium derivatives
[OsH{κ2-C,O-[C(Ph)NHC(R)O]}(NCR)(IPr)(PiPr3)]OTf.
These salts are precursors of the oxazole complexes OsH{κ2-
C,O-[C(Ph)NC(R)O]}(IPr)(PiPr3). Amidate intermediates
result from the addition of the hydroxide group of [OsH-
(OH)(�CPh)(IPr)(PiPr3)]OTf to nitriles.13

The terminal sulfur atom is a nucleophilic center that is
susceptible to protonation and methylation. Thus, the addition
of a stoichiometric amount of HOTf to 2 in toluene results in
precipitation of the salt [OsH(SH)(�CPh)(IPr)(PiPr3)]OTf
(3), the sulfur counterpart of [OsH(OH)(�CPh)(IPr)-
(PiPr3)]OTf.14 It contains a cation bearing a terminal
hydrosulfide group,15 an uncommon ligand in osmium
chemistry.16 This salt was isolated as a brown solid in about
50% yield. The yellow methylsulfide analogue [OsH(SMe)(�
CPh)(IPr)(PiPr3)]OTf (4) was similarly prepared by reaction
with MeOTf, also in approximately 50% yield. Sulfide
protonation of 2 is reversible despite the presence of hydride
and its expected Brønsted acid character.17 Treatment of 3 in
tetrahydrofuran with potassium tert-butoxide regenerates 2.

The steric requirement of the bulky ligands PiPr3 and IPr is
probably the reason for the surprising stability of these five-
coordinate compounds. The hindrance experienced when two
molecules or cations approach each other prevents their
condensation through the use of sulfur-donor groups as
bridging ligands. The three compounds were characterized by
X-ray diffraction analysis. Figure 1 shows the structures (a−
c),18 whereas Table 1 summarizes the most relevant bond
lengths and angles. The geometry around the osmium atoms
can be rationalized as distorted trigonal bipyramids, with the
phosphine and IPr ligands in apical positions and inequivalent
angles within the Y-shaped equatorial plane. The Os−S
distance is shortened in the sequence 2 < 4 < 3. The
reduction of approximately 0.05 Å observed upon going from 3
to 2 suggests a significant degree of double character for the
Os−S bond in 2, which was confirmed by NBO calculations.19

The replacement of SH by SMe produces a shortening of the
length of the Os−S bond of about 0.03 Å, which can be
attributed to an increase in the σ-donor character of the SMe
group with respect to the SH ligand as a consequence of the
donor ability of the methyl substituent. Unlike the Os−S

distance, the Os−CPh bond length is approximately 0.03 Å
longer in 2 than in 3 and 4. The contraction observed in 3 and
4 is consistent with the presence of a multiple Os−S bonding
in 2. Competition for π-bonding orbitals between the sulfide
and alkylidyne in the latter leads to a longer Os−C bond.
Protonation and methylation of the sulfur atom reduce the S−
Os−C angle by about 10°, approximately the same as the S−
Os−H angle increase. The Os−S−R angles of 102(5)° in 3
and 114.74(13)° in 4 are as expected and suggest a low degree
of π-donor character for the SR ligand, although the Os−S
distances in these compounds are especially short compared to
those previously reported for neutral related Os−SR
derivatives (2.39−2.45 Å).16b,c Given the cationic nature of 3
and 4, the electrostatic component of the Os−S bond likely
contributes significantly to their shortening.

The 1H, 13C{1H}, and 31P{1H} NMR spectra of these
compounds are consistent with those of the structures shown
in Figure 1. In the 1H NMR spectra, the most notable
resonance is a doublet (2JH−P ≈ 17 Hz), due to the hydride
ligand, which appears in the high-field region displaced toward
the low field according to the sequence 2 (−15.13 ppm) < 3
(−2.02 ppm) < 4 (−0.62 ppm). The 13C{1H} NMR spectrum
of 2 shows the resonance corresponding to the alkylidyne COs
atom at 275.5 ppm, as a doublet (2JC−P = 16.3 Hz), while this
signal appears at approximately 266 ppm, with a lower C−P

Scheme 1

Figure 1. Molecular diagrams of complexes 2 (a), 3 (b), 4 (c), and 5
(d). Hydrogen atoms, except hydrides and S−H, and the [OTf ]−

anions of 3−5 have been omitted for clarity.

Table 1. Selected Distances (Å) and Angles (deg) for 2−5

2 3 4 5

Distances
Os−S 2.2774(7) 2.3296(18) 2.2988(9)
Os−C 1.741(3) 1.712(6) 1.717(3) 1.736(5)

Angles
S−Os−C 123.15(10) 114.0(3) 112.55(12)
O−Os−C 169.21(19)
N−Os−C 109.8(2)
S−Os−H 135.9(11) 145(3) 151(2)
Os−S−Ra 102(5) 114.74(13)

aR = H (3), CH3 (4).
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coupling constant of approximately 6 Hz, in the 13C{1H} NMR
spectra of 3 and 4. The 31P{1H} NMR spectra contain a singlet
at 35.2 ppm for 2 and close to 46 ppm for 3 and 4. In contrast
to the NMR spectra, a comparison of the IR spectra of the
three complexes is poorly informative because the region
between 800 and 500 cm−1 of the three is similar, including a
band around that reported by the Shapley group [689 (2), 636
(3), and 635 (4) cm−1].

There is a marked difference in the reactivity between 2 and
salts 3 and 4. Complex 2 does not react with 2-
hydroxypyridine and 2-mercaptopyridine. Unlike the sulfur
atom of 2, the SR ligand of the cation of the salts is capable of
deprotonating the substituents of these pyridines. Thus, their
addition to solutions of 3 and 4, in dichloromethane, at room
temperature results in displacement of the SR ligand, leading
to salts [OsH{κ2-X,N-[X-py]}(�CPh)(IPr)(PiPr3)]OTf [X =
O (5), S(6)] containing a six-coordinate cation (Scheme 2).20

These compounds were isolated as orange solids in high yield,
about 80%. The six-coordinate number for the metal center of
cations was confirmed by the X-ray diffraction analysis
structure of 5. As revealed in Figure 1d, the coordination
geometry around the osmium atom is a distorted octahedron
with the phosphine and IPr ligands arranged trans. The
incoming ligand lies in a plane perpendicular to the iPr3P−
Os−IPr direction with the pyridyl group disposed trans to the
hydride ligand and the oxygen atom located trans with respect
to the alkylidyne. Noticeable NMR spectroscopic features of
these salts are a doublet (2JH−P ≈ 18 Hz) at about −3.5 ppm,
in the 1H NMR spectra, due to the hydride ligand, a doublet
(2JC−P ≈ 10 Hz) around 270 ppm in the 13C{1H} NMR
spectra, corresponding to the alkylidyne COs atom, and a
singlet at 30.4 ppm for 5 and 20.0 ppm for 6 in the 31P{1H}
NMR spectra.

Alternative synthetic procedures to the known ones usually
give rise to different compounds; this Communication is clear
evidence of this. Transition-metal sulfide complexes have
traditionally been prepared by a metathesis reaction on halide
precursors with ionic sulfides and by the reductive addition of
elemental sulfur.7 We conclude, on the basis of the results of
this Communication, that the deprotonation of NH-
thioamidate groups in cationic complexes is also a useful
method to obtain complexes of this interesting class. Probably
due to the relatively poor nucleophilicity of the coordinated
sulfide ligand, such deprotonation results in the release of the
nitrile fragment, which implies the liberation of a neutral
sulfide complex. This discovery allows us to here show the
preparation of an unusual sulfide derivative of a platinum
group metal and its transformation to hydrosulfide and
methylsulfide and to compare the structures, spectroscopic
characteristics, and reactivities of the three new complexes.
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